知识图谱是一种揭示实体之间关系的语义网络,能够对现实世界的事物及其相互关系进行形式化描述。它于 2012 年 5 月 17 日由 Google 正式提出,初衷是提高搜索引擎的能力,增强用户的搜索质量和体验,实现从网页链接到概念链接的转变,支持主题检索和语义检索。
知识图谱的关键技术包括:
此外,smartBot 存在两种典型的应用场景:
在企业中建构人工智能的主要技术包括非监督学习(最著名的是聚类)、迁移学习(任务 A 中学习的内容可用于帮助完成任务 B)、强化学习(根据输出好坏给予奖励或惩罚)、生成对抗网络(由生成器和判别器构成,不断训练和竞争以生成真实数据)。知识图谱在搜索时可展示相关信息,如人物的生日、年纪等,酒店知识图谱能包含大量信息方便人们查找。
1.知识抽取:通过自动化的技术抽取出可用的知识单元实体抽取:命名实体识别(Named Entity Recognition,NER)从数据源中自动识别命名实体;关系抽取(Relation Extraction):从数据源中提取实体之间的关联关系,形成网状的知识结构;属性抽取:从数据源中采集特定实体的属性信息。2.知识表示属性图三元组3.知识融合:在同一框架规范下进行异构数据整合、消歧、加工、推理验证、更新等,达到数据、信息、方法、经验等知识的融合,形成高质量知识库实体对齐(Entity Alignment):消除异构数据中的实体冲突、指向不明等不一致性问题;知识加工:对知识统一管理,形成大规模的知识体系本体构建:以形式化方式明确定义概念之间的联系;质量评估:计算知识的置信度,提高知识的质量。知识更新:不断迭代更新,扩展现有知识,增加新的知识4.知识推理:在已有的知识库基础上挖掘隐含的知识
1.smartBot辅助使用者(用户),对某个行业/领域/问题,进行深度解读和分析,并建立系统性的认知过程。2.smartBot根据预设流程,自动化形成,对某个专业方向/领域/行业,形成系统化知识图谱。[heading1]辅助建立系统性认知[heading1]💡参考为了借助Prompt,完成复杂的业务流,参考了下面的资料[content]它借助json数据结构,对流程、数据进行规范:但是我构建Prompt,并没有用代码的逻辑,完全用自然语言进行描述。AI知识图谱应用-功能结构Prompt
非监督学习:非监督学习最著名的就是聚类。非监督学习并不需要准确告诉AI系统需要输出什么。只是需要给出大量数据,然后让AI从中找出有趣的信息。迁移学习:任务A中学习的内容,可以用于帮助完成任务B。许多计算机视觉实际是使用了迁移学习。强化学习:当输出好时强化。输出差时惩罚。使用“奖励信号”来告诉AI什么时候做的好或差,AI会自动学习最大化奖励。做得好时,给一个正数权重,做得差时,给一个负数权重。缺点是需要大量的数据。生成对抗网络:生成对抗网络是一种深度学习模型,由两个神经网络构成:生成器和判别器。生成器负责生成虚拟数据,判别器则负责判断这些数据是真实数据还是虚拟数据。两个网络不断反复训练和竞争,从而不断提高生成器生成真实数据的能力,直到生成的数据与真实数据无法区分。GAN可以用于图像、声音、文本等各种类型的数据生成和合成,被广泛应用于计算机视觉、自然语言处理等领域。知识图谱:在搜索时,展示知识图谱。这些信息是从知识图谱中产生的,意味着列出这些人和与其相关的关键信息,如生日,年纪等。酒店知识图谱可能包含大量信息,让人们在查地图时,可以快速找到准确信息。