Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

请简单评价你和deepseek的差距

Answer

DeepSeek 与其他相关模型存在多方面的差异和特点:

  1. 训练成本方面:DeepSeek 的训练成本远高于传闻,总计约 13 亿美元,且定价低于实际成本,导致高额亏损。
  2. 竞争优势方面:以低成本开发顶级 AI 模型的 Mistral AI 被 DeepSeek 迅速赶超,DeepSeek 的“极简算力”模式可能削弱 Mistral 的竞争优势。
  3. 发展模式方面:DeepSeek 有点像 2022 年之前的 OpenAI 和 DeepMind,具有非营利性学术研究机构的特点。它没有像很多中国 AI 公司那样注重产品运营、营销和推出各种开发者项目,目前似乎不打算做生意。
  4. 技术突破方面:DeepSeek 发布的 V-3 以低成本实现了高性能,成为其发展的里程碑。与 OpenAI 相比,DeepSeek 致力于用低成本资源实现高效,达到里程碑的时间更短,且训练与推理并重。
Content generated by AI large model, please carefully verify (powered by aily)

References

宝玉 日报

🫧宝玉日报「1月31日」✨✨✨✨✨✨✨✨1⃣️💰DeepSeek训练成本:训练成本远高于传闻的600万美元,总计约13亿美元。定价低于实际成本,导致高额亏损。Mixture-of-Expert方法降低计算需求,但大规模内存使用可能反而增加总成本。🥜总结:DeepSeek展示了AI领域的持续创新,但并未如传言般“颠覆”。🔗[https://x.com/dotey/status/1885368473364103402](https://x.com/dotey/status/1885368473364103402)🔗来源:[https://www.linkedin.com/posts/gillesbackhus_i-want-to-share-a-few-condensed-things-about-activity-7291076837080723457-JSVH/](https://www.linkedin.com/posts/gillesbackhus_i-want-to-share-a-few-condensed-things-about-activity-7291076837080723457-JSVH/)2⃣️🇫🇷Mistral AI面临挑战:以低成本开发顶级AI模型,但被中国DeepSeek迅速赶超。曾获法国政府、英伟达、a16z等支持,估值达20亿美元。DeepSeek的“极简算力”模式可能削弱Mistral的竞争优势。🔮未来:或被科技巨头收购,或需要重新定位。🔗[https://x.com/dotey/status/1885226709152092573](https://x.com/dotey/status/1885226709152092573)3⃣️⚡扎克伯格:AI变革在即!

DeepSeek 的秘方是硅谷味儿的

如果非要给DeepSeek在全球的人工智能玩家里找一个对标的话,请允许我加上一个前置条件:DeepSeek有点像OpenAI和DeepMind——2022年之前的OpenAI和DeepMind。2022年之前的OpenAI和DeepMind是什么样子?非营利性学术研究机构。尽管已经被微软投资并转型为了营利性公司,但当时OpenAI的整体工作方式——至少是首席科学家Ilya Sustkever和联合创始人Andrej Kaparthy为代表的那群人——仍是非营利机构性质的,公司没有对外的正式产品,2020年公布的GPT-3是一个学术研究成果,而且还开源了。DeepMind尽管名义上是一家创业公司,但无论是它独立在伦敦存在的时期,还是被Google收购但尚未与Google Brain整合之前,都更像是一家研究机构的存在,无论AlphaGo还是AlphaFold,都是研究项目,而不是产品。DeepSeek有自己的“产品”么?不能说没有,毕竟普通用户也可以直接跟它的模型聊天,它还顺带手向开发者卖一卖低价的API。可是它连个移动APP都没有,看上去也没对产品做什么运营,不投放流量广告,也不搞社交媒体营销,也不给用户准备各种贴心的prompt模板。有个网站,普通人也可以用,就够了。光就这一点看DeepSeek就很不中国AI公司。在企业和开发者一侧,除了基于架构创新的成本下降让它狠狠砸了一锤子API的价格,也看不到它搞什么“加速计划”、“开发者大赛”、“产业生态基金”等等很多企业都搞的项目。这只能说明:现在它是真心不打算做生意。

DeepSeek 的秘方是硅谷味儿的

1.2023年11月,DeepSeek先后发布了两款开源模型DeepSeek Coder和DeepSeek LLM,只有少数人关注到了,而它们也在计算的效率和可扩展性上遇到了挑战。2.2024年5月,DeepSeek发布了V-2,以混合专家模型(MoE)和多头潜在注意力机制(MLA)技术的结合,大幅降低了模型训练特别是推理的成本,且性能可以在很多维度与世界顶尖模型相比较,它开始引发AI学术界和开发者的广泛讨论和推荐,这是DeepSeek走进更多人视野的开始。3.2024年12月,DeepSeek发布了V-3,以OpenAI、Anthropic和Google百分之一的成本,实现了模型性能超越同类开源模型Llama 3.1和Qwen 2.5,媲美闭源模型GPT-4o和Claude 3.5 Sonnet的成绩,引发轰动,成为世界大语言模型发展的里程碑。可以说,V-3就是DeepSeek的“GPT-3”时刻,一个里程碑。当然,DeepSeek与OpenAI在实现里程碑式跃迁的进程中区别在于——1.OpenAI在这一进程中一直致力于实现计算资源规模与成本的无限扩张,而DeepSeek则一直致力用尽可能低成本的计算资源实现更高的效率。2.OpenAI花了两年时间达到GPT-3时刻,而DeepSeek用了一年摘得了V-3的圣杯。3.OpenAI在GPT路线上一直聚焦在预训练的进步,而DeepSeek则是训练与推理并重——这也是全球模型技术发展趋势的要求。

Others are asking
deepseek提示词
以下是关于 deepseek 提示词的相关内容: 1. 生成小红书爆款单词视频: 开始时输入单词主题、图片风格、单词数量。 选择 deepseekr1 模型生成单词数组,以数组方式输出,包括单词、中文、美式音标、英文句子及其中文翻译。 提示词中角色设定为专业的单词生成助手,技能是输出关联英语单词,限制为仅围绕用户输入主题输出相关内容,且以特定数组形式呈现。 2. Deepseek 时代提示词的关键诉求: 观察发现完整的提示词可能不如片段有效,甚至可能干扰模型思考流程,过长提示会带来 Token 浪费和上下文污染。 新一代 LLM 的正确打开方式是“关键诉求直通车”模式,如像对聪明助理打暗号,让模型自主发挥。 3. 让 DeepSeek 生成相机运动轨迹的提示词: 以往的提示词是场景、构图、尺寸等的组合,现在要求以“相机运动轨迹”的方式描写。 例如“相机向上飞升至上空轨道视角,拍摄站在泳池旁的女子”,海螺 AI 能对空间理解和遵循语义,生成相关内容。
2025-03-11
通过deepseek生成论文的指令
以下是关于通过 DeepSeek 生成论文的相关指令和信息: 1. 高级调试策略: 模糊指令优化:对于宽泛需求可添加维度约束,如“写小说”可修正为“创作以 AI 觉醒为背景的悬疑短篇,采用多视角叙事结构”;对于主观表述可量化标准,如“写得专业些”可修正为“符合 IEEE 论文格式,包含 5 项以上行业数据引用”。 迭代优化法:包括首轮生成获取基础内容、特征强化加强某段的技术细节描述、风格调整改用特定语气并添加结论部分、最终校验检查时间逻辑一致性和列出可能的事实性错误。 2. 高阶能力调用: 文风转换矩阵:如作家风格移植“用鲁迅杂文风格写职场 PUA 现象”、文体杂交“将产品说明书改写成《史记》列传格式”、学术口语化“把这篇论文摘要翻译成菜市场大妈能听懂的话”。 领域穿透技术:如行业黑话破解“解释 Web3 领域的'胖协议瘦应用'理论”。 3. 场景化实战策略:包括创意内容生成、技术方案论证。 4. 效能增强技巧: 对话记忆管理:如上下文锚定“记住当前讨论的芯片型号是麒麟 9010”、信息回溯“请复述之前确认的三个设计原则”、焦点重置“回到最初讨论的供应链问题”。 输出质量控制:对于过度抽象可“请具体说明第三步操作中的温度控制参数”;对于信息过载可用“用电梯演讲格式重新组织结论”;对于风格偏移可“回归商务报告语气,删除比喻修辞”。 5. 特殊场景解决方案: 长文本创作:可采用分段接力法,如“先完成故事大纲→逐章扩展→最后进行伏笔校验”“确保新章节与前文的三处细节呼应”。 敏感内容处理:可采用概念脱敏法“用经济学原理类比说明网络审查机制”、场景移植法“假设在火星殖民地讨论该议题”。 此外,DeepSeek 在写文方面全面领先,但长文会太发散,文风用力过猛,可能导致审美疲劳,且模型多样性不够,相同 prompt 提问多次答案雷同。写理性文章时,可先与 DeepSeek 讨论思路,再用 Cloud 3.5 批量生成。用 O1 模型对 AI 创作的字数控制有一定效果,也可通过多轮对话让 AI 增删改查来调整字数。
2025-03-10
你如何评价manus和deepseek的事件性?从里程碑的角度来思考!
从里程碑的角度来看,DeepSeek 在处理这个事件时展现出了强大的语言生成和情境构建能力。它能够根据复杂且细致的需求,在思考 8 秒后生成一段富有历史感、情感深度和符合人物性格处境的独白。这段独白不仅考虑到了时间设定、文学修辞的运用,还兼顾了历史事实和人物的心理活动,展现出了较高的智能水平和创作能力。然而,对于 Manus 在这一事件中的作用或表现,由于提供的内容中未提及,无法进行评价。
2025-03-10
有关Deepseek的知识内容
以下是关于 DeepSeek 的相关知识: 媒体报道和网络文章方面: 微博上热搜,主流媒体全报道。 众多作者发表了关于 DeepSeek 的文章,涵盖基础认知、提示词破解、进阶思考等类型,相关链接包括: 通往 AGI 之路:关于 DeepSeek 的所有事情【知识库持续更新中】,https://mp.weixin.qq.com/s/n0WrrJL0fVX6zLeTBWpZXA 数字生命卡兹克:DeepSeek 的提示词技巧,就是没有技巧,https://zhuanlan.zhihu.com/p/20544736305 (错误) 宝玉:教你如何破解 DeepSeek R1 系统提示词,https://mp.weixin.qq.com/s/vAp2wI5ozTw7R6jreLMw 橘子汽水铺:中国开源,震撼世界:DeepSeek R1 的变革、启示与展望,https://mp.weixin.qq.com/s/yGUgehbxKisVaHlOkxhuaw 橘子汽水铺:自学成才之路,DeepSeek R1 论文解读,https://mp.weixin.qq.com/s/gmdHyh6fsUdj1JhM1sV9bg 新智元:史上首次,DeepSeek 登顶中美 AppStore!NYU 教授:全球「AI 霸权」之争已结束,https://mp.weixin.qq.com/s/ybvV8RMX0yyS5YfG1qNWgg 一支烟花 AI:用流程图对比 DeepSeekR1,OpenAI O1,Claude 说明强化学习在 AI 大模型训练、推理的创新和意义,https://mp.weixin.qq.com/s/mdGtOcg1RuQOEBn31KhxQ 腾讯科技:一文读懂|DeepSeek 新模型大揭秘,为何它能震动全球 AI 圈,https://mp.weixin.qq.com/s/cp4rQx09wygE9uHBadI7RA 张小珺腾讯科技:一场关于 DeepSeek 的高质量闭门会:比技术更重要的是愿景,https://mp.weixin.qq.com/s/a7C5NjHbMGh2CLYk1bhfYw 在 AI 编程与炼金术:Build on Trae 中: 涉及 DeepSeek R1 的章节包括使用 DeepSeek R1 给老外起中文名、申请 DeepSeek R1 API、网页接入 DeepSeek API 等,相关链接包括:
2025-03-10
deepseek如何赋能职场应用实现工作提效?
DeepSeek 可以通过以下方式赋能职场应用实现工作提效: 1. 作为多场景 AI 工具,支持从创意到实现的全流程智能化服务,能快速将创意转化为高质量视频,具备角色一致性技术与分镜自动成片功能,并且支持美学意象风格短片创作。 2. 提供基础模型和深度思考模型两种模式,分别适用于高效便捷任务和复杂推理分析任务。 3. 可用于制作可视化图表、PPT 大纲及设计海报等,通过智能体框架实现人机高效协作。 4. 直接使用 DeepSeek 有多种方法,并且有诸多提示词技巧,在专业场景提效、教育学术赋能、商业创新与生活服务等领域用途广泛,像辅助办公、教学设计、电商运营等。 5. 可以与飞书多维表格结合,实现批量处理信息,提升工作效率,如批量转换文风、快速回复消息、利用 AI 生成文案等,让普通人无需编程知识也能轻松使用 AI。
2025-03-10
deepseek如何赋能职场应用实现工作提效?
DeepSeek 可以通过以下方式赋能职场应用实现工作提效: 1. 作为多场景 AI 工具,支持从创意到实现的全流程智能化服务,能快速将创意转化为高质量视频,具备角色一致性技术与分镜自动成片功能,并且支持美学意象风格短片创作。 2. 提供基础模型和深度思考模型两种模式,分别适用于高效便捷任务和复杂推理分析任务。 3. 用于制作可视化图表、PPT 大纲及设计海报等,通过智能体框架实现人机高效协作。 4. 直接使用 DeepSeek 有多种方法,并且有诸多提示词技巧,在专业场景提效、教育学术赋能、商业创新与生活服务等领域用途广泛,像辅助办公、教学设计、电商运营等。 5. 可以与飞书多维表格结合,实现批量处理信息,提升工作效率,如批量转换文风、快速回复消息、利用 AI 生成文案等。
2025-03-10
中国大模型与世界差距
目前中国大模型与世界仍存在差距,但也有了显著进步。 在 2023 年度中文大模型基准测评中,国外的 GPT4 Turbo 总分 90.63 分遥遥领先,国内最好的模型文心一言 4.0(API)总分 79.02 分,与 GPT4 Turbo 有 11.61 分的差距,与 GPT4(网页)有 4.9 分的差距。国外模型平均成绩为 69.42 分,国内模型平均成绩为 65.95 分,差距在 4 分左右。 不过,过去 1 年国内大模型进步明显,综合能力超过 GPT 3.5 和 GeminiPro 的模型有 11 个,如百度的文心一言 4.0、阿里云的通义千问 2.0 等都有较好表现。在专业与技能方面,GPT4 Turbo 领先幅度较大,但国内的文心一言 4.0 表现不俗。总体来看,国内第一梯队大模型与国外最好模型在专业与知识能力上仍有较大距离,但差距正在不断缩小。 另外,国内开源模型在中文上表现优于国外开源模型。从国内 TOP19 大模型的数量来看,创业公司和大厂的占比几乎持平。
2025-02-27
中国AI工具与美国的差距
在 AI 工具方面,中国与美国存在一定差距。 从访问量最大的 AI 工具及流量行为来看,在分析的前 50 名人工智能工具的地理行为方面,中国排名第 47 位。美国稳居第一,在研究的 12 个月里,美国人工智能行业的访问量达到了 55 亿次,占总流量的 22.62%。尽管美国人口少于中国和印度,但美国拥有价值超过 1.8 万亿美元的全球领先科技市场。 不过,在 2024 年,国内涌现出类似可灵、即梦、智谱清影等一系列 AI 生成视频工具,其生成结果甚至远超国外。但需要注意的是,某些报告中对于中国的 AI 生成图、生成视频的工具未展开详细说明,不能仅据此就认为中国在该功能的 AI 工具上落后于国外。
2024-12-10
目前国产AI对比国外AI,存在哪些不足和差距,我要实事求是的回答
目前国产 AI 对比国外 AI 存在以下不足和差距: 1. 在通用语言模型方面,如 ChatGPT 和 GPT4 出现后,国内与国外拉开了约 2 年的技术差距。国内最领先的模型水平大概在准 ChatGPT3.5 的水平,和 GPT4 还有不小差距,甚至还不如临时拼凑的 Mistral 团队的水平。 2. 国内部分企业可能存在骄傲自大的情况,也可能被之前 Google 主推的 T5 技术路线带偏,同时 AGI 影响巨大,可能存在国外相关机构与 OpenAI 有特殊沟通而国内未有的情况。 3. 2023 年上半年国内笃信靠资金和卡能实现突破,但下半年纷纷转向“垂直应用”“商业化”,不提 AGI,这种转向可能是短视和致命的。 4. 大厂虽具备冲击 AGI 的资源,但受内部短期考核压力影响,多数力量用于卷新产品圈地盘和向上汇报工作,实际效果未达预期,且背负较多其他业务和政治考量。 不过,在图像类 AI 产品方面,国内产品发展迅速,部分产品如通义万相在中文理解和处理方面表现出色,具有独特优势。在 AI 生成视频工具领域,国内涌现出一系列工具,其生成结果在某些方面甚至远超国外。
2024-11-03
国产AI与国外AI的实际差距
国产 AI 与国外 AI 存在一定的差距,但情况较为复杂,且在不同方面表现有所不同。 在 2023 年之前,国内 AI 行业曾自认为与美国差距不大,但 ChatGPT 和 GPT4 的出现打破了这种认知,OpenAI 直接拉开了 2 年的技术差距。当时国内出现了从追求创造国产 AGI 到转向做“垂直应用”“商业化”的转变。国内最领先的模型水平大概在准 ChatGPT3.5 的水平,和 GPT4 仍有差距。大厂在人才、GPU、数据和资金储备上有冲击 AGI 的能力,但实际效果尚不明确,且受内部短期考核压力等因素影响。 然而到了 2024 年,竞争达到白热化阶段。在文本到视频扩散模型方面,Google DeepMind 和 OpenAI 展示了强大的成果,但中国的相关情况在报告中未详细说明,不过国内也涌现出了一系列表现出色的 AI 生成视频工具,生成结果甚至远超国外。Llama 3.1 在某些任务中能与 GPT4 相抗衡,而中国的一些模型如由 DeepSeek、零一万物、知谱 AI 和阿里巴巴开发的模型在 LMSYS 排行榜上取得优异成绩,尤其在数学和编程方面表现出色,且在某些子任务上挑战了前沿水平。中国模型在计算效率、数据集建设等方面各有优势,能弥补 GPU 访问的限制等不足。
2024-11-03
中国与国外AI模型的差距
目前中国与国外的 AI 模型存在一定差距,但也有自身的优势和进步。 在一些方面,国外模型如 Llama 3.1 在推理、数学、多语言和长上下文任务中能够与 GPT4 相抗衡,首次缩小了开放模型与专有前沿的差距。谷歌 DeepMind 与纽约大学团队的 AlphaGeometry 在奥林匹克级几何问题基准测试中表现出色。GPT 4 Turbo 在 SuperCLUE 测评中的总分遥遥领先,国外模型的平均成绩也相对较高。 然而,中国的 AI 模型也在不断发展。由 DeepSeek、零一万物、知谱 AI 和阿里巴巴开发的模型在 LMSYS 排行榜上取得优异成绩,尤其在数学和编程方面表现突出。国内的最强模型能与美国生产的第二强前沿模型竞争,在某些子任务上挑战了 SOTA。国内模型更注重计算效率,以弥补 GPU 访问的限制,并学会更有效地利用资源。例如 DeepSeek 在推理过程中通过多头隐式注意力减少内存需求,并且改进了 MoE 架构。零一万物更加关注数据集的建设。 在专项基准如语言与知识方面,GPT4 Turbo 依然领先,但国内大模型也表现相对较好,有 14 个模型的得分高于 GPT3.5,有 9 个模型的得分高于 GeminiPro。在中文语言与知识能力上,国内大模型已基本追赶上国外头部大模型,未来有可能率先形成超越。 总体而言,国内外差距依然存在,但国内大模型在过去一年有了长足的进步,平均水平差距在缩小。
2024-11-01
中美AI技术差距主要体现在哪些地方?以通信方面作为分析角度
中美在 AI 技术的通信方面存在以下差距: 1. 技术专长:包括对 AI 技术如何用于提供产品和服务,以及技术标准的开发、使用和适用性等方面的理解。 2. 跨监管制度的交互理解:在不同监管制度下 AI 使用案例如何相互作用方面的专业知识存在差异。 3. 市场情报:对于 AI 技术如何颠覆现有商业模式,包括潜在机会和风险对监管目标的影响,了解程度不同。 4. 组织能力:在有效适应 AI 应用的出现、在组织内吸收和分享知识、与提供保证技术的组织合作并制定技术标准,以及跨监管机构共享知识和合作监管等方面的能力有所不同。 需要注意的是,目前提供的内容中未明确提及中国在这些方面的具体情况,以上是基于所给资料中关于一般监管机构在 AI 相关方面能力差距的分析。
2024-10-20
有什么AI相关的笔记软件,既可以记录我的想法、灵感,然后AI也可以直接生成对我所写内容的评价(如可以安抚情绪),并且这个笔记软件的检索功能很好用
以下是一些符合您需求的 AI 相关笔记软件: 1. Notion AI:https://www.notion.so/help/guides/category/ai?ref=indigox.me 随着大语言模型的流行,其在智能化方面表现出色。 2. Mem.ai:https://mem.ai/?ref=indigox.me 一款 AI 驱动的笔记工具。 3. Pile:https://udara.io/pile/ 开源且界面美观,助力日记撰写和记录,集成 OpenAI API,具有 AI 搜索和问题解答功能,保证安全隐私。项目源码:https://github.com/UdaraJay/Pile
2025-02-19
评价一下deepseek
以下是关于 DeepSeek 的评价: Yann LeCun 强调了开源模型的力量,指出 DeepSeek 的成功得益于开源研究与项目,如 PyTorch 和 Llama。同时批评了对 DeepSeek 成果的过度解读,认为应关注开源对 AI 的促进作用。 华尔街分析师方面,DeepSeek 展示出媲美领先 AI 产品性能的模型,成本仅为一小部分且在全球主要市场的 App Store 登顶。但 Jefferies 警告其技术可能打破资本开支狂热,Citi 对其技术突破提出质疑,高盛预测其可能改变科技巨头与初创公司的竞争格局,降低 AI 行业进入门槛。 实际使用体验上,DeepSeek 在文字能力方面表现突出,尤其在中文场景中高度符合日常、写作习惯,但在专业论文总结方面稍弱。数学能力经过优化表现不错,编程能力略逊于 GPT(据用户反馈)。GRPO 算法替代传统 PPO,降低了价值函数估计难度,提高了语言评价场景的灵活性与训练速度。
2025-02-17
教培机构怎么创建一个智能体帮我给每一个学生写评价
以下是为教培机构创建一个能为每个学生写评价的智能体的相关指导: 首先,明确评价的维度和标准。可以参考以下几个方面: 1. 语言的准确性、清晰度和规范性,每项 5 分,共 5 分。 2. 讲授的严密性和逻辑性,每项 5 分,共 5 分。 3. 语言的生动性和趣味性,每项 5 分,共 5 分。 4. 针对学生实际的可接受性和启发性,每项 5 分,共 5 分。 5. 语言的艺术性,每项 5 分,共 5 分。 在评价作文方面,需要考虑多个因素,包括:错别字、词、标点识别;好词好句识别、内容评价、逻辑结构评价、语言表达评价、段落评价等。利用大模型高效、准确、丰富知识的优秀特点,对学生作文进行综合打分。 在创建智能体时,要注重以下几点: 1. 让智能体具备深层次语义理解能力,即便处于复杂语境,也能有效辨识出不恰当的词汇和错误的句子构造。 2. 利用大规模数据识别能力,使其能够辨别出哪些词汇或句子搭配在正式书面语中较为罕见,进而准确标出错词错句。 3. 培养智能体基于上下文来判定词语和句子的恰当性,即便是语法正确但语境不适宜的用词也能被有效识别。 4. 让智能体掌握语法规则习得能力,使其能够检测句子是否遵守了语法标准。 同时,写好提示词是创建智能体的第一步。可以参考一些相关的示例,如儿童寓意故事创作者的知识库中的故事,从中学习如何构思和组织语言。 另外,还可以参考之前让 AI 当评委的经验,如通义听悟录音转文字,丢给自编的多个智能体出分数并填结果。结果显示分数高的五位和三位人类评委选出来的前五一致,只是排名有一位的差异。 总之,创建这样的智能体需要综合考虑多方面的因素,并不断优化和改进,以提高评价的准确性和有效性。
2025-02-15
你如何评价字节的coze?
Coze 是由字节跳动推出的 AI 聊天机器人和应用程序编辑开发平台,专为开发下一代 AI 聊天机器人而设计。其主要特点包括: 1. 多语言模型支持:使用了大型语言模型,如 GPT48K 和 GPT4128K,并提供云雀语言模型等,以支持不同场景下的对话和交互。 2. 插件系统:集成了超过 60 款插件,涵盖资讯阅读、旅游出行、效率办公、图片理解等功能,同时支持用户创建自定义插件,以扩展 Bot 的能力。 3. 知识库功能:允许用户上传和管理数据,支持 Bot 与用户数据交互,可以上传多种格式的文档,或基于 URL 获取在线内容和 API JSON 数据。 4. 数据库和记忆能力:提供了数据库功能,允许 Bot 访问会话内存和上下文,持久记住用户对话中的重要参数或内容。 5. 工作流设计:用户可以通过拖拉拽的方式快速搭建工作流,处理逻辑复杂的任务流,提供了大量灵活可组合的节点。 6. 多代理模式:在一个机器人中可以运行多个任务,允许添加多个代理,每个代理都是一个能够独立执行特定任务的智能实体。 7. 免费使用:目前对用户完全免费,用户可以利用其强大的功能而无需支付费用。 8. 易于发布和分享:用户可以将搭建的 Bot 发布到各类社交平台和通讯软件上,让更多的用户与之互动。 字节对 Coze 的官方解释是:新一代一站式 AI Bot 开发平台。无论是否有编程基础,都可以在 Coze 平台上快速搭建基于 AI 模型的各类问答 Bot,从解决简单的问答到处理复杂逻辑的对话。并且,可以将搭建的 Bot 发布到各类社交平台和通讯软件上,与这些平台/软件上的用户互动。 个人认为:Coze 是字节针对 AI Agent 这一领域的初代产品,在 Coze 中将 AI Agent 称之为 Bot。字节针对 Coze 这个产品部署了两个站点,分别是国内版和海外版。国内版网址:https://www.coze.cn ,官方文档教程:https://www.coze.cn/docs/guides/welcome ,大模型使用的是字节自研的云雀大模型,国内网络即可正常访问。海外版网址:https://www.coze.com ,官方文档教程:https://www.coze.com/docs/guides/welcome ,大模型有 GPT4、GPT3.5 等(可以在这里白嫖 ChatGPT4,具体参考文档),访问需要突破网络限制的工具,参考文档:https://www.coze.com/docs/zh_cn/welcome.html 。 Bot 的开发和调试页面布局主要分为如下几个区块:提示词和人设的区块、Bot 的技能组件、插件、工作流、Bot 的记忆组件、知识库、变量、数据库、长记忆、文件盒子、一些先进的配置、触发器(例如定时发送早报)、开场白(用户和 Bot 初次对话时,Bot 的招呼话语)、自动建议(每当和 Bot 一轮对话完成后,Bot 给出的问题建议)、声音(和 Bot 对话时,Bot 读对话内容的音色)。 Dify 和 Coze 都是大模型中间层产品,它们的异同点如下: 开源性:Dify 是开源的,允许开发者自由访问和修改代码,以便进行定制。Coze 目前没有明确信息表明其是否开源,可能更侧重于提供商业化服务和产品。 功能和定制能力:Dify 提供直观界面,结合 AI 工作流、RAG 管道、代理能力和模型管理等功能,支持通过可视化编排,基于任何 LLM 部署 API 和服务。Coze 提供丰富的插件能力和高效的搭建效率,还支持发布到多个平台作为 Bot 能力使用。 社区和支持:Dify 作为开源项目,拥有活跃的社区,开发者可以参与到产品的共创和共建中。Coze 可能更多地依赖于官方的更新和支持,社区参与和开源协作的程度可能不如 Dify。选择使用 Dify 或 Coze 时,开发者和企业需要根据自己的需求和目标来做出决策。
2025-02-10
如何评价秘塔AI
秘塔 AI 是一款由秘塔科技开发的具有多种特色和优势的产品: 1. 作为 AI 搜索引擎,它提供多模式搜索、无广告干扰、结构化展示和信息聚合等功能,旨在提升用户的搜索效率和体验。 2. 整体流程较长且完整。首先需构建专题,并上传文档或复制网页链接,然后在搜索框左下角选中专题以定制数据源。搜索完成后的操作类型丰富,包括继续追问、导出文档、收藏、保存到秘塔写作猫并编辑、生成演示文稿、下载脑图图片、查看与原文对应关系并进一步搜索等。其创作编辑分享的 AIGC 工作流已初具雏形,RAG 和搜索能力表现良好,是国产之光。 3. 秘塔科技在 9 月 20 日发布的产品经理招聘信息的 JD 描述不拘一格,受到赞誉。 此外,还有众多其他的 AI 搜索引擎,如 Perplexity、360AI 搜索、天工 AI 搜索、Flowith、Devv、Phind 等,它们通过不同的技术和功能,为用户提供更加精准、高效和个性化的搜索体验。
2025-01-18
免费简单直接制作网站的ai
以下是一些免费简单直接制作网站的 AI 工具: 1. Wix ADI 网址: 特点:基于用户提供的信息,自动生成定制化的网站;提供多个设计选项和布局,用户可进一步调整和自定义;集成了 SEO 工具和分析功能,帮助优化网站表现。 2. Bookmark 网址: 特点:AIDA通过询问用户几个简单问题,快速生成网站;提供直观的拖放编辑器,用户可轻松自定义网站内容和布局;包括多种行业模板和自动化营销工具。 3. Firedrop 网址: 特点:Sacha 是 Firedrop 的 AI 设计助手,可根据用户指示创建和修改网站设计;提供实时编辑和预览功能,帮助用户随时查看网站效果;包含多种现代设计风格和自定义选项。 4. The Grid 网址: 特点:Molly 是 The Grid 的 AI 设计助手,可自动调整网站的设计和布局;基于内容和用户互动进行优化,提供个性化的网站设计体验;支持多种内容类型,包括博客、商店和画廊等。 5. Zyro 网址: 特点:使用 AI 生成网站内容,包括文本、图像和布局建议;提供 AI 驱动的品牌和标志生成器,帮助创建独特的品牌形象;包含 SEO 和营销工具,帮助提升网站可见性和流量。 6. 10Web 网址: 特点:基于 AI 的 WordPress 网站构建工具,可自动生成网站布局和设计;提供一键迁移功能,将现有网站迁移到 10Web 平台;集成的 AI 驱动 SEO 分析和优化工具。 7. Jimdo Dolphin 网址: 特点:Dolphin 是 Jimdo 的 AI 网站构建器,通过询问用户问题来定制网站;提供自动生成的内容和图像,帮助快速启动网站;包含电子商务功能,适合小型企业和在线商店。 8. Site123 网址: 特点:简单易用的 AI 网站构建工具,适合初学者;提供多种设计模板和布局,用户可以快速创建专业网站;包括内置的 SEO 和分析工具,帮助优化网站表现。 在选择合适的 AI 网站制作工具时,您可以考虑以下因素: 1. 目标和需求:确定您的网站目标(例如个人博客、商业网站、在线商店)和功能需求。 2. 预算:有些工具提供免费计划或试用版,但高级功能可能需要付费订阅。 3. 易用性:选择一个符合您技术水平的工具,确保您能够轻松使用和管理网站。 4. 自定义选项:检查工具是否提供足够的自定义选项,以满足您的设计和功能需求。 5. 支持和资源:查看是否有足够的客户支持和学习资源(如教程、社区论坛),帮助您解决问题。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-03-10
简单直接制作网站的ai
以下是一些制作网站的 AI 工具: 1. Wix ADI 网址: 特点:基于用户提供的信息,自动生成定制化网站;提供多个设计选项和布局,可进一步调整和自定义;集成了 SEO 工具和分析功能,帮助优化网站表现。 2. Bookmark 网址: 特点:AIDA通过询问用户几个简单问题,快速生成网站;提供直观的拖放编辑器,轻松自定义网站内容和布局;包括多种行业模板和自动化营销工具。 3. Firedrop 网址: 特点:Sacha 是 Firedrop 的 AI 设计助手,可根据用户指示创建和修改网站设计;提供实时编辑和预览功能,随时查看网站效果;包含多种现代设计风格和自定义选项。 4. The Grid 网址: 特点:Molly 是 The Grid 的 AI 设计助手,可自动调整网站的设计和布局;基于内容和用户互动进行优化,提供个性化的网站设计体验;支持多种内容类型,包括博客、商店和画廊等。 5. Zyro 网址: 特点:使用 AI 生成网站内容,包括文本、图像和布局建议;提供 AI 驱动的品牌和标志生成器,帮助创建独特的品牌形象;包含 SEO 和营销工具,帮助提升网站可见性和流量。 6. 10Web 网址: 特点:基于 AI 的 WordPress 网站构建工具,可自动生成网站布局和设计;提供一键迁移功能,将现有网站迁移到 10Web 平台;集成的 AI 驱动 SEO 分析和优化工具。 7. Jimdo Dolphin 网址: 特点:Dolphin 是 Jimdo 的 AI 网站构建器,通过询问用户问题来定制网站;提供自动生成的内容和图像,帮助快速启动网站;包含电子商务功能,适合小型企业和在线商店。 8. Site123 网址: 特点:简单易用的 AI 网站构建工具,适合初学者;提供多种设计模板和布局,用户可以快速创建专业网站;包括内置的 SEO 和分析工具,帮助优化网站表现。 如果您想在 10 分钟内在网站上增加一个 AI 助手,可以按照以下 4 步进行: 1. 创建大模型问答应用:先通过百炼创建一个大模型应用,并获取调用大模型应用 API 的相关凭证。 2. 搭建示例网站:通过函数计算,快速搭建一个网站,模拟您的企业官网或者其他站点。 3. 引入 AI 助手:通过修改几行代码,实现在网站中引入一个 AI 助手。 4. 增加私有知识:准备一些私有知识,让 AI 助手能回答原本无法准确回答的问题,帮助您更好地应对客户咨询。
2025-03-10
RAG内LLM的主要作用,简单概括
RAG(检索增强生成)中LLM(大语言模型)的主要作用包括: 1. 利用外部检索到的知识片段生成更符合要求的答案。由于LLM无法记住所有知识,尤其是长尾知识,且知识容易过时、不好更新,输出难以解释和验证,容易泄露隐私训练数据,规模大导致训练和运行成本高,通过RAG为LLM提供额外且及时更新的知识源,有助于生成更准确和有用的回答。 2. 在RAG的工作流程中,LLM接收整合后的知识片段和特定指令,利用其推理能力生成针对用户问题的回答。 3. 事实性知识与LLM的推理能力相分离,LLM专注于运用推理能力处理外部知识源提供的信息。
2025-03-08
RAG是什么,简单概括
RAG(RetrievalAugmented Generation)即检索增强生成,是一种结合检索和生成能力的自然语言处理架构,旨在为大语言模型(LLM)提供额外的、来自外部知识源的信息。 简单来说,它通过检索的模式为大语言模型的生成提供帮助,使大模型生成的答案更符合要求。 RAG 对于 LLM 来说很重要,因为 LLM 存在一些缺点,如无法记住所有知识(尤其是长尾知识)、知识容易过时且不好更新、输出难以解释和验证、容易泄露隐私训练数据、规模大导致训练和运行成本高。 而 RAG 具有一些优点,如数据库对数据的存储和更新稳定,数据更新敏捷且可解释,能降低大模型输出出错的可能,便于管控用户隐私数据,还能降低大模型的训练成本。 RAG 概括起来是知识检索+内容生成,可以理解为大模型的开卷考试,其主要组成依次是数据提取、embedding(向量化)、创建索引、检索、自动排序(Rerank)、LLM 归纳生成。其核心在于能否将内容检索得又快又准。 推荐阅读: 如何让 LLM 应用性能登峰造极:https://mp.weixin.qq.com/s/Kr16ub_FN6pTF6acse6MA 大模型主流应用 RAG 的介绍——从架构到技术细节: https://luxiangdong.com/2023/09/25/ragone/ 高级 RAG 技术:图解概览: https://baoyu.io/translations/rag/advancedragtechniquesanillustratedoverview
2025-03-08
请你用简单易懂的语言告诉我comfyui和SD的区别
ComfyUI 和 SD(Stable Diffusion)主要有以下区别: 1. UI 界面:SD WebUI 的 UI 更接近传统产品,有很多输入框和按钮;ComfyUI 的 UI 界面复杂,除输入框外,还有很多块状元素和复杂的连线。 2. 学习成本:ComfyUI 的学习成本比 SD WebUI 高。 3. 工作流方式:ComfyUI 主要通过连线搭建自动化工作流,从左到右依次运行;SD WebUI 则通过输入框和按钮配置参数。 4. 灵活性和拓展性:ComfyUI 具有更高的自由和拓展性,可以根据自身需求搭建、调整甚至改造工作流,无需依赖开发者,还能开发并改造节点;SD WebUI 在这方面相对较弱。 5. 功能实现:从功能角度看,两者提供的功能本质相同,但 ComfyUI 通过改变节点方式能实现不同功能,如一个节点是直接加载图片,另一个是通过画板绘制图片,从而实现导入图片生图和绘图生图等不同功能。
2025-03-08
求AI大模型基础原理课程,讲的简单通俗
以下是关于 AI 大模型基础原理的简单通俗课程: 1. 概念 生成式 AI 生成的内容称为 AIGC。 2. 概念与关系 AI 即人工智能。 机器学习是电脑找规律学习,包括监督学习、无监督学习、强化学习。 监督学习:使用有标签的训练数据,算法目标是学习输入和输出之间的映射关系,包括分类和回归。 无监督学习:学习的数据没有标签,算法自主发现规律,经典任务如聚类,例如让模型将一堆新闻文章根据主题或内容特征分成相似组。 强化学习:从反馈中学习,以最大化奖励或最小化损失,类似训练小狗。 深度学习是一种参照人脑的方法,具有神经网络和神经元(因层数多称为深度),神经网络可用于监督学习、无监督学习、强化学习。 生成式 AI 可以生成文本、图片、音频、视频等内容形式。 LLM 是大语言模型,对于生成式 AI,生成图像的扩散模型不是大语言模型;对于大语言模型,生成只是其中一个处理任务,如谷歌的 BERT 模型可用于语义理解(不擅长文本生成),像上下文理解、情感分析、文本分类。 3. 技术里程碑 2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出 Transformer 模型,它完全基于自注意力机制(SelfAttention)处理序列数据,不依赖循环神经网络(RNN)或卷积神经网络(CNN)。
2025-02-27