Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

大型语言模型(LLM)基于Transformer架构的模型的优缺点是什么,有什么局限性

Answer

大型语言模型(LLM)基于 Transformer 架构的模型具有以下优点:

  1. 在大量数据集上进行预训练,展现出卓越的语言处理能力,能预测接下来的 Token。

然而,也存在一些缺点和局限性:

  1. 瞬态状态:天生缺乏持久的记忆或状态,需要额外的软件或系统来保留和管理上下文。
  2. 概率性质:随机性导致响应的不确定性,对相同提示词可能产生不同回答。
  3. 过时信息:依赖预训练数据,只能访问历史知识,无法获取实时更新。
  4. 内容制造:可能生成看似合理但不准确的信息,即“幻觉”。
  5. 资源密集:巨大规模意味着显著的计算和财务成本,影响可扩展性和可访问性。
  6. 领域特定性:本质上通用,但通常需要特定领域数据才能在专业任务中表现出色。
  7. 缺乏创造性:像一个高性能的知识检索工具,超出检索范围时表现差,甚至出现“幻觉”。面对复杂逻辑推导和新的知识推演能力不足,无法基于新的语料推演出新知识。
  8. 对于特定领域或高度专业化的查询,容易产生错误信息或“幻觉”,特别是当查询超出训练数据或需要最新信息时。
Content generated by AI large model, please carefully verify (powered by aily)

References

小七姐:精读翻译《提示词设计和工程:入门与高级方法》

大型语言模型(LLM),包括基于Transformer架构的模型,已经成为自然语言处理领域的重要推动力。这些模型通过在大量数据集上进行预训练,以预测接下来的Token,展现出了卓越的语言处理能力。然而,尽管它们功能强大,LLM仍然受到一些固有限制的影响,这些限制影响了它们的应用和有效性。瞬态状态:LLM天生缺乏持久的记忆或状态,这就需要额外的软件或系统来保留和管理上下文。概率性质:LLM的随机性导致了响应的不确定性,即使是对相同的提示词,也可能产生不同的回答。这意味着你每次可能得到略有差异的答案。过时信息:依赖于预训练数据,LLM只能访问历史知识,无法获取实时更新。内容制造:LLM可能会生成看似合理但实际上并不准确的信息,这种现象通常被称为“幻觉”。资源密集:LLM的巨大规模意味着显著的计算和财务成本,影响了它们的可扩展性和可访问性。领域特定性:虽然本质上是通用的,LLM通常需要特定领域的数据才能在专业任务中表现出色。这些限制强调了需要高级提示词工程和专门技术来提高LLM的实用性,并减轻这些固有限制。后续章节将深入探讨旨在优化LLM性能的复杂策略和工程创新。

Cursor 深度评测:革命性提效工具还是过誉的玩具?

LLM还有一个比较大的问题:缺乏创造性,这一点应该比较容易理解,从原理上讲,LLM就是大量收集公开资料,之后借助深度学习技术,尤其是神经网络中的Transformer架构,来捕捉语言中的复杂模式和语义关系,进而训练出一套尽可能准确理解与生成自然语言的模型。通俗地讲,LLM就像一个具有超高性能与智慧度的知识检索工具,并且出厂时默认就自带了海量互联网公开资料,结果就是,当你提问的问题有对应的资料解释时,它能非常好地生成答案,但超出其检索范围时,表现就会差很多,甚至出现所谓的“幻觉”。当然,这一问题目前已经有一个成熟的解决方案:Retrieval-Augmented Generation,可以简单理解为通过向量数据库给LLM外挂更多知识,LLM在执行时会同时检索这些知识,从中推算出更接近特定领域的答案,这就使得LLM能够被应用在各类具体业务领域中,适用性增强了许多。但面对一些更深层次的问题,即使应用了RAG架构恐怕也很难解决,例如某些不甚知名框架,网络上并没有太多相关讨论资料,并且你也无法提供相关知识时,LLM就很难给出比较准确的答案,这是因为LLM本质上只是在做数学意义上的概率推算,但不具备复杂逻辑推导能力,无法基于新的语料推演出新的知识,缺乏人类智能的创造力。举个更具体的例子,当你编程过程遇到一些具体的Bug,如果是前人研究过的点,并且在互联网上详细解释了问题的原因与解决方案,那么LLM会表现的很好,直接给出最终答案;如果是框架的问题,但缺乏相关资料的,LLM大概率无法给出解决方案,需要你深挖框架细节,自己找到答案;而如果是具体业务系统代码本身的问题,LLM基本是力不从心的,无法给出有价值的答案。因此,面对复杂而具体的问题时,依然还是需要人类智能出场。

开发:产品视角的大模型 RAG 应用

开发:产品视角的大模型RAG应用[heading1]一文看懂RAG:大语言模型落地应用的未来[heading2]RAG发展的四个阶段大型语言模型(LLMs)如GPT系列在自然语言处理方面取得了显著的成功,Super-GLUE等各种基准测试中表现出色。尽管有了这些进展,LLMs仍然存在显著的局限性,特别是在处理特定领域或高度专业化的查询时,一个常见问题是产生错误的信息,或者称为“幻觉”。特别是当查询超出模型的训练数据或需要最新信息时。所以说在直接将LLMs部署运行到生产环境中时,其就是一个黑盒,鬼知道它会输出什么的结果...解决这些问题的一种有希望的方法是检索增强生成(RAG),它将外部数据检索整合到生成过程中,从而提高模型提供准确和相关回答的能力。RAG于2020年中期由Lewis等人提出,是LLMs领域中的一种范式,可增强生成任务。具体而言,RAG包括一个初始的检索步骤,LLMs在此步骤中查询外部数据源以获取相关信息,然后才回答问题或生成文本。这个过程不仅为后续的生成阶段提供信息,还确保回答基于检索到的证据,从而显著提高了输出的准确性和相关性。在推断阶段动态检索来自知识库的信息使RAG能够解决生成事实错误内容的问题,通常被称为“幻觉”。将RAG整合到LLMs中已经迅速被采用,并成为完善聊天机器人能力和使LLMs更适用于实际应用的关键技术。RAG的演进轨迹在四个不同阶段展开,如下图所示。在2017年的创始阶段,与Transformer架构的出现相一致,主要重点是通过预训练模型(PTM)来吸收额外的知识以增强语言模型。这个时代见证了RAG的基础工作主要集中在优化预训练方法上。

Others are asking
大模型的系统提示词
大模型的系统提示词主要包括以下方面: 1. 在“五津:一键生成‘摸鱼打工猫’视频”中,针对用户选择的主题和回答,总结用户的创作意图,如“打工猫摸鱼的 2 小时,在巴厘岛能看一场日落”,并根据此生成 4 组体现幽默风趣、以宫崎骏风格描绘主角为摸秋刀鱼橘猫的绘图提示词,以数组形式输出到“tishici”,将用户意图输出到“biaoti”。 2. 在“云中江树:智能对决:提示词攻防中的 AI 安全博弈”中,系统提示词的相关防御措施分为输入侧、模型侧和输出侧三个部分。输入侧可进行意图识别、语义匹配等综合判断用户输入是否恶意;模型侧对于有能力的厂商应增强安全性并平衡性能,开发者则要在开发中带着安全意识优化系统提示词,加入安全引导和禁止内容等;输出侧可使用传统防御和内容过滤手段,并针对大模型特点进行私有数据泄露等检查。此外,还提到间接注入和提示词泄露的情况,间接注入常发生在应用获取依赖外部数据资源时,攻击者通过隐藏恶意指令完成攻击;提示词泄露指试图操纵模型输出获取部分或全部系统提示词,大模型输出内容可分为系统提示词、用户提示和助手提示词三段,通过攻击手段可获取系统提示词。
2025-04-18
通义千问Qwen2.5-VL、阶跃星辰step-1.5v-mini、Gemini-2.0-Flash,这3个视觉理解大模型哪个最厉害?
以下是对通义千问 Qwen2.5VL 模型的介绍: 版本:有 3B、7B 和 72B 三个尺寸版本。 主要优势: 视觉理解能力:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。 视频理解能力:支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。 万物识别:擅长识别常见物体及分析图像中的文本、图表、图标、图形和布局。 精准的视觉定位:采用矩形框和点的多样化方式对通用物体定位,支持层级化定位和规范的 JSON 格式输出。 全面的文字识别和理解:提升 OCR 识别能力,增强多场景、多语言和多方向的文本识别和文本定位能力。 Qwen 特色文档解析:设计了更全面的文档解析格式,称为 QwenVL HTML 格式,能够精准还原文档中的版面布局。 增强的视频理解:引入动态帧率(FPS)训练和绝对时间编码技术,支持小时级别的超长视频理解,具备秒级的事件定位能力。 开源平台: Huggingface:https://huggingface.co/collections/Qwen/qwen25vl6795ffac22b334a837c0f9a5 Modelscope:https://modelscope.cn/collections/Qwen25VL58fbb5d31f1d47 Qwen Chat:https://chat.qwenlm.ai 然而,对于阶跃星辰 step1.5vmini 和 Gemini2.0Flash 模型,目前提供的信息中未包含其与通义千问 Qwen2.5VL 模型的直接对比内容,因此无法确切判断哪个模型在视觉理解方面最厉害。但从通义千问 Qwen2.5VL 模型的上述特点来看,其在视觉理解方面具有较强的能力和优势。
2025-04-15
目前全世界最厉害的对视频视觉理解能力大模型是哪个
目前在视频视觉理解能力方面表现出色的大模型有: 1. 昆仑万维的 SkyReelsV1:它不仅支持文生视频、图生视频,还是开源视频生成模型中参数最大的支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其具有影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等优势。 2. 通义千问的 Qwen2.5VL:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。擅长万物识别,能分析图像中的文本、图表、图标、图形和布局等。
2025-04-15
目前全世界最厉害的视频视觉理解大模型是哪个
目前全世界较为厉害的视频视觉理解大模型有以下几个: 1. 昆仑万维的 SkyReelsV1:不仅支持文生视频、图生视频,是开源视频生成模型中参数最大且支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其优势包括影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等。 2. 腾讯的混元:语义理解能力出色,能精准还原复杂的场景和动作,如特定品种的猫在复杂场景中的运动轨迹、从奔跑到跳跃的动作转换、琴音化作七彩音符等。 3. Pixverse V3.5:全球最快的 AI 视频生成模型,Turbo 模式下可在 10 秒内生成视频,最快仅需 5 6 秒。支持运动控制更加稳定、细节表现力强、首尾帧生成功能,具备顶尖动漫生成能力。
2025-04-15
目前全世界最厉害的视觉理解大模型是哪个
目前在视觉理解大模型方面,较为突出的有 DeepSeek 的 JanusPro 模型,它将图像理解和生成统一在一个模型中;还有通义千问的视觉理解模型,其价格有较大降幅。此外,Pixverse V3.5 是全球最快的 AI 视频生成模型,在某些方面也展现出了出色的能力。但很难确切地指出全世界最厉害的视觉理解大模型,因为这取决于不同的评估标准和应用场景。
2025-04-15
大模型对话产品的优劣
大模型对话产品具有以下优点: 1. 具有强大的语言理解和生成能力。 2. 能够提供类似恋爱般令人上头的体验,具有一定的“想象力”和“取悦能力”。 3. 可以通过陪聊建立人和 AI 之间的感情连接,产品粘性不完全依赖技术优越性。 4. 能够为用户提供产品咨询服务,适用于有企业官网、钉钉、微信等渠道的客户。 5. 具有多种应用场景,如私有领域知识问答、个性化聊天机器人、智能助手等。 大模型对话产品也存在一些缺点: 1. 存在记忆混乱的问题。 2. AI 无法主动推动剧情,全靠用户脑补,导致用户上头期短,疲劳度高,长期留存低。 3. 无法回答私有领域问题(如公司制度、人员信息等)。 4. 无法及时获取最新信息(如实时天气、比赛结果等)。 5. 无法准确回答专业问题(如复杂数学计算、图像生成等)。
2025-04-14
LLM应用可观测性
LLM 应用的可观测性主要体现在以下方面: LangChain:借助 LangSmith 提供更好的日志、可视化、播放和跟踪功能,以便监控和调试 LLM 应用。LangSmith 是基于 Web 的工具,能查看和分析细化到 class 的输入和输出,还提供跟踪功能,用于记录和展示 LLM 应用的执行过程和状态,以及 LLM 的内部信息和统计数据。 Langfuse:为大模型应用提供开源可观测性和分析功能,在可视化界面中可探索和调试复杂的日志和追踪,并使用直观的仪表板改善成本、降低成本、减少延迟,提高响应质量。 此外,微软(中国)的《面向大模型的新编程范式》报告中也强调了在线监控和可观测性的重要性。
2025-04-11
LLM模型响应时间较长,如何处理超时时间问题
处理 LLM 模型响应时间过长导致的超时问题,可以考虑以下方法: 1. 参数有效调整:这是一种新颖的微调方法,通过仅训练一部分参数来减轻微调 LLM 的挑战。这些参数可能是现有模型参数的子集,或者是一组全新的参数,例如向模型添加一些额外的层或额外的嵌入到提示中。 2. 优化提示设计:采用合适的提示方法,如零样本提示、一次性提示、Fewshot prompting 等。零样本提示是只给出描述任务的提示;一次性提示是让 LLM 执行任务的单个示例;Fewshot prompting 是让 LLM 执行任务的少量示例。同时,可以使用结构化模式设计提示,包含上下文、问题示例及相应答案等组件,以指示模型应如何响应。 3. 避免频繁调整某些参数:尤其是 Top K 和 Top P,不需要经常对其进行调整。 4. 关注模型响应质量:即使有良好的提示设计,模型输出仍可能不稳定,需要持续关注和优化。 5. 考虑成本和时间:微调大型模型可能耗时且成本高,为大模型提供服务也可能涉及额外麻烦和成本,需要综合评估和优化。
2025-04-11
除了LLM,就没有AI模型了吗?
除了 LLM ,还有很多其他类型的 AI 模型。以下为您详细介绍: 1. 生成式 AI:可以生成文本、图片、音频、视频等内容形式。其中生成图像的扩散模型就不是大语言模型。 2. 机器学习:电脑找规律学习,包括监督学习、无监督学习、强化学习。 监督学习:有标签的训练数据,算法的目标是学习输入和输出之间的映射关系,包括分类和回归。 无监督学习:学习的数据没有标签,算法自主发现规律。经典任务包括聚类,比如拿一堆新闻文章,让模型根据主题或内容特征分成具有相似特征的组。 强化学习:从反馈里学习,最大化奖励或最小化损失,类似训小狗。 3. 深度学习:一种参照人脑有神经网络和神经元的方法(因为有很多层所以叫深度)。神经网络可以用于监督学习、无监督学习、强化学习。 4. 谷歌的 BERT 模型:可用于语义理解(不擅长文本生成),如上下文理解、情感分析、文本分类。 2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型,它完全基于自注意力机制(SelfAttention)来处理序列数据,而不需要依赖于循环神经网络(RNN)或卷积神经网络(CNN)。生成式 AI 生成的内容,叫做 AIGC 。
2025-04-11
linux下安装 anythingLLM
以下是在 Linux 下安装 AnythingLLM 的相关指导: 1. 安装地址:https://useanything.com/download 。 2. 安装完成后会进入配置页面,主要分为三步: 第一步:选择大模型。 第二步:选择文本嵌入模型。 第三步:选择向量数据库。 3. AnythingLLM 中有 Workspace 的概念,可以创建自己独有的 Workspace 与其他项目数据进行隔离。 首先创建一个工作空间。 上传文档并且在工作空间中进行文本嵌入。 选择对话模式,提供了 Chat 模式(大模型会根据自己的训练数据和上传的文档数据综合给出答案)和 Query 模式(大模型仅仅会依靠文档中的数据给出答案)。 4. 完成上述配置后,即可与大模型进行对话。 此外,在 GitHubDaily 开源项目列表 2023 年复盘的 AIGC 部分中,也有关于 AnythingLLM 的介绍: 是一个可打造成企业内部知识库的私人专属 GPT!可以将任何文档、资源或内容转换为大语言模型(LLM)知识库,使得在对话过程中可引用到里面的内容。 本文的思路来源于视频号博主黄益贺,作者按照他的视频进行了实操,并附加了一些关于 RAG 的额外知识。
2025-03-27
anythingLLM本地部署
以下是关于本地部署大模型以及搭建个人知识库的相关内容: 一、引言 作者是大圣,一个致力于使用 AI 工具将自己打造为超级个体的程序员,目前沉浸于 AI Agent 研究。本文将分享如何部署本地大模型及搭建个人知识库,读完可学习到如何使用 Ollama 一键部署本地大模型、了解 ChatGPT 信息流转、RAG 概念及核心技术、通过 AnythingLLM 搭建本地化数据库等。 五、本地知识库进阶 如果想要对知识库进行更灵活掌控,需要额外软件 AnythingLLM,它包含所有 Open WebUI 能力,并额外支持选择文本嵌入模型和向量数据库。 安装地址:https://useanything.com/download 。安装完成后进入配置页面,主要分为三步: 1. 第一步:选择大模型。 2. 第二步:选择文本嵌入模型。 3. 第三步:选择向量数据库。 构建本地知识库: AnythingLLM 中有 Workspace 概念,可创建独有 Workspace 与其他项目数据隔离。 1. 首先创建一个工作空间。 2. 上传文档并在工作空间中进行文本嵌入。 3. 选择对话模式,提供 Chat 模式(大模型根据训练数据和上传文档综合给出答案)和 Query 模式(大模型仅依靠文档数据给出答案)。 配置完成后可进行测试对话。 六、写在最后 作者推崇“看十遍不如实操一遍,实操十遍不如分享一遍”。如果对 AI Agent 技术感兴趣,可联系作者或加其免费知识星球(备注 AGI 知识库)。 本文思路来源于视频号博主黄益贺,作者按照其视频进行实操并附加了一些关于 RAG 的额外知识。
2025-03-26
LLM的原理
LLM(大语言模型)的工作原理如下: 以“我今天吃了狮子头和蔬菜”这句话为例,在 Transformer 中,会由 Attention 层对其加入更多信息补充,如“狮子头是一道菜”“今天是星期六”等,这些补充信息作为输入给到下一个 Attention 层,层与层之间,哪些信息补充、保留、传递,由模型自主学习,最终模型把海量数据以关系网形式“消化”并保留重要相关性。 形象地说,就像人阅读文章时的连贯性注意力过程,在阅读理解时,脑子里会消化吸收记忆,记忆的不是点状知识,而是网状经验。 大模型以词向量和 Transformer 模型学习海量知识,把知识作为向量空间中的关系网存储,接受输入时通过向量空间中的匹配进行输出。 观察大模型回复,是一个字一个字流式输出的,因为大模型确实在一个字一个字地推理生成内容。比如输入法输入联想,根据输入的单个字推测下一个字,加入上下文能帮助模型理解下一个字。但存在两个问题:一是全量数据计算算力吃不消,二是仅算字的概率易被不相干信息干扰,此时词向量机制和 Transformer 模型中的 Attention 自注意力机制解决了难题。 另外,RAG 对大语言模型的作用就像开卷考试对学生,事实性知识与 LLM 的推理能力相分离,被存储在容易访问和及时更新的外部知识源中,分为参数化知识(模型训练中学习得到,隐式储存在神经网络权重中)和非参数化知识(存储在外部知识源,如向量数据库中)。
2025-03-25
什么是Transformer,它的工作流程是什么样
Transformer 是一种在自然语言处理中广泛应用的模型,其工作流程如下: 1. 输入嵌入(Input Embeddings):将每个单词映射为一个向量,即单词嵌入(word embeddings)。例如,“I”映射为一个 512 维的向量。 2. 位置编码(Positional Encodings):由于 Transformer 没有递归或卷积等捕获序列顺序的结构,所以需要给每个词位置加上位置编码,使模型知道词语的相对位置。 3. 编码器(Encoder):输入序列的嵌入向量和位置编码相加后被送入编码器层。编码器由多个相同的层组成,每层有两个核心部分: 多头注意力机制(MultiHead Attention):捕捉单词间的依赖关系。 前馈神经网络(FeedForward NN):对 attention 的结果进行进一步编码。 4. 解码器(Decoder):编码器的输出被送入解码器层。解码器也是由多个相同层组成,每层除了编码器组件外,还有一个额外的注意力模块,对编码器的输出序列建模依赖关系。 5. 输出嵌入(Output Embeddings):解码器最后一层的输出被映射为输出单词概率分布。例如生成单词“我”“是”等概率。 6. 生成(Generation):基于概率分布,以贪婪或 beam search 等解码策略生成完整的输出序列。 注意力机制是 Transformer 最关键的创新,允许模型捕获长距离依赖关系。多头注意力可并行计算,因此高效。残差连接和层归一化则有助于优化网络。整体上,Transformer 无递归和卷积结构,计算并行化程度高,更适合并行加速。 位置编码方面,Transformer 通过一种称为位置编码的创新方法绕过了语序理解的障碍。其思路是将输入序列中的所有单词(如一个英语句子)在每个单词后面加上一个数字,表明它的顺序。从概念上讲,把理解语序的重担从神经网络的结构转移到数据本身。起初,在对 Transformer 进行任何数据训练之前,它并不知道如何解释这些位置编码。但是随着模型看到越来越多的句子和它们的编码,它学会了如何有效地使用它们。最初的作者使用正弦函数来进行位置编码,而不是简单的整数 1、2、3、4,但要点是相同的。将语序存储为数据,而不是靠网络结构,这样神经网络就更容易训练了。
2025-03-21
transformer是通往AGI的必经之路吗?什么是世界模型,当前有哪些进展
Transformer 并非通往 AGI 的必经之路。在已知的 token space 中,Transformer 符合一些条件,但在更通用的场景中不太符合。AI 本质包含一堆 scaling law,一个值得被 scale up 的架构是基础,且架构要支持不断加入更多数据。当前在数据方面,如限定问题的数据生成有进展,但通用问题还没有完全的解法。 世界模型方面,目前的研究正在以指数级别的速度增长。对于语言这种有结构、有规则的指令系统,其逻辑受指向描述变化,如早期语言模型建模中用到的 RNN、LSTM 及当前 LLM 的 Transformer 模型结构,都是对语言序列性所体现逻辑结构的适配。同时也在思考是否存在其他形式的符号化表征及相应的建模结构,以及对于非碳基生物语言的使用情况等。未来通往 AGI 的道路并非简单,需要探寻 RL 与 LLM 的本质普遍性。
2025-03-16
Transformer模型
Transformer 模型是一种基于注意力机制的深度学习模型,由 Vaswani 等人在论文《Attention is All You Need》中提出,用于处理序列到序列的任务,如机器翻译、文本摘要等。其原理主要包括以下几个关键点: 1. 自注意力机制:能够同时考虑输入序列中所有位置的信息,而非像循环神经网络或卷积神经网络一样逐个位置处理。通过自注意力机制,模型可根据输入序列中不同位置的重要程度,动态分配注意力权重,从而更好地捕捉序列中的关系和依赖。 2. 位置编码:由于自注意力机制不考虑输入序列的位置信息,为使模型能够区分不同位置的词语,Transformer 模型引入了位置编码。位置编码是一种特殊的向量,与输入词向量相加,用于表示词语在序列中的位置信息。位置编码通常基于正弦和余弦函数计算得到的固定向量,可帮助模型学习到位置信息的表示。 3. 多头注意力机制:通过引入多头注意力机制,可以并行地学习多个注意力表示,从不同的子空间中学习不同的特征表示。每个注意力头都是通过将输入序列线性变换成查询、键和值向量,并计算注意力分数,然后将多个头的输出拼接在一起得到最终的注意力表示。 4. 残差连接和层归一化:在每个子层(SelfAttention 层和前馈神经网络层)的输入和输出之间都引入了残差连接,并对输出进行层归一化。残差连接可缓解梯度消失和梯度爆炸问题,使得模型更容易训练和优化;层归一化可加速训练过程,并提高模型的泛化能力。 5. 位置感知前馈网络:在每个注意力子层之后,Transformer 模型还包含了位置感知前馈网络,它是一个两层的全连接前馈神经网络,用于对注意力表示进行非线性转换和映射。位置感知前馈网络在每个位置独立地进行计算,提高了模型的并行性和计算效率。 Transformer 模型主要由两大部分组成:编码器和解码器。每个部分都是由多个相同的层堆叠而成,每层包含了多头注意力机制和位置全连接前馈网络。 编码器可以理解为将自然语言转换成向量文本,以模型内的既有参数表示。这些参数包含了原始信息,同时也融合了序列内元素间的相互关系。例如,输入“我喜欢猫”,将自然语言转换成词嵌入向量:我>,经过自注意力机制,输出编码器输出一个序列的向量,表示对输入句子的理解。 解码器基于编码器的输出和之前生成的输出逐步生成目标序列,也就是把向量文本重新转化成自然语言。例如,目标生成中文句子“我喜欢猫”,初始输入为解码器接收一个开始符号,用,对应“猫”。这是一个简单的复现概念,当模型得到匹配度高的参数时,它就会一个词一个词地判断需要输出的语言文本。
2025-03-14
Transformer 架构
Transformer 架构主要由编码器(Encoder)和解码器(Decoder)两大部分组成。 编码器可以将自然语言转换成向量文本,其内部参数包含了原始信息以及序列内元素间的相互关系。例如,输入“我喜欢猫”,会将自然语言转换成词嵌入向量,如“我”对应,然后通过自注意力机制输出一个表示对输入句子理解的向量序列。 解码器基于编码器的输出和之前生成的输出逐步生成目标序列,将向量文本重新转化成自然语言。例如生成中文句子“我喜欢猫”,解码器接收开始符号,然后逐步根据编码器输出和已生成的词决定生成后续的词。 Transformer 是一种使用注意力机制的编码器解码器模型,其模型架构使得它可以利用多元化的优势,同时处理大量数据,有助于提高机器翻译等应用程序的性能。 此外,Transformer 架构能够并行处理大量数据吞吐,且满足 scaling law,在各个模态和技术栈具有优势,被 OpenAI 广泛使用。使用同样的架构可以复用模型的参数来引导不同技术栈的训练,以及使用一套 infra 框架训练不同的模型。
2025-03-14
transformer
Transformer 是一种深度学习模型,其核心思想是“Attention is all you need”,来源于 2017 年 Google Brain 团队发布的同名论文,主要用于处理序列数据,包括热门的 NLP 任务,完全基于注意力机制,不使用传统的 RNN 或 CNN 计算架构。 其工作流程如下: 1. 输入嵌入:将每个单词映射为一个向量,即单词嵌入。例如“ I ”映射为一个 512 维的向量。 2. 位置编码:由于 Transformer 没有捕获序列顺序的结构,需给每个词位置加上位置编码,使模型知道词语的相对位置。 3. 编码器:输入序列的嵌入向量和位置编码相加后被送入编码器层。编码器由多个相同的层组成,每层有两个核心部分,多头注意力机制捕捉单词间的依赖关系,前馈神经网络对 attention 的结果进行进一步编码。 4. 解码器:编码器的输出被送入解码器层。解码器也是由多个相同层组成,每层除了编码器组件外,还有一个额外的注意力模块,对编码器的输出序列建模依赖关系。 5. 输出嵌入:解码器最后一层的输出被映射为输出单词概率分布。例如生成单词“我”“是”等概率。 6. 生成:基于概率分布,以贪婪或 beam search 等解码策略生成完整的输出序列。 Transformer 模型用途广泛,可以用来翻译文本、写诗、写文章,甚至生成计算机代码。像 AlphaFold 2、GPT3、BERT、T5、Switch、Meena 等强大的自然语言处理(NLP)模型都建立在 Transformer 基础之上。如果想在机器学习,特别是自然语言处理方面与时俱进,至少要对 Transformer 有一定了解。
2025-03-13
Transformer是什么?
Transformer 是一种注意力模型,也被称为变形金刚模型。它源于 Google 团队在 2017 年发布的论文《Attention is All Your Needs》。 Transformer 是一种深度学习模型,核心思想是“Attention is all you need”。其主要用于处理序列数据,包括当下热门的自然语言处理(NLP)任务。与传统模型不同,Transformer 完全基于注意力机制,不依赖传统的循环神经网络(RNN)或卷积神经网络(CNN)的计算架构。 基于 Transformer 的模型众多,例如最流行的 BERT,它是“来自 Transformer 的双向编码器表示”的缩写。BERT 经过在庞大文本语料库上的训练,已成为自然语言处理的通用模型,可用于文本摘要、问答、分类、命名实体识别、文本相似度、攻击性信息/脏话检测、理解用户查询等一系列任务。 此外,Transformer 不仅在自然语言处理领域表现出色,还在自然语言处理之外的领域掀起浪潮,如作曲、根据文本描述生成图像以及预测蛋白质结构。像 ChatGPT 这样的模型在闲聊中也能展现出更多的世界知识和某种程度的推理能力,能够更好地理解人类语言的含义和上下文,并生成更自然流畅的语言表达。
2025-03-06
AI数字人是什么,市面上目前有哪些生成数字人的AI工具,介绍一下这些工具的网址以及优缺点
AI 数字人是通过人工智能技术创建的虚拟人物形象。 目前市面上常见的生成数字人的 AI 工具及相关信息如下: 1. HEYGEN: 优点:人物灵活,五官自然,视频生成很快。 缺点:中文的人声选择较少。 网址: 使用方法: 点击网址注册后,进入数字人制作,选择 Photo Avatar 上传自己的照片。 上传后效果如图所示,My Avatar 处显示上传的照片。 点开大图后,点击 Create with AI Studio,进入数字人制作。 写上视频文案并选择配音音色,也可以自行上传音频。 最后点击 Submit,就可以得到一段数字人视频。 2. DID: 优点:制作简单,人物灵活。 缺点:为了防止侵权,免费版下载后有水印。 网址: 使用方法: 点击上面的网址,点击右上角的 Create vedio。 选择人物形象,可以点击 ADD 添加自己的照片,或者使用 DID 给出的人物形象。 配音时,可以选择提供文字选择音色,或者直接上传一段音频。 最后,点击 Generate vedio 就可以生成一段视频。 打开自己生成的视频,可以下载或者直接分享给朋友。 3. KreadoAI: 优点:免费(对于普通娱乐玩家很重要),功能齐全。 缺点:音色很 AI。 网址: 使用方法: 点击上面的网址,注册后获得 120 免费 k 币,这里选择“照片数字人口播”的功能。 点击开始创作,选择自定义照片。 配音时,可以选择提供文字选择音色,或者直接上传一段音频。 打开绿幕按钮,点击背景,可以添加背景图。 最后,点击生成视频。 此外,还有开源且适合小白用户的数字人工具,如: 特点:一键安装包,无需配置环境,简单易用。 功能:生成数字人视频,支持语音合成和声音克隆,操作界面中英文可选。 系统兼容:支持 Windows、Linux、macOS。 模型支持:MuseTalk(文本到语音)、CosyVoice(语音克隆)。 网址: GitHub: 官网: 更多数字人工具请访问网站查看:https://www.waytoagi.com/category/42 。请注意,这些工具的具体功能和可用性可能会随着时间和技术的发展而变化。在使用这些工具时,请确保遵守相关的使用条款和隐私政策,并注意保持对生成内容的版权和伦理责任。
2025-03-14
LLama特点和优缺点
Llama 的特点包括: 基于大规模神经网络,特别是 Transformer 架构。 Llama 的优点有: 具有强大的语言理解、生成和对话能力。 Llama 的缺点是: 计算资源消耗大。 可能存在偏见和误解。
2025-02-18
trea和cursor对比,优缺点是什么
Trea 与 Cursor 对比的优缺点如下: 优点: 1. 专为中文开发者量身定制,充分考虑了中文开发者的实际需求,如界面语言全面中文化、对代码注释的友好支持等,让开发者感受到“母语级”的顺畅体验。 2. 集成了国外主流的大模型 Claude 3.5 和 GPT4o,为开发者提供智能代码生成和逻辑优化功能。 3. 在 AI Chat 功能中,使用快捷键 Cmd+u 时的 Context 引用功能比 Cursor 方便好用,可引用 Code(当前选中文件的某个代码块)、File(指定文件的文件名)、Folder(指定文件夹的文件名)、Workspace(当前项目的所有文件)进行对话。 缺点: 1. 在使用快捷键 Cmd+i 进行代码更新时,不像 Cursor 一样可以追问问题以获得想要的代码,而是每次基于摘取的上下文重新回答,且回滚后不能撤销回滚。 2. 目前和 Cursor 一样,不能撤回基于 AI 回答修改过的代码内容,只能人工逐个校验撤回。
2025-01-25
COZE 和智谱AI的优缺点对比
COZE 的优点: 1. 逼真且有沉浸感:通过图片和文字描述模拟急诊室的真实场景,用户可体验到紧张真实的医疗环境。可进一步增加场景细节,如急诊室的声音效果,增强沉浸感。 2. 互动性强:设置多个决策点,用户需做出选择,提高用户参与感和学习效果。可引入更多分支场景,根据用户不同选择生成不同结局,提高互动的深度和多样性。 3. 情感共鸣:通过详细的病人背景故事,用户能更好理解患者处境,增强同理心。可增加更多病人案例,覆盖不同病情和背景,使情感共鸣更丰富多样。 4. 延续字节风格,能自己做闭环,可在工作流基础上用用户界面包装成产品发布。 COZE 的缺点:商业化探索尚未铺开,用户来源不明确。目前没有明确信息表明其是否开源,社区参与和开源协作程度可能不如 Dify。 智谱 AI 的优点: 目前信息中未明确提及智谱 AI 的具体优点。 智谱 AI 的缺点: 目前信息中未明确提及智谱 AI 的具体缺点。 两者的对比: 1. 开源性:Dify 是开源的,允许开发者自由访问和修改代码;Coze 目前没有明确信息表明其是否开源。 2. 功能和定制能力:Dify 提供直观界面,结合多种功能,支持通过可视化编排基于任何 LLM 部署 API 和服务;Coze 提供丰富插件能力和高效搭建效率,支持发布到多个平台作为 Bot 能力使用。 3. 社区和支持:Dify 作为开源项目有活跃社区,开发者可参与共创共建;Coze 可能更多依赖官方更新和支持,社区参与和开源协作程度可能不如 Dify。
2024-12-31
国内主流AI辅助编程工具,比较优缺点
以下是国内主流的 AI 辅助编程工具及其优缺点: GitHub Copilot: 优点:由全球最大的程序员社区和代码托管平台 GitHub 联合 OpenAI 和微软 Azure 团队推出,支持多种语言和 IDE,能为程序员快速提供代码建议,帮助开发者更快、更少地编写代码。 缺点:暂未明确。 通义灵码: 优点:阿里巴巴团队推出,基于通义大模型,提供行级/函数级实时续写、自然语言生成代码、单元测试生成、代码注释生成、代码解释、研发智能问答、异常报错排查等能力。 缺点:暂未明确。 CodeWhisperer: 优点:亚马逊 AWS 团队推出,由机器学习技术驱动,可为开发人员实时提供代码建议。 缺点:暂未明确。 CodeGeeX: 优点:智谱 AI 推出的开源免费 AI 编程助手,基于 130 亿参数的预训练大模型,可快速生成代码,提升开发效率。 缺点:暂未明确。 Cody: 优点:代码搜索平台 Sourcegraph 推出,借助 Sourcegraph 强大的代码语义索引和分析能力,了解开发者的整个代码库,不止是代码片段。 缺点:暂未明确。 CodeFuse: 优点:蚂蚁集团支付宝团队为国内开发者提供智能研发服务的免费 AI 代码助手,基于蚂蚁集团自研的基础大模型进行微调的代码大模型。 缺点:暂未明确。 Codeium: 优点:由 AI 驱动的编程助手工具,通过提供代码建议、重构提示和代码解释来帮助软件开发人员,提高编程效率和准确性。 缺点:暂未明确。 需要注意的是,每个工具的功能和适用场景可能会有所不同,您可以根据自己的需求来选择最适合您的工具。更多辅助编程 AI 产品,还可以查看这里:https://www.waytoagi.com/category/65 。 此外,Cursor 作为一款 AI 编程助手,具有以下核心功能和优势: 核心功能: 全语言支持,包括但不限于 Python、JavaScript、Java、C++、Go 和 Rust 等。 能够快速构建完整的项目框架。 在 IDE 环境中实时提供代码建议、自动补全和错误修正等功能。 支持多项目管理。 能够理解和分析技术文档,并基于文档内容生成相应的代码实现。 优势: 开发效率显著提升,能在短时间内完成功能性演示项目。 降低入门门槛,加速初学者学习过程。 跨语言开发支持,方便开发者切换语言。 减少重复性工作,让开发者集中精力于创造性任务。 实时学习新技术,更新知识库。
2024-12-30
ChatGPT除了优缺点,还有哪些特点
ChatGPT 具有以下特点: 普通版: 基于 GPT3.5 架构,能生成自然语言文本,包括对话、文章、翻译等。 有数亿参数和广泛语言知识,能提供高质量自然语言处理服务。 支持多种语言,可对输入文本进行翻译。 能处理问答、自动文本摘要、对话生成等各类任务。 可通过 API 接口调用,方便集成。 Plus 版: 是普通版的升级版,增加新功能和特性,提升自然语言处理质量和效率。 拥有更多参数,能更好理解输入文本上下文和语境。 采用更先进模型架构和算法,提高生成文本准确性和连贯性。 支持更多语言,翻译效果更好。 能处理更复杂任务,如自动文本摘要、情感分析、语义理解等。 支持更丰富 API 接口,方便集成到各种应用中。 其他方面: 会存在一本正经胡说八道、高度依赖数据且不受约束的情况,但可通过提示词技巧减少发生概率。 对数据依赖程度高,其参数和学习材料规模不断增大。 没有人类的法律和道德观念。 能够生成各种流程图、时序图等,可采用语法渲染成图形的方式,优点是只用关注逻辑、文本即图形且方便嵌入 markdown 文件、具有多样性,缺点是有点抽象。
2024-12-03