Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

ai入门可以从哪些地方着手

Answer

以下是 AI 入门的着手点:

  1. 了解 AI 基本概念:
    • 阅读「从这里启程」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。
    • 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。
  2. 开始 AI 学习之旅:
    • 在「入门:AI 学习路径」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。
    • 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。
  3. 选择感兴趣的模块深入学习:
    • 根据自己的兴趣选择特定的模块(比如图像、音乐、视频等)进行深入学习。
  4. 对于不会代码的情况:
    • 学习 Python 的属性和方法,包括如何为类定义属性和方法,以及如何通过对象来调用它们。
    • 了解继承和多态,包括类之间的继承关系以及如何实现多态。
    • 理解异常处理,包括异常的概念、异常处理的方式(如使用 try 和 except 语句)。
    • 掌握文件操作,包括文件读写、文件与路径操作。
    • 了解 AI 背景知识基础理论,包括人工智能、机器学习、深度学习的定义及其之间的关系。
    • 回顾 AI 的发展历程和重要里程碑。
    • 熟悉数学基础,包括统计学基础(如均值、中位数、方差等统计概念)、线性代数(如向量、矩阵等基本概念)、概率论(如条件概率、贝叶斯定理)。
    • 熟悉算法和模型,包括监督学习(如线性回归、决策树、支持向量机)和无监督学习(如聚类、降维)。
  5. 中学生学习 AI:
    • 从编程语言入手学习,如 Python、JavaScript 等,学习编程语法、数据结构、算法等基础知识。
    • 尝试使用 AI 工具和平台,如 ChatGPT、Midjourney 等,探索面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。
    • 学习 AI 基础知识,包括基本概念、发展历程、主要技术以及在各领域的应用案例。
    • 参与 AI 相关的实践项目,如参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动,尝试利用 AI 技术解决生活中的实际问题。
    • 关注 AI 发展的前沿动态,关注权威媒体和学者,思考 AI 技术对未来社会的影响。
Content generated by AI large model, please carefully verify (powered by aily)

References

问:新手如何学习 AI?

学习人工智能(AI)是一个既刺激又富有挑战的旅程,它将带领你进入一个充满创新和发现的世界。如果你想开始学习AI,这里有一份详细的学习路径指南,可以帮助你从基础概念到实际应用,逐步建立起你的AI知识体系。1.了解AI基本概念:首先,建议阅读「[从这里启程](https://waytoagi.feishu.cn/wiki/PFXnwBTsEiGwGGk2QQFcdTWrnlb?table=blkjooAlLFNtvKJ2)」部分,熟悉AI的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。浏览入门文章,这些文章通常会介绍AI的历史、当前的应用和未来的发展趋势。1.开始AI学习之旅:在「[入门:AI学习路径](https://waytoagi.feishu.cn/wiki/ZYtkwJQSJiLa5rkMF5scEN4Onhd?table=tblWqPFOvA24Jv6X&view=veweFm2l9w)」中,你将找到一系列为初学者设计的课程。这些课程将引导你了解生成式AI等基础知识,特别推荐李宏毅老师的课程。通过在线教育平台(如Coursera、edX、Udacity)上的课程,你可以按照自己的节奏学习,并有机会获得证书。1.选择感兴趣的模块深入学习:AI领域广泛(比如图像、音乐、视频等),你可以根据自己的兴趣选择特定的模块进行深入学习。

写给不会代码的你:20分钟上手 Python + AI

属性和方法:学习如何为类定义属性和方法,以及如何通过对象来调用它们。继承和多态:了解类之间的继承关系以及如何实现多态。异常处理理解异常:了解什么是异常,以及它们在Python中是如何工作的。异常处理:学习如何使用try和except语句来处理程序中可能发生的错误。文件操作文件读写:学习如何打开文件、读取文件内容以及写入文件。文件与路径操作:理解如何使用Python来处理文件路径,以及如何列举目录下的文件。对于AI,可以尝试了解以下内容,作为基础AI背景知识基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。历史发展:简要回顾AI的发展历程和重要里程碑。数学基础统计学基础:熟悉均值、中位数、方差等统计概念。线性代数:了解向量、矩阵等线性代数基本概念。概率论:基础的概率论知识,如条件概率、贝叶斯定理。算法和模型监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。无监督学习:熟悉聚类、降维等算法。

问:中学生如何开始学习 AI,有哪些好用的工具或者平台?

我总结了以下中学生学习AI的建议:1.从编程语言入手学习可以从Python、JavaScript等编程语言开始学习,这些是AI和机器学习的基础。学习编程语法、数据结构、算法等基础知识,为后续的AI学习打下基础。1.尝试使用AI工具和平台可以使用ChatGPT、Midjourney等AI生成工具,体验AI的应用场景。探索一些面向中学生的AI教育平台,如百度的"文心智能体平台"、Coze智能体平台等。1.学习AI基础知识了解AI的基本概念、发展历程、主要技术如机器学习、深度学习等。学习AI在教育、医疗、金融等领域的应用案例。1.参与AI相关的实践项目可以参加学校或社区组织的AI编程竞赛、创意设计大赛等活动。尝试利用AI技术解决生活中的实际问题,培养动手能力。1.关注AI发展的前沿动态关注AI领域的权威媒体和学者,了解AI技术的最新进展。思考AI技术对未来社会的影响,培养对AI的思考和判断能力。总之,中学生可以从编程基础、工具体验、知识学习、实践项目等多个方面入手,全面系统地学习AI知识和技能,为未来的AI发展做好准备。内容由AI大模型生成,请仔细甄别

Others are asking
我想要搭建一个能够帮我阅读并总结提炼,同时能在我提出问题时,随时在我给他提供的知识库中检索的AI Agent,如何用Coze搭建?
搭建能够阅读、总结提炼并在给定知识库中检索的 AI Agent 可以使用 Coze 按照以下步骤进行: 1. 规划 制定任务的关键方法。 总结任务目标与执行形式。 将任务分解为可管理的子任务,确立逻辑顺序和依赖关系。 设计每个子任务的执行方法。 2. 实施 在 Coze 上搭建工作流框架,设定每个节点的逻辑关系。 详细配置子任务节点,并验证每个子任务的可用性。 3. 完善 整体试运行 Agent,识别功能和性能的卡点。 通过反复测试和迭代,优化至达到预期水平。 关于一些其他问题: 1. 如何判断自己的任务/Prompt 是否需要拆解为工作流? 构建稳定可用的 AI Agent 是一个需要不断调试和迭代的过程。通常先从当前性能最强的 LLM(如 ChatGPT4 和 Claude 3.5 sonnet)着手,先用单条 Prompt 或 Prompt Chain 来测试任务的执行质量和稳定性。然后,根据实际执行情况、最终投产使用的 LLM,逐步拆解子任务,降低 LLM 执行单任务的难度,直到达成工程目标。一般对于场景多样、结构复杂、对输出格式要求严格的内容,基本可以预见到需要将其拆解为工作流。此外,如果涉及生成多媒体内容或从网络自主获取额外信息等能力,必然需要通过工作流来调用相应的插件。 2. 只用了一段 Prompt 的 Agent,还算 AI Agent 吗? 算。详见
2025-02-06
企业级应用集成AI大模型架构白皮书
以下是关于企业级应用集成 AI 大模型架构的相关内容: 从整体分层的角度来看,目前大模型整体架构可以分为以下几层: 1. 基础层:为大模型提供硬件支撑,数据支持等,例如 A100、数据服务器等等。 2. 数据层:这里的数据层指的不是用于基层模型训练的数据基集,而是企业根据自己的特性,维护的垂域数据。分为静态的知识库,和动态的三方数据集。 3. 模型层:包括 LLm 或多模态模型。LLm 即 largelanguagemodel 大语言模型,例如 GPT,一般使用 transformer 算法来实现。多模态模型即市面上的文生图、图生图等的模型,训练所用的数据与 llm 不同,用的是图文或声音等多模态的数据集。 4. 平台层:模型与应用间的平台部分,比如大模型的评测体系,或者 langchain 平台等,提供模型与应用间的组成部分。 5. 表现层:也就是应用层,用户实际看到的地方。 此外,以下报告也涉及相关内容: 1. 量子位智库发布的《》概述了大模型技术在多个行业中的应用和发展趋势。强调大模型在编程、教育、医疗等领域的重要性,并预测其将推动生产力和创新服务的增长。大模型业务模式涵盖应用开发、模型 API 和模型服务,其中模型服务和 API 是核心。报告还讨论了大模型在不同地域和行业的落地情况,以及企业在大模型技术投资方面的需求。 2. 亿欧智库发布的《》聚焦于企业中人工智能大模型的应用和落地情况。报告涵盖了 AI 大模型在企业中的应用现状、发展趋势以及面临的挑战。它详细分析了 AI 技术如何推动企业创新、提高效率和降低成本,并探讨了不同行业如何利用 AI 大模型实现数字化转型。此外,白皮书还提供了关于如何克服实施过程中的障碍和最大化 AI 大模型价值的见解。 对于大模型 API,与大模型对话产品的提示词不同。对于大模型 API,需要利用插件预先获取的网页内容变量、提示词和 API 请求参数,拼搭出完整的 API 提示请求,精确引导 API 返回想要的生成结果。根据 BigModel 官网给出的请求示例,可以看到需要在请求中传递 Model 类型、系统提示词、用户提示词、top_p、temperature 等关键参数。可以构建相应的 API 请求内容,包括设定系统提示词定义基础任务、设定用户提示词提供具体任务数据并要求大模型按 JSON 格式返回生成结果等。如果缺少参数设定的经验,也可以先询问 AI 文本总结类的模型 API 请求,temperature 设定多少合适,再逐步调试效果即可。
2025-02-06
如何实现稳定的ai agent
要实现稳定的 AI agent ,可以从以下几个方面考虑: 1. 提示词工程与工具调用能力的配合:设计出一套与知识图谱相结合的工具调用逻辑,稳定人设。通过缩小 max_length 防止 LLM 长篇大论,每次输入到上下文窗口中的记忆只返回最近几轮的对话,并利用查询知识图谱的信息来实现永久记忆。 2. 工具设计:将与知识图谱交互这一大的任务,细分为查询、创建、修改、删除实体或关系、获取实体的所有关系、获取所有实体名称列表等多个工具,组成一个工具包供 LLM 调用。 3. 构建数字人灵魂: 写一个像人一样的 Agent ,工程实现所需的记忆模块、工作流模块、各种工具调用模块的构建都是挑战。 解决灵魂部分如何驱动躯壳部分的问题,将灵魂部分的所有接口定义出来,躯壳部分通过 API 调用。 注意实时性,由于整个数字人的算法部分组成庞大,几乎不能实现单机部署,要解决网络耗时和模型推理耗时问题。 考虑多元跨模态,根据实际需求添加其他感官的交互。 处理拟人化场景,如插话、转移话题等情况。 4. 工作流的设计模式:可以运用吴恩达教授提出的设计模式,如 Reflection 模式,设计工作流先检索知识库的活动内容,再通过 LLM 大模型区块进行数据修正,最终输出符合意图的结果。
2025-02-06
low cost of Deepseek AI
关于 DeepSeek AI 的低成本相关信息如下: 在设计思路方面,将 Agent 封装成 Prompt 并储存在文件,以保证最低成本的人人可用,同时减轻调试负担。通过提示词文件,让 DeepSeek 实现同时使用联网功能和深度思考功能,在模型默认能力基础上优化输出质量,增加可读性,并设计了阈值系统,用 XML 进行规范设定。 存在对 DeepSeek 的“低成本”AI 的批评声音,如被讽刺为空洞的营销噱头,无法与国际大作相比,甚至被用洋垃圾作比喻,被指“崇洋媚外”。
2025-02-06
deepseek适合做ai知识库检索工具吗
DeepSeek 是基于 AI 模型的产品,只是品牌名,需要搭配具体模型,如 DeepSeek V3(类 GPT4o)和 DeepSeek R1(类 OpenAI o1)。 文本嵌入可用于实现高效的知识检索,相似或相关的字符串在嵌入空间中靠得更近,利用快速向量搜索算法,一个文本语料库可以被分割成块,给定的查询被嵌入后,能进行向量搜索找到最相关的嵌入文本块。 知识库就像 AI 的“活字典”,可以随时更新,例如包含最新新闻、科技发展、法律法规等内容,AI 遇到不确定问题时可从中检索相关信息给出更准确回答,像很火的 AI 搜索就是将整个互联网实时数据作为知识库。 但仅根据上述信息,不能明确判断 DeepSeek 是否适合做 AI 知识库检索工具,还需要综合考虑其具体性能、与您需求的匹配度等多方面因素。
2025-02-06
我想入门AI产品经理,有推荐的学习方案吗
以下是为您推荐的入门 AI 产品经理的学习方案: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。 一定要掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 此外,个人做了一下划分,仅供娱乐和参考: 1. 入门级: 能通过 WaytoAGI 等开源网站或一些课程了解 AI 的概念,使用 AI 产品并尝试动手实践应用搭建。 2. 研究级: 有两个路径,一个是技术研究路径,一个是商业化研究路径。 这个阶段对应的画像可能是对某一领域有认知,可以根据需求场景选择解决方案,或利用 Hugging face 等工具手搓出一些 AI 应用来验证想法。 3. 落地应用: 这一阶段的画像就是有一些成功落地应用的案例,如产生商业化价值。 对 AI 产品经理的要求: 1. 懂得技术框架,不一定要了解技术细节,而是对技术边界有认知,最好能知道一些优化手段和新技术的发展。 2. 关注场景、痛点、价值。 观察目前行业的 AI 提示词工程师岗位的招聘技能要求情况: 1. 本科及以上学历,计算机科学、人工智能、机器学习相关专业背景。 2. 熟悉 ChatGPT、Llama、Claude 等 AI 工具的使用及原理,并具有实际应用经验。 3. 熟练掌握 ChatGPT、Midjourney 等 AI 工具的使用及原理。 4. 负责制定和执行 AI 项目,如 Prompt 设计平台化方法和模板化方法。 5. 了解并熟悉 Prompt Engineering,包括常见的 Prompt 优化策略(例如 CoT、Fewshot 等)。 6. 对数据驱动的决策有深入的理解,能够基于数据分析做出决策。 7. 具有创新思维,能够基于业务需求提出并实践 AI first 的解决方案。 8. 对 AIGC 领域有深入的理解与实际工作经验,保持对 AI 技术前沿的关注。 9. 具备一定的编程和算法研究能力,能应用新的 AI 技术和算法于对话模型生成。 10. 具有一定的编程基础,熟练使用 Python、Git 等工具。 产品经理的工作内容(仅作参考):
2025-02-06
中美AI技术差距主要体现在哪些地方?以通信方面作为分析角度
中美在 AI 技术的通信方面存在以下差距: 1. 技术专长:包括对 AI 技术如何用于提供产品和服务,以及技术标准的开发、使用和适用性等方面的理解。 2. 跨监管制度的交互理解:在不同监管制度下 AI 使用案例如何相互作用方面的专业知识存在差异。 3. 市场情报:对于 AI 技术如何颠覆现有商业模式,包括潜在机会和风险对监管目标的影响,了解程度不同。 4. 组织能力:在有效适应 AI 应用的出现、在组织内吸收和分享知识、与提供保证技术的组织合作并制定技术标准,以及跨监管机构共享知识和合作监管等方面的能力有所不同。 需要注意的是,目前提供的内容中未明确提及中国在这些方面的具体情况,以上是基于所给资料中关于一般监管机构在 AI 相关方面能力差距的分析。
2024-10-20
我想学习AI,但是不知道如何入门,希望你可以帮我梳理出AI的各个应用方向,要求要有具体的实操方法和必坑指南,能应用于生活和工作中,适合新手学习
以下是为您梳理的适合新手学习 AI 的应用方向、实操方法和避坑指南: 一、了解 AI 基本概念 1. 阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的定义、主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 2. 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 二、开始 AI 学习之旅 1. 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 2. 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 三、选择感兴趣的模块深入学习 1. AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。 2. 掌握提示词的技巧,它上手容易且很有用。 四、实践和尝试 1. 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 2. 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 五、体验 AI 产品 1. 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 六、如果希望继续精进 1. AI 背景知识 基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。 历史发展:简要回顾 AI 的发展历程和重要里程碑。 2. 数学基础 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:了解向量、矩阵等线性代数基本概念。 概率论:基础的概率论知识,如条件概率、贝叶斯定理。 3. 算法和模型 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:熟悉聚类、降维等算法。 强化学习:简介强化学习的基本概念。 4. 评估和调优 性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。 模型调优:学习如何使用网格搜索等技术优化模型参数。 5. 神经网络基础 网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。 避坑指南: 1. 不要急于求成,AI 学习需要逐步积累。 2. 注重理论与实践结合,避免只学习理论而不进行实际操作。 3. 对于复杂的概念和算法,要多花时间理解,不要一知半解。 4. 在选择学习资源时,要注意其质量和适用性。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-02-06
comfy UI 入门
ComfyUI 是一个基于节点流程式的 stable diffusion AI 绘图工具 WebUI,可想象成集成了 stable diffusion 功能的 substance designer,将 stable diffusion 流程拆分成节点,实现更精准工作流定制和完善的可复现性。 其优势包括: 1. 对显存要求相对较低,启动和出图速度快。 2. 生成自由度更高。 3. 可以和 webui 共享环境和模型。 4. 能搭建自己的工作流程,可导出流程并分享,报错时能清晰发现错误所在步骤。 5. 生成的图片拖进后会还原整个工作流程,模型也会选择好。 劣势为: 1. 操作门槛高,需要有清晰逻辑。 2. 生态没有 webui 多(但常用的都有),也有一些针对 Comfyui 开发的有趣插件。 官方链接:从 github 上下载作者部署好环境和依赖的整合包,按照官方文档安装即可:https://github.com/comfyanonymous/ComfyUI 入门学习资料: 1. 知识库跳转。 2. 【海辛】录制的基础课,包括: 安装部署: 界面介绍: 文生图、图生图: ComfyUI 中使用 ControlNet: ComfyUI 中不同放大图像方式: 看完这 5 节基础课应该就基本入门,之后可以看互联网上的进阶教程。
2025-02-05
AI入门
以下是为您提供的 AI 入门的相关指导: 了解 AI 基本概念: 建议阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的定义、主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。同时,浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 开始 AI 学习之旅: 在「」中,您可以找到一系列为初学者设计的课程,特别推荐李宏毅老师的课程。您还可以通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有可能获得证书。 选择感兴趣的模块深入学习: AI 领域广泛,涵盖图像、音乐、视频等。您可以根据自身兴趣选择特定模块深入学习,同时一定要掌握提示词的技巧,它上手容易且很有用。 实践和尝试: 理论学习后,实践是巩固知识的关键。您可以尝试使用各种产品做出自己的作品,在知识库中有很多大家实践后的作品和文章分享,欢迎您在实践后也进行分享。 体验 AI 产品: 与现有的 AI 产品进行互动是学习 AI 的有效方式。尝试使用如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式,通过对话获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 另外,May 在其公众号文章「」中分享了自己疯狂向 AI 提问从而入门的经历。还有为不会代码的朋友准备的「写给不会代码的你:20 分钟上手 Python+AI」,能让您在 20 分钟内循序渐进地完成一个简单程序、一个爬虫应用(抓取公众号文章)和一个 AI 应用(为公众号文章生成概述)。
2025-02-05
ai入门教学
以下是为您提供的 AI 入门教学: 一、了解 AI 基本概念 首先,建议阅读「」部分,熟悉 AI 的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。浏览入门文章,这些文章通常会介绍 AI 的历史、当前的应用和未来的发展趋势。 二、开始 AI 学习之旅 在「」中,您将找到一系列为初学者设计的课程。这些课程将引导您了解生成式 AI 等基础知识,特别推荐李宏毅老师的课程。通过在线教育平台(如 Coursera、edX、Udacity)上的课程,您可以按照自己的节奏学习,并有机会获得证书。 三、选择感兴趣的模块深入学习 AI 领域广泛(比如图像、音乐、视频等),您可以根据自己的兴趣选择特定的模块进行深入学习。建议您一定要掌握提示词的技巧,它上手容易且很有用。 四、实践和尝试 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 五、体验 AI 产品 与现有的 AI 产品进行互动是学习 AI 的另一种有效方式。尝试使用如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。通过与这些 AI 产品的对话,您可以获得对 AI 在实际应用中表现的第一手体验,并激发您对 AI 潜力的认识。 六、AI 绘画入门 如果您对 AI 绘画感兴趣,以下是从 0 入门的视频教程: 1. 🔥强烈推荐,学完变大神系列章节教学视频: 2. 第一节课:AI 绘画原理与基础界面 视频大纲:文章简单的介绍了 stable diffusion 这一 AI 绘画软件如何安装到本地,整体过程易上手,对于 AI 感兴趣的同学可以直接跟着视频学习 3. 第二节课:20 分钟搞懂 Prompt 与参数设置,您的 AI 绘画“咒语”学明白了吗? 4. 第三节课:打破次元壁!用 AI“重绘”照片和 CG 5. 第四节课:AI 绘画模型,“画风”自由切换 6. 第五节课:提高 AI 绘画分辨率的方式 7. 第六节课:LoRa|Hypernetwork 概念简析 8. 第七节课:定向修手修脸,手把手教您玩转局部重绘! 9. 第八节课:提示词补全翻译反推,“终极”放大脚本与细节优化插件 10. 第九节课:LoRA 从原理到实践 11. 第十节课:零基础掌握 ControlNet! 七、关于海螺 AI 的 Prompt 教学 海螺 AI 具有以下特点: 1. 【能看懂图能听懂指令】MiniMax 视频模型不仅可以确识别用户上传的图片,并确保所生成视频在形象保持上与原输入图像高度一致,且光影、色调完美嵌入新场景的设定,为创作者提供连贯、深度创作的空间;在指令响应方面,还能理解超出图片内容之外的文本,解构指令框架和深层语义并在视频生成中整合,实现“所写即所见”。 2. 【不依靠特效模板的惊艳特效】:只依靠模型综合能力,就能实现最顶级的影视特效。每一位用户都能够在图像基础上充分发挥想象力,创作出丰富多变的电影级视频——CG 合成、场景变化、碎片化、拟人化等特效与玩法等你来体验。 3. 【细腻表情呈现提升感染力】人物 5 秒钟内实现从开怀大笑到掩面哭泣,表情控制力不输专业演员,让您的视频表达更能深入人心。 4. 【2000 字提示词更精准调控】近期,海螺 AI 视频同步上线了提示词优化功能即使在大家对特定的构图、氛围、动作或运镜没有特殊指定要求时,我们建议开启此功能,聪明的海螺 AI 会结合原始 Prompt 扩展视频的美学呈现。同时,对于更专业的创作者,我们开放 2000 字的提示词空间,让您的创作更加精准。 Prompt 是一把由您的灵感与创意构筑的钥匙,能够打开通往 AI 奇幻世界的大门。无论您是初次接触 AI 的新人,还是已经能够熟练使用 AI 赋能生产力的老手,通过清晰的结构和灵活的表达方式,都可以轻松掌握 Prompt 的编写技巧,实现“一个人+一个 AI=一个专业剧组”的科幻愿景。只要掌握一些小小的规则,人人都可以成为 AI 魔法师!
2025-02-02
有新手入门的系统课程吗
以下是为新手入门 AI 推荐的系统课程: 1. SD 从入门到大佬: 安装完 SD 后,可参考。 强烈推荐跟着 Nenly 同学的【B站 第一套 Stable Diffusion 系统课程】合集走一遍,大概 4 小时左右可掌握基础技能。此外,还有可选的图片版教程。 2. 新手学习 AI 的综合指南: 了解 AI 基本概念:建议阅读「」部分,熟悉术语和基础概念,包括主要分支及联系。浏览入门文章,了解历史、应用和发展趋势。 开始学习之旅:在「」中有为初学者设计的课程,特别推荐李宏毅老师的课程。还可通过在线教育平台(如 Coursera、edX、Udacity)按自己节奏学习并获证书。 选择感兴趣模块深入学习:AI 领域广泛,可根据兴趣选择特定模块,如掌握提示词技巧。 实践和尝试:理论学习后要实践巩固,可在知识库分享实践作品和文章。 体验 AI 产品:与 ChatGPT、Kimi Chat、智谱、文心一言等互动,了解工作原理和交互方式。 3. 《雪梅 May 的 AI 学习日记》挑战 100 天和 AI 做朋友: 第一阶段:迈出第一步,看书听课进社区。感受是要系统性学习,打好基础。 DAY1 2024.5.22 初步探索:May 认为初期会走弯路,B站 上一些介绍 ChatGPT 原理的分享,消费可看,系统性学习要看高质量内容。 DAY2 2024.5.23 加入 AI 社区:waytoAGI。May 评价这是宝藏社区,可参考,先看新手指引入门。
2025-02-01
在AI时代,基础教育改革应该从哪些方面着手?
在 AI 时代,基础教育改革可以从以下几个方面着手: 教育政策的改革: 重新审视教育目标,从传统的知识灌输转向培养学生的创新思维、问题解决能力和终身学习能力。 使教育政策更具灵活性,以迅速适应技术和市场的变化。 政府设立教育科技发展基金,鼓励和支持校企合作,开发适应未来需求的教学内容和技术。 建立多学科交叉课程,如结合人工智能与人文学科,培养学生的宽广视野。 AI 技术融入教育体系: 打破传统教育和高科技之间的隔阂,教师在教学中运用 AI 制定个性化学习计划、追踪学习进度并提供辅导建议。 学生学会与 AI 互动,如使用 AI 辅助工具探索复杂学术概念。 学校与技术公司合作,定期更新硬件设施,保持软件平台的与时俱进。 加大对教师的 AI 培训力度,使其成为教育融合 AI 的关键促进者。 社会层面的应对: 解决当下教育体系存在的惯性,避免政策更新滞后,减少教育与技术发展的脱节。 弥合技术快速发展与劳动市场需求之间的不匹配,缩小技能差距,降低对社会经济结构和个体心理的负面影响。 缓解全球范围内教育资源分配不均的问题,减少教育不平等,促进全球生产力和长远发展。 我们正处于新的十字路口,必须找到与 AI 相适应的教育模式。期望这样的变革不仅是技术创新,更能推进教育公平和普及,革新人才培养模式,服务于全人类的持续进步与发展。同时,要思考如何利用 AI 技术减少教育差距,避免技术普及造成新的不平等。在这一进程中,教育不仅是知识传授,更是激发创新、批判思维和人类价值观的关键领域。
2024-08-28
智能体引用知识库效果不好,可以从哪些方面来着手调整
智能体引用知识库效果不好,可以从以下方面着手调整: 1. 整理知识库文档阶段: 确定包含的文档类型,如政策原文文档、业务积累的 QA、操作指引、产品说明等,并进行预处理。 注重知识库本身质量,因为这是大模型生成回答的原始语料。 优化文档格式,实践中根据场景测试 PDF 或.docx 等格式,一般 PDF 文档效果较好,因其格式信息简洁,对大模型干扰少。 规范文档命名,尽量控制在 10 字左右,涵义简洁明了,避免无意义的数字、符号或缩写。 统一文档语言,避免中英文、繁简体混杂。 优化文档内容,设置清晰的一二级标题,对难以处理的图片、表格、公式、超链接、附件、架构图、代码等进行特殊处理。 2. 调优实践: 更换大模型,如从 ChatGLM26B 替换成 baichuan213b,针对特定场景可能提升性能。 更换 embedding 模型,如将 LangChain Chatchat 默认的 m3ebase 替换为 bgelargezh。 测试不同 Top k 的值,如比较 Top 5、Top 10、Top 15 的结果,可能发现 Top 10 时效果最优。 处理文档名称,人工重命名文件,上传相同文件构建知识库,同时在构建时勾选【开启中文标题加强】选项,虽重命名文件效果不明显,但勾选该选项后回答的无关信息减少,效果有所提升。
2024-08-19