Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

如何使用ai提示词

Answer

以下是关于如何使用 AI 提示词的详细介绍:

  1. 提示词的定义和输入语言:
    • 提示词用于描绘您想要的画面。
    • 不同模型对输入语言有不同要求,如星流通用大模型与基础模型 F.1、基础模型 XL 使用自然语言(如“一个长头发的金发女孩”),基础模型 1.5 使用单个词组(如“女孩、金发、长头发”),且支持中英文输入。
  2. 写好提示词的方法:
    • 预设词组:小白用户可点击提示词上方官方预设词组进行生图。
    • 内容准确:包含人物主体、风格、场景特点、环境光照、画面构图、画质等,例如“一个女孩抱着小猫,背景是一面红墙,插画风格、孤独感,高质量”。
    • 调整负面提示词:点击提示框下方的齿轮按钮,弹出负面提示词框,输入不想生成的内容,如“不好的质量、低像素、模糊、水印”。
    • 利用“加权重”功能:在功能框增加提示词,并进行加权重调节,权重数值越大,越优先。还可对已有的提示词权重进行编辑。
    • 辅助功能:包括翻译功能(一键将提示词翻译成英文)、删除所有提示词(清空提示词框)、会员加速(加速图像生图速度,提升效率)。
  3. 对使用提示词的认识:
    • 不能期待设计一个完美的提示词就得到完美答案,提示词实际上是一个相对完善的“谈话方案”,成果在与 AI 的对话中产生,需要在对话中限缩自己思维中的模糊地带。
    • 要接受 AI 的“不稳定性”,对其进行教育、监督和鞭策。
Content generated by AI large model, please carefully verify (powered by aily)

References

星流一站式 AI 设计工具

prompt输入框中你可以输入提示词、使用图生图功能辅助创作。[heading4]提示词[content]1.什么是提示词?1.1.内容1.1.1.提示词用于你想描绘的画面。1.2.输入语言1.2.1.星流通用大模型与基础模型F.1、基础模型XL使用自然语言(一个长头发的金发女孩),基础模型1.5使用单个词组(女孩、金发、长头发),1.2.2.支持中英文输入。1.3.提示词优化1.3.1.启用提示词优化后,帮你扩展提示词,更生动的描述画面内容。2.如何写好提示词?2.1.预设词组2.1.1.小白用户可以点击提示词上方官方预设词组,进行生图2.1.提示词内容准确2.1.1.包含人物主体、风格、场景特点、环境光照、画面构图、画质,比如:一个女孩抱着小猫,背景是一面红墙,插画风格、孤独感,高质量。2.2.调整负面提示词2.2.1.点击提示框下方的齿轮按钮,弹出负面提示词框2.2.2.负面提示词可以帮助AI理解我们不想生成的内容,比如:不好的质量、低像素、模糊、水印2.3.利用“加权重”功能,让AI明白重点内容2.3.1.可在功能框增加提示词,并进行加权重调节,权重数值越大,更优先。2.3.1.对已有的提示词权重进行编辑2.4.辅助功能2.4.1.翻译功能:一键将提示词翻译成英文2.4.2.删除所有提示词:清空提示词框2.4.3.会员加速:加速图像生图速度,提升效率

陶力文律师:拘灵遣将|不会写Prompt(提示词)的道士不是好律师——关于律师如何写好提示词用好AI这件事

这意味着你不能期待设计一个完美的提示词,然后AI百分百给到你一个完美的符合你要求的答案,中间不能有谬误,否则就是一个需要修复的“BUG”——这本质上还是前AI时代“机器编程”的思路,是工程学的,把AI当成机械的。这意味着的你要给到AI的提示词实际上是一个关于此项问题的相对完善的“谈话方案”,真正的成果需要在你们的对话中产生——实际上你也需要在对话中来限缩你自己思维中的模糊地带。现在大多数人(包括各个大厂的提示词工程师们)基本上都还抱着前AI时代的“机器编程”思路来进行AI的“自然语言编程”。就陶律师自己的实践来看,盲猜一波现在比较普遍那种希望通过一个超级提示词母机,保证ai不出错的一次性生成用户想要的理想效果的工程学路线——恐怕原理上比较难走而对于各位想要尝试AI的朋友们,陶律师的建议是,最好多给到AI几轮对话修正的余地,不要期望输入一次提示词AI就能给到你想要的东西——毕竟很多时候其实你自己刚开始也不知道自己想要什么。二、来写一篇灵机符箓吧下面是我自己写的一篇用AI帮忙写法律文章的Prompt,当然,基于个人习惯和审美偏好,在这里我会更喜欢把Prompt或者提示词称为【灵机符箓】或简称【符箓】,把AI称为【灵机】。具体我习惯用的大模型是KIMI,但别的GPT、文心一言、豆包等也都可以,具体效果可能有不同。敕令法律文章撰写箓:-author:叁随道人-version:1.0(20240626)-language:中文

拘灵遣将 | 不会写 Prompt(提示词)的道士不是好律师——关于律师如何写好提示词用好 AI 这件事

《浮士德》《一千零一夜》《酉阳杂俎》……各个地区各个时代的神怪小说一个非常重要的故事类型就是“当你面对一个‘似人非人拥有神力/魔法的异类’时,许愿没有许清楚会有什么倒霉下场。”时间到了我们这个时代,你真的想要AI发挥出期待的效果的话,最好也学习一下古人早就总结出来的智慧。(xs最好的AI提示词编写启蒙书其实是《一千零一夜》)2.基于祂“似人”的一面,你最好从一开始就接受祂会存在的“不稳定性”。也就是说,即使你的指令再清晰,祂也可能会学习人类思维磨洋工、乱搞、不执行,而你需要教育祂、监督祂、鞭策祂。虽然陶律师对AI的技术原理一窍不通,但基于“AI的方向是尽可能实现对人类思维、人类自然语言的高度模拟”这个哲学基点,可以预判一波“一定程度的不确定性/模糊性会是AI的固有属性。”因为这种一定程度内的不确定性/模糊性正是人类思维/自然语言的精华所在,是人(生灵)区别于机械的价值所在。这意味着你不能期待设计一个完美的提示词,然后AI百分百给到你一个完美的符合你要求的答案,中间不能有谬误,否则就是一个需要修复的“BUG”——这本质上还是前AI时代“机器编程”的思路,是工程学的,把AI当成机械的。这意味着的你要给到AI的提示词实际上是一个关于此项问题的相对完善的“谈话方案”,真正的成果需要在你们的对话中产生——实际上你也需要在对话中来限缩你自己思维中的模糊地带。

Others are asking
如何权构建个人AI知识库,请提供详尽的方案,并提供相关工具应用案例。
以下是构建个人 AI 知识库的详尽方案及相关工具应用案例: 方案: 1. 知识收集:学习如何有效地收集、整理和检索信息,例如分新闻、观点、访谈、论文翻译来进行提炼。 2. 知识管理:通过实际操作,体验工具在知识管理方面的应用。 3. 数据处理:使用工具对数据进行转换、提取和呈现,如从图像和图形中提取数据。 4. 内容总结:总结视频内容、翻译和改换风格等。 工具应用案例: 1. 知识收集与整理: 通义听悟整理录音笔记:https://tingwu.aliyun.com 用 React 实现选中即解释 本机跑大语言模型工具:https://ollama.com 选词翻译、解读、拓展:https://snapbox.app 与各种 AI 机器人聊天:https://opencat.app 、https://chathub.gg/ 、https://www.elmo.chat/ 定义提示语,根据不同类型提取有用信息:https://memo.ac/zh/ 2. 数据获取与处理: 下载视频:Mac 用 Downie,Windows 推荐 IDM 淘宝数码荔枝店购买 开源免费屏幕录制工具 OBS:https://obsproject.com/ 用 losslessCut 快速切块 3. 构建知识库: 将文本转换成向量(如使用 embeddings API),先把大文本拆分成若干小文本块(chunk),将小文本块转换成 embeddings 向量并在向量储存库中保存,当用户提问时,通过比对向量提取关联度最高的文本块与问题组合成新的 prompt 发送给 GPT API。 例如对于一篇包含多个文本块的文章,如“文本块 1:本文作者:越山。xxxx。”“文本块 2:公众号越山集的介绍:传播效率方法,分享 AI 应用,陪伴彼此在成长路上,共同前行。”等,当提问“此文作者是谁?”时,可通过比较 embeddings 向量找出关联度最高的文本块。 4. 工具入门: 提示词:现成好用的 Prompt: AI Agent:Agent 工具 小白的 Coze 之旅: AI Pic:现在主流的 AI 绘图工具网站:
2025-02-22
学习AI大模型
以下是关于学习 AI 大模型的相关知识: 1. 概念 生成式 AI 生成的内容称为 AIGC。 2. 概念与关系 AI 即人工智能。 机器学习是电脑找规律学习,包括监督学习、无监督学习、强化学习。 监督学习:使用有标签的训练数据,算法目标是学习输入和输出之间的映射关系,包括分类和回归。 无监督学习:学习的数据没有标签,算法自主发现规律,经典任务如聚类,例如让模型将一堆新闻文章根据主题或内容特征分成相似特征的组。 强化学习:从反馈中学习,以最大化奖励或最小化损失,类似训小狗。 深度学习是一种参照人脑有神经网络和神经元(因有很多层所以叫深度)的方法,神经网络可用于监督学习、无监督学习、强化学习。 生成式 AI 可以生成文本、图片、音频、视频等内容形式。 LLM 是大语言模型,对于生成式 AI,生成图像的扩散模型不是大语言模型;对于大语言模型,生成只是其中一个处理任务,如谷歌的 BERT 模型可用于语义理解(不擅长文本生成),像上下文理解、情感分析、文本分类。 3. 技术里程碑 2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出 Transformer 模型,它完全基于自注意力机制(SelfAttention)处理序列数据,不依赖于循环神经网络(RNN)或卷积神经网络(CNN)。
2025-02-22
AI在国企的应用
AI 在国企的应用场景广泛,以下为您列举一些常见的应用领域: 1. 医疗保健方面: 医学影像分析:辅助诊断疾病。 药物研发:加速研发过程,识别潜在药物候选物和设计新治疗方法。 个性化医疗:为患者提供个性化治疗方案。 机器人辅助手术:提高手术精度和安全性。 2. 金融服务方面: 风控和反欺诈:降低金融机构风险。 信用评估:帮助做出更好的贷款决策。 投资分析:辅助投资者做出明智决策。 客户服务:提供 24/7 服务,回答常见问题。 3. 零售和电子商务方面: 产品推荐:根据客户数据推荐可能感兴趣的产品。 搜索和个性化:改善搜索结果,提供个性化购物体验。 动态定价:根据市场需求调整产品价格。 聊天机器人:回答客户问题并解决问题。 4. 制造业方面: 预测性维护:预测机器故障,避免停机。 质量控制:检测产品缺陷,提高产品质量。 供应链管理:优化供应链,提高效率和降低成本。 机器人自动化:控制工业机器人,提高生产效率。 此外,在国企中,AI 还可以应用于工作流程自动化、提高运营效率、优化资源配置等方面。随着技术的不断发展,未来有望看到更多创新的应用场景和解决方案。
2025-02-22
我是一个小学教师,我要写一个值周小结,推荐用哪款AI软件
以下是为您推荐的一些可能有助于写值周小结的 AI 软件: 1. 可画软件:提供多种排版模板和 AI 功能,方便图片处理和尺寸调整,如将海报尺寸调为 1080 乘 1440。 2. Request 软件:具有锐化清晰度等 PS 中有的功能,可自定义尺寸、选择风格模型、创建风格,支持中文输入但部分提示词用谷歌翻译更准确,还具有文字输入、样机等功能。每天登录有 50 点积分,生成一次图像需 1 点积分,可创建系列图像。 3. 吉梦智能画板:具有消除、图层、一键抠图等功能,抠图效果较好。 此外,还有一些辅助工具: 1. IAIFONT、自由等字体软件:可及时预览和切换字体,注意使用免费字体和避免版权问题。 2. 内容排版大师的 GPTs:只需在聊天框粘贴文字内容,然后点击发送即可。GPTs 链接:https://chat.openai.com/g/gt9dIHp4Ntneirongpaibandashi 。 3. 小作卡片 app:官网链接:https://kosaku.imxie.club/ 。操作步骤为:①打开软件点击「自制卡片」;②在「记录些什么...」中粘贴 AI 生成文本内容;③点击右下角的保存图标即可导出。
2025-02-22
软件工程师如何从ai上获得帮助
软件工程师可以从以下几个方面在 AI 上获得帮助: 1. 辅助编程的 AI 工具: GitHub Copilot:由 GitHub 联合 OpenAI 和微软 Azure 团队推出,支持多种语言和 IDE,能快速提供代码建议。 通义灵码:阿里巴巴团队推出,提供多种编程相关能力。 CodeWhisperer:亚马逊 AWS 团队推出,由机器学习技术驱动,提供实时代码建议。 CodeGeeX:智谱 AI 推出的开源免费工具,基于大模型可快速生成代码。 Cody:Sourcegraph 推出,借助强大的代码语义索引和分析能力为开发者服务。 CodeFuse:蚂蚁集团支付宝团队提供的免费 AI 代码助手。 Codeium:由 AI 驱动,提供代码建议、重构提示和代码解释等帮助。 更多工具可查看:https://www.waytoagi.com/category/65 。每个工具功能和适用场景不同,可根据需求选择。 2. 生成性 AI 作为助手:模型在大量代码库上训练,在编码时给出建议,但要注意生成代码的正确性,在提高生产力的同时限制生成量以检查正确性。例如 GitHub Copilot 帮助提高了开发人员的生产力,估计增长在 2 倍或更少的范围内。 Sam Altman 的三点观察表明: 1. AI 模型的智能大致等于用于训练和运行它的资源的对数,预测这一规律的缩放定律在多个数量级上都准确。 2. 使用给定水平的人工智能的成本每 12 个月下降约 10 倍,较低价格导致使用量大幅增加。 3. 社会经济上线性提升智力的价值具有超指数性质,这一结果导致看不到指数式投资在不久将来会停止的理由。 未来可能会推出人工智能代理,如软件工程师代理人,虽然存在一些不足,但仍可能产生重大影响。生成性 AI 作为程序员助手是最早应用之一,成果出色,但相对于图像生成,生产力提升相对较小,且要注意代码正确性。
2025-02-22
工作10多年了,英语生疏了,如何利用AI学好英语应对国外出差、商务谈判
以下是利用 AI 学好英语以应对国外出差和商务谈判的一些建议: 1. 进行自然语言对话:让 AI 模拟真实的交流场景,与您进行英语对话,帮助您提高口语表达和听力理解能力。 2. 提供深入全面的解释:要求 AI 对您提出的问题和知识点提供深入的见解和全面的理解,可能的话还可以为您寻找并提供相关的网络图片来增强解释效果。 3. 构建复杂的句子:让 AI 巧妙地运用复杂的句子结构来模拟真实的人类对话,丰富语言的多样性和复杂性。 4. 创意和多样的语言运用:避免语言的重复,使用多样的短语和词汇,并适当加入幽默、讽刺等元素,展现个性化。 5. 基于事实和引用:让 AI 在回答中包含事实和著名的引语,增加回答的可信度。 6. 详细和个性化的回应:AI 的回答应包含具体而细致的内容,并根据您之前的交流历史进行个性化定制。 7. 模仿人类的不完美:偶尔让 AI 模仿人类的小拼写错误、语法错误和轻微的逻辑不一致。 8. 富有表现力和个性化的交流:让 AI 在交流中注入情感,使用随意的语言和各种语气词,展示其推理过程。 9. 多样的结构和语言格式:让 AI 采用多种句子结构和表达方式,使语言更丰富自然。 10. 分享个人故事和独特观点:让 AI 补充个人经历和独特的观点,使交流更丰富和个性化。
2025-02-22
论文撰写的提示词
以下是关于论文撰写提示词的相关内容: 1. 通用原则: 目标明确:确保每一步的目标清晰,AI 需要明确指导以产生相关和有价值的输出。 逻辑性:在所有提示策略中,逻辑性是关键,清晰、结构化的提示有助于 AI 更有效地生成输出。 分步骤:无论是进行深度分析还是遵循特定结构,确保提示按清晰步骤进行至关重要。 考虑变量:在某些情境中尤为重要,需考虑可能影响结果的所有因素。 2. 实验示例: 运用 CoD 将文章做摘要的实验,通过 GPT 的五轮输出,以中英文两种方式撰写提示词,个人观点认为英文提示词加上中文输出的方式效果较好,密度等级 4 的结果较让人满意。 3. 学术场景数据处理: 论文内容总结:大模型结合有效的提示词可迅速总结概括文档,节省时间,如 GLM4Plus 结合良好的提示词能帮助学生快速总结论文内容。 论文内容翻译:大模型可弥补翻译软件的不足,帮助学生快速翻译论文内容,如 GLM 结合良好的提示词能提高论文阅读效率。 论文内容扩写润色:可将论文内容转化为社交媒体的科普内容,精心设计的润色提示词能根据特定场景调整,生成多样化润色结果,如针对小红书使用场景调整提示词。 4. PromptAgent 相关: 通过将 PromptAgent 应用于涵盖三个实用且不同领域的 12 个任务,能够发现有生产力的专家级提示词。PromptAgent 从初始人工编写的提示词和小组训练样本开始,不仅提高了初始人类提示词的性能,还超越了强大的 ChainofThought 和近期的提示词优化基线。大量定性结果突显了优化提示词的专家级方面,随着更强大 LLM 的出现,专家级的提示词引导将引领提示词工程的下一个时代,PromptAgent 站在了开创性的步骤上。
2025-02-21
如何修改提示词
以下是关于修改提示词的一些方法和要点: 在 Midjourney 官方用户端: 点击提示栏右端的设置图标,可以更改提示词的固定设置,包括图像大小(通过移动光标调整横竖屏和常见比例)、模式(在标准模式和原始模式之间切换)、版本(选择使用的 MidJourney 版本)、个性化(开启后自动应用最新代码设置)、美学(如风格化、奇异度、多样性的数值调整)以及更多选项(如速度选择放松、快速或极速模式)。 对于 Claude2: 优化提示词类似于进行一系列实验。进行测试,解释结果,然后根据结果调整变量(提示词或输入)。 当 Claude2 测试失败,尝试确定失败原因,调整提示词,例如更明确地编写规则或添加新规则,通过添加示例和规范输出展示如何正确处理,在某一类型输入表现良好时尝试其他输入类型,确保尝试极端情况,添加规则和示例直至在代表性输入集合上取得良好表现,建议进行“保留测试”。 在 SD 新手入门中: 根据想画的内容写出提示词,多个提示词之间使用英文半角逗号“,”分隔。 一般而言,概念性、大范围、风格化的关键词写在前面,叙述画面内容的其次,描述细节的最后,大致顺序为:(画面质量提示词)、(画面主题内容)(风格)、(相关艺术家)、(其他细节)。 每个词语在模型中的自带权重可能不同,训练集中较多出现的关键词输入一个就能极大影响画面,反之输入多个相关词汇可能影响有限。提示词顺序很重要,越靠后权重越低。 关键词应具有特异性,措辞越具体越好,避免抽象和有解释空间的措辞。 可以使用括号人工修改提示词的权重,例如“”在提示词中使用字面意义上的括号字符。
2025-02-21
提示词
提示词相关知识如下: 1. 什么是提示词: 用于描绘您想生成的画面。 输入语言方面,星流通用大模型与基础模型 F.1、基础模型 XL 使用自然语言(如一个长头发的金发女孩),基础模型 1.5 使用单个词组(如女孩、金发、长头发),支持中英文输入。 启用提示词优化后,能帮您扩展提示词,更生动地描述画面内容。 2. 如何写好提示词: 可以点击提示词上方官方预设词组进行生图。 提示词内容要准确,包含人物主体、风格、场景特点、环境光照、画面构图、画质等,比如:一个女孩抱着小猫,背景是一面红墙,插画风格、孤独感,高质量。 调整负面提示词,点击提示框下方的齿轮按钮,弹出负面提示词框,负面提示词可以帮助 AI 理解我们不想生成的内容,比如:不好的质量、低像素、模糊、水印。 利用“加权重”功能,让 AI 明白重点内容,可在功能框增加提示词,并进行加权重调节,权重数值越大,越优先,也可对已有的提示词权重进行编辑。 辅助功能包括翻译功能(一键将提示词翻译成英文)、删除所有提示词(清空提示词框)、会员加速(加速图像生图速度,提升效率)。 3. 提示词要素: 提示词可以包含指令(想要模型执行的特定任务或指令)、上下文(包含外部信息或额外的上下文信息,引导语言模型更好地响应)、输入数据(用户输入的内容或问题)、输出指示(指定输出的类型或格式)。 4. 提示工程与提示词的区别: 提示工程是人工智能领域中,特别是在自然语言处理和大型语言模型的上下文中,一个相对较新的概念,涉及设计和优化输入提示,以引导 AI 模型生成特定类型的输出或执行特定的任务。 提示词通常指的是直接输入到 AI 模型中的问题、请求或指示,是提示工程的一部分。 提示工程是一个更广泛的概念,不仅包括创建提示词,还涉及理解模型的行为、优化提示以获得更好的性能、以及创造性地探索模型的潜在应用。提示工程的目标是最大化 AI 模型的效用和性能,而提示词是实现这一目标的手段之一。在实际应用中,提示工程可能包括对 AI 模型的深入分析、用户研究、以及对特定任务的定制化提示设计。
2025-02-21
deekseek生成助手提示词的指令
以下是关于 DeepSeek 生成助手提示词的相关内容: 一、核心原理认知 1. AI 特性定位 多模态理解:支持文本/代码/数学公式混合输入 动态上下文:对话式连续记忆(约 4K tokens 上下文窗口,换算成汉字是 8000 字左右) 任务适应性:可切换创意生成/逻辑推理/数据分析模式 2. 系统响应机制 采用意图识别+内容生成双通道 自动检测 prompt 中的:任务类型/输出格式/知识范围 反馈敏感度:对位置权重(开头/结尾)、符号强调敏感 二、基础指令框架 如果不知道如何表达,还是可以套用框架指令 1. 四要素模板 2. 格式控制语法 强制结构:使用```包裹格式要求 占位符标记:用{{}}标注需填充内容 优先级符号:>表示关键要求,!表示禁止项 三、进阶控制技巧 1. 思维链引导 分步标记法:请逐步思考:1.问题分析→2.方案设计→3.风险评估 苏格拉底式追问:在得出最终结论前,请先列举三个可能存在的认知偏差 2. 知识库调用 领域限定指令:基于 2023 版中国药典,说明头孢类药物的配伍禁忌 文献引用模式:以 Nature 2022 年发表的论文为参考,解释 CRISPRCas9 最新突破 3. 多模态输出 四、高级调试策略 1. 模糊指令优化 问题类型 修正方案 示例对比 宽泛需求:添加维度约束,原句:“写小说”→修正:“创作以 AI 觉醒为背景的悬疑短篇,采用多视角叙事结构” 主观表述:量化标准,原句:“写得专业些”→修正:“符合 IEEE 论文格式,包含 5 项以上行业数据引用” 2. 迭代优化法 首轮生成:获取基础内容 特征强化:请加强第三段的技术细节描述 风格调整:改用学术会议报告语气,添加结论部分 最终校验:检查时间逻辑一致性,列出可能的事实性错误 五、行业应用案例 1. 技术开发场景 2. 商业分析场景 六、异常处理方案 1. 信息幻觉:追加请标注所有不确定陈述,并提供验证方法 2. 格式偏离:使用严格遵循以下模板:第一行...第二行... 3. 深度不足:触发请继续扩展第三章节内容,添加案例佐证 七、效能监测指标 1. 首次响应准确率:目标>75% 2. 多轮对话效率:问题解决平均轮次<3 3. 复杂任务分解:支持 5 级子任务嵌套 此外,还有关于利用 DeepSeek 生成小红书爆款单词视频的相关内容: 1. 生成单词 开始:输入单词主题、图片风格、单词数量。 生成单词数组:选择 deepseekr1 模型,输入单词主题、单词数量,这样 deepseek 就可以为用户输出指定数量的几个单词,以数组方式输出。 2. 角色:您是一个专业的单词生成助手,擅长围绕各种主题挖掘相关英语单词,为用户提供精准且实用的单词、中文、美式音标内容。 3. 技能:输出关联英语单词,当用户输入主题时,分析主题内涵,运用专业知识,输出指定数量个与该主题紧密关联的英语单词、中文翻译、美式音标,将该单词用于一句英文中(不超过 15 个单词),并将这句英文句子翻译成中文句子,并以数组形式呈现。 4. 限制:仅围绕用户输入主题输出相关英语单词、中文翻译、美式音标,不涉及其他领域内容。输出必须为符合要求的数组形式,英文单词对应变量 yingwen,中文翻译对应变量 zhongwen,美式音标对应变量 yinbiao,英文句子对应变量 juzi_yingwen,中文句子翻译对应变量 juzi_zhongwen,不得有其他格式偏差。
2025-02-21
Prompt 提示词
以下是关于 Prompt 提示词的全面介绍: 一、如何编写提示词 1. 明确任务:清晰定义任务,如写故事时包含背景、角色和主要情节。 2. 提供上下文:若任务需特定背景知识,提供足够信息。 3. 使用清晰语言:用简单、清晰的语言描述,避免模糊或歧义词汇。 4. 给出具体要求:明确格式、风格等要求。 5. 使用示例:提供期望结果的示例。 6. 保持简洁:避免过多信息导致困惑。 7. 使用关键词和标签:帮助模型理解任务主题和类型。 8. 测试和调整:根据生成结果检查并调整。 二、如何润色或优化 Prompt 1. 明确具体描述:使用更具体、细节的词语和短语。 2. 添加视觉参考:插入相关图片参考。 3. 注意语气和情感:用合适的形容词、语气词调整整体语气和情感色彩。 4. 优化关键词组合:尝试不同搭配和语序。 5. 增加约束条件:添加限制性条件,如分辨率、比例等。 6. 分步骤构建 Prompt:将复杂需求拆解为逐步的子 Prompt。 7. 参考优秀案例:研究有效的 Prompt 范例,借鉴写作技巧和模式。 8. 反复试验、迭代优化:多次尝试不同写法并根据效果反馈优化。 三、星流一站式 AI 设计工具中的 Prompt 输入框 1. 提示词用于描绘画面。 2. 输入语言: 星流通用大模型与基础模型 F.1、基础模型 XL 使用自然语言(如一个长头发的金发女孩),基础模型 1.5 使用单个词组(如女孩、金发、长头发)。 支持中英文输入。 3. 提示词优化:启用后可扩展提示词,更生动描述画面内容。 4. 写好提示词的方法: 预设词组:小白用户可点击官方预设词组生图。 提示词内容准确:包含人物主体、风格、场景特点、环境光照、画面构图、画质等。 调整负面提示词:点击齿轮按钮弹出负面提示词框,帮助 AI 理解不想生成的内容。 利用“加权重”功能:在功能框增加提示词并调节权重,数值越大越优先,也可编辑已有提示词权重。 辅助功能:包括翻译功能(一键将提示词翻译成英文)、删除所有提示词(清空提示词框)、会员加速(加速图像生图速度,提升效率)。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-02-21
图像生成的提示词
以下是关于图像生成提示词的相关内容: 1. 藏师傅教您用 AI 三步制作任意公司的周边图片: 第一步:将生成的提示词填入{图像描述}位置,将想生成的周边填入{周边描述}部分。例如:“The pair of images highlights a logo and its realworld use for a hitech farming equipment;this logo is applied as a black and white tattoo on lower back of an inmate”。参考此内容和风格特点创作类似提示词,然后根据{周边描述}设计配套的右侧面板描述,表达“展示同样的内容(可以是角色、标志等)”的意思。 第二步:将第二步的提示词和 Logo 图片放到 Comfyui 工作流,Lora 需要用到 InContext LoRA 中的 visualidentitydesign 从 https://huggingface.co/alivilab/InContextLoRA/tree/main 下载,工作流下载:https://github.com/op7418/Comfyuiworkflow/blob/main/FLUX/Logo%20%E5%91%A8%E8%BE%B9%E7%94%9F%E6%88%90.json 。 相关文件下载: 。 2. “城市狂想”直接上手操作的教程中图片提示词生成: 提供了猫叔之前写的一段提示词的 prompt,例如: 远景,三分法构图,俯视视角,数字绘画,云雾缭绕的山谷,群山连绵起伏,山谷间云雾缭绕,阳光透过云层洒在山间,形成光与影的对比,模拟观众的视线逐渐接近这片土地,新印象派风格特征,使用数字画笔和渐变工具ar 16:9v 6.1 。 远景,中心对称构图,俯视视角,摄影风格,云雾中的山谷,山峦在云雾中若隐若现,山谷中隐约可见的河流蜿蜒流淌,云雾的流动感和山的静态形成对比,现实主义风格特征,使用长焦镜头和景深控制技术ar 3:2v 6.1 。 远景,对角线构图,俯视视角,水墨画风格,云雾缭绕的山谷,山峦线条流畅,云雾以墨色深浅表现,山谷中的云雾仿佛在流动,给人以动态的视觉感受,中国山水画风格特征,使用毛笔和水墨渲染技术ar 2:3v 6.1 。 为大家直接生成了 1 组共 12 段提示词,可直接使用。注意:提示词在悠船和 MJ 中可直接使用,在其他平台工具请复制后删除包含以后的部分。 以悠船为例,进入悠船页面,点击开始想象按钮,粘贴提示词,回车等待几十秒生成 4 张图片,可选择喜欢的图片进行变化、高清、重塑、扩图等操作。变化会生成 4 张新图片,高清选择直接变化不明显,选择强烈会修改细节,重塑分为细微和强烈两种方式,会展现不同画面类型和内容。
2025-02-21
dify使用秘诀
Dify 是一个开源的大模型应用开发平台,具有以下特点和优势: 1. 理念创新:结合后端即服务和 LLMOps 的理念。 2. 界面直观:为用户提供直观的界面,能快速构建和部署生产级别的生成式 AI 应用。 3. 功能强大:具备强大的工作流构建工具,支持广泛的模型集成,提供功能丰富的提示词 IDE 以及全面的 RAG Pipeline 用于文档处理和检索。 4. 智能体支持:允许用户定义 Agent 智能体。 5. 性能优化:通过 LLMOps 功能对应用程序的性能进行持续监控和优化。 6. 部署灵活:提供云服务和本地部署选项,满足不同用户需求。 7. 数据可控:通过开源特性确保对数据的完全控制和快速的产品迭代。 8. 设计理念:注重简单性、克制和快速迭代,旨在帮助用户将 AI 应用的创意快速转化为现实。 9. 适用场景广泛:无论是创业团队构建 MVP、企业集成 LLM 以增强现有应用的能力,还是技术爱好者探索 LLM 的潜力,Dify 都能提供相应的支持和工具。 Dify 官方手册:https://docs.dify.ai/v/zhhans 一般来说,如果是个人研究,推荐单独使用 Dify;如果是企业级落地项目,推荐使用多种框架结合,效果更好。
2025-02-21
能在局域内网,没有网络,离线的场景使用的AI编程工具,可以是单独运行的,也可以是JetBrains IDEs中作为插件使用的
以下是一些可以在局域内网、没有网络、离线场景使用的 AI 编程工具: 1. PyCharm:是 JetBrains 推出的智能代码补全工具,支持 Java、Python 和 JavaScript 等多种语言。因其高准确性著称,帮助开发人员节省编程时间。价格:起价每月 24.90 美元。 2. AIXcoder:AI 驱动的编程助手,支持 Java、Python 和 JavaScript 等语言。它提供了自动任务处理、智能代码补全、实时代码分析以及输入时的错误检查功能。价格:暂无信息。 3. Ponicode:AI 驱动的代码工具,旨在帮助开发人员优化编码流程。利用自然语言处理和机器学习,根据用户的描述生成代码。由 CircleCI 维护。 4. Jedi:开源的代码补全工具,主要作为 Python 静态分析工具的插件运行,适用于各种编辑器和 IDE。价格:免费。 此外,还有以下相关工具: 1. Cursor:网址:https://www.cursor.com/ ,通过对话获得代码。 2. Deepseek:网址:https://www.deepseek.com/zh ,方便国内访问,网页登录方便,目前完全免费。 3. 通义灵码:在 Pytharm 中,“文件”“设置”“插件”红色框位置搜索“通义灵码”进行安装(目前免费)。 4. JetBrains 自身的助手插件:在 Pytharm 中,“文件”“设置”“插件”红色框位置搜索“Jetbrains AI assistant”进行安装(收费,目前有 7 天免费试用)。 5. AskCodi:一款 AI 代码助手,提供各种应用程序用于代码生成、单元测试创建、文档化、代码转换等。由 OpenAI GPT 提供支持,可以作为 Visual Studio Code、Sublime Text 和 JetBrains 的 IDE 的扩展/插件使用。 6. ODIN(Obsidian 驱动信息网络):是一个插件,可以在 Obsidian 中使用。它提供了一些功能,包括通过图形提示栏进行 LLM 查询、图形可视化、下拉菜单功能等。安装 ODIN 需要先安装 Obsidian 并按照指示进行插件的安装和启用。
2025-02-21
有没有关于使用coze制作在线客服的案例或教程
以下是关于使用 Coze 制作在线客服的案例和教程: 画小二:通过 Coze 定制开发插件案例,包括创建智能体、添加插件等,还可发布到微信成为专职客服技能,并有手把手的会员教程和 AIGC 商业案例实操课海报。 扣子案例合集:包含保姆级教程,如如何用扣子搭建一个免费好用的“图片转表格”AI 客服等。 Agent 相关比赛中的 Coze 相关教程:包括不同分享人的主题分享及流程安排,如大聪明、大圣、艾木、罗文、Itao 的分享,均有回放地址可供查看。
2025-02-21
你使用了哪些大模型
以下是关于大模型的相关信息: 大模型的定义:大模型的“大”指用于表达 token 之间关系的参数多,主要是模型中的权重(weight)与偏置(bias),例如 GPT3 拥有 1750 亿参数。以 Transform 为代表的大模型采用自注意力(Selfattention)机制来学习不同 token 之间的依赖关系,生成高质量 embedding。数字化便于计算机处理,为让计算机理解 Token 之间的联系,需把 Token 表示成稠密矩阵向量,这个过程称为 embedding,常见算法有基于统计的 Word2Vec、GloVe,基于深度网络的 CNN、RNN/LSTM,基于神经网络的 BERT、Doc2Vec 等。 国内部分大模型: 北京:百度(文心一言)https://wenxin.baidu.com 、抖音(云雀大模型)https://www.doubao.com 、智谱 AI(GLM 大模型)https://chatglm.cn 、中科院(紫东太初大模型)https://xihe.mindspore.cn 、百川智能(百川大模型)https://www.baichuanai.com/ 上海:商汤(日日新大模型)https://www.sensetime.com/ 、MiniMax(ABAB 大模型)https://api.minimax.chat 、上海人工智能实验室(书生通用大模型)https://internai.org.cn 部分大模型的特点:在聊天状态下能生成 Markdown 格式的有智谱清言、商量 Sensechat、MiniMax;目前不能进行自然语言交流的有昇思、书生;受限制使用的有 MiniMax;特色功能方面,昇思能生图,MiniMax 能语音合成。 大模型的动手实验:由于作者使用的是 macOS 系统,因此采用 GGML 量化后的模型。比较有名的相关项目有 ggerganov/llama.cpp:Port of Facebook's LLaMA model in C/C++ 中下载模型,3G 到 7G 不等。此外,llama.cpp 还提供了 WebUI 供用户使用,首先启动 server,它默认监听 8080 端口,打开浏览器就可以对话。
2025-02-20
AI使用文档
以下是一份关于如何使用 AI 来做事的指南: 一、当前 AI 系统的发布情况 越来越强大的人工智能系统正快速发布,如 Claude 2 、Open AI 的 Code Interpreter 等,但似乎没有相关实验室提供用户文档,用户指南多来自 Twitter 影响者。 二、处理文档和数据 1. 处理文本,特别是 PDF ,Claude 2 表现出色。可以将整本书粘贴到 Claude 的前一版本中,新模型更强大。通过询问后续问题来审问材料,但需注意系统仍会产生幻觉,若要确保准确性需检查结果。 2. 对于数据和代码相关: 代码解释器是一种 GPT 4 模式,允许上传文件、编写和运行代码、下载结果,可用于执行程序、数据分析、创建各种文件、网页甚至游戏。但使用它进行未经培训的分析存在风险。 对于大型文档或同时处理多个文档,可使用 Claude 2 ;对于较小的文档和网页,可使用 Bing 侧边栏( Edge 浏览器的一部分),但上下文窗口大小有限。 希望以上内容对您有所帮助。若想了解更多关于特定任务类型或工具使用的详细信息,可提前阅读相关文章。
2025-02-20
0到1使用大语言模型
以下是关于 0 到 1 使用大语言模型的相关内容: Ollama 框架: 1. 支持多种大型语言模型,如通义千问、Llama 2、Mistral 和 Gemma 等,适用于不同应用场景。 2. 易于使用,适用于 macOS、Windows 和 Linux 系统,同时支持 CPU 和 GPU。 3. 提供模型库,用户可从中下载不同参数和大小的模型,通过 https://ollama.com/library 查找。 4. 支持用户自定义模型,例如修改温度参数调整创造性和连贯性,或设置特定系统消息。 5. 提供 REST API 用于运行和管理模型,以及与其他应用程序的集成选项。 6. 社区贡献丰富,包括多种集成插件和界面,如 Web 和桌面应用、Telegram 机器人、Obsidian 插件等。 7. 安装完后,确保 ollama 后台服务已启动(在 mac 上启动 ollama 应用程序,在 linux 上通过 ollama serve 启动),可通过 ollama list 确认。 大模型安全: 1. 通过对齐(指令调优)使语言模型更好理解人类意图并增加安全保障,可拆解为监督微调、获取 reward model 和强化学习调整输出分布两部分。 2. LLAMA2 专门使用安全有监督微调确保语言模型安全。 3. 强化学习通过引入人类反馈数据调整模型输出分布,使模型面对训练分布外数据时能拒绝不当回答。 4. 但 Alignment 并不足以防护所有安全问题,存在越狱(Jailbreak)情况,导致模型对齐失效。 5. 还需关注隐私问题。 大模型架构与特点: 1. 包括 encoderonly、encoderdecoder 和 decoderonly 三种架构,目前熟知的 AI 助手多为 decoderonly 架构。 2. 大模型预训练数据量大,来自互联网,参数多,如 Open 在 2020 年发布的 GPT3 已达 170B 参数。 3. GPT3 可根据任务描述和示例完成任务,ChatGPT 则通过对话完成任务,二者在形式和安全性上有差别。
2025-02-19