Navigate to WaytoAGI Wiki →
Home/question.detail.breadcrumb.questionList/question.detail.breadcrumb.questionDetail

我计划编写一本关于生成式人工智能的书籍,但是在开始前,我需要确定一个合适的大纲框架来组织我的思路。这个框架应该包括那些部分,以及如何将各个部分连接起来,以便读者能够理解掌握AIGC的概念和应用

Answer

以下是为您编写关于生成式人工智能书籍提供的大纲框架建议:

一、引言 介绍编写本书的目的和背景,引导读者进入生成式人工智能的世界。

二、基础概念

  1. 什么是生成式人工智能(AIGC)
    • 定义和特点
    • 与传统人工智能的区别
  2. 相关技术名词
    • AI(人工智能)
    • 机器学习(包括监督学习、无监督学习、强化学习)
    • 深度学习(神经网络、神经元)
    • 生成式 AI(可生成文本、图片、音频、视频等内容形式)
    • LLM(大语言模型)

三、AIGC 的应用领域

  1. 文字生成(如使用大型语言模型生成文章、故事、对话等)
  2. 图像生成(如使用 Stable Diffusion、DALL-E 等模型生成艺术作品、照片等)
  3. 视频生成(如使用 Runway、KLING 等模型生成动画、短视频等)

四、AIGC 与其他内容生成方式的关系

  1. AIGC 与 UGC(用户生成内容)
    • 区别与联系
    • 各自的优势和适用场景
  2. AIGC 与 PGC(专业生成内容)
    • 区别与联系
    • 相互的影响和融合

五、技术原理

  1. Transformer 模型
    • 自注意力机制
    • 处理序列数据的优势
  2. 技术里程碑(如谷歌团队发表的《Attention is All You Need》论文)

六、实际案例分析 展示不同领域中成功的 AIGC 应用案例,分析其实现过程和效果。

七、挑战与展望

  1. 面临的挑战(如数据隐私、伦理问题等)
  2. 未来发展趋势和前景

八、结论 总结全书重点内容,对 AIGC 的未来发展进行展望。

各个部分之间可以通过逻辑递进、案例引用、对比分析等方式进行连接,使读者能够逐步深入理解掌握 AIGC 的概念和应用。

Content generated by AI large model, please carefully verify (powered by aily)

References

十七问解读生成式人工智能

AIGC(人工智能生成内容)是一种利用人工智能技术生成各种类型内容的应用方式。这种技术能够通过机器学习和深度学习算法,根据输入的数据和指令生成符合特定要求的内容。AIGC在内容创作、广告、媒体等领域有着广泛的应用。1.文字生成:使用大型语言模型(如GPT系列模型)生成文章、故事、对话等内容。2.图像生成:使用Stable Diffusion、DALL-E等模型生成艺术作品、照片等。3.视频生成:使用Runway、KLING等模型生成动画、短视频等。[heading1]问题二、AIGC、UGC、PGC的关系是什么?[content]AIGC、UGC和PGC都是内容生成的不同方式,这三种内容生成方式的主要区别在于内容的创作者和生成方式。1.AIGC(AI-Generated Content):由人工智能生成的内容。AI通过学习大量的数据,能够自动生成文本、图像、视频等内容。AIGC的优势在于可以快速、大规模地生成内容,适用于需要大量内容的场景,如自动化新闻、广告创作等。2.UGC(User-Generated Content):由用户生成的内容。用户通过社交媒体、博客、论坛等平台发布自己的内容,如文章、评论、照片、视频等。UGC的优势在于内容丰富多样,能够反映用户的真实想法和创意,适用于社交媒体、社区论坛等互动性强的平台。3.PGC(Professionally-Generated Content):由专业人士或机构生成的内容。专业团队或机构根据特定的标准和流程创作高质量的内容,如新闻报道、影视作品、专业文章等。PGC的优势在于内容质量高、专业性强,适用于新闻媒体、专业网站等需要高质量内容的平台。

【AI学习笔记】小白如何理解技术原理与建立框架(通俗易懂内容推荐)

[title]【AI学习笔记】小白如何理解技术原理与建立框架(通俗易懂内容推荐)一、视频一主要回答了什么是AI大模型,原理是什么。1、概念:生成式AI生成的内容,叫做AIGC2、概念与关系:相关技术名词1)AI——人工智能2)机器学习——电脑找规律学习,包括监督学习、无监督学习、强化学习。3)监督学习——有标签的训练数据,算法的目标是学习输入和输出之间的映射关系。包括分类和回归。4)无监督学习——学习的数据没有标签,算法自主发现规律。经典任务包括聚类,比如拿一堆新闻文章,让模型根据主题或内容特征分成具有相似特征的组。5)强化学习——从反馈里学习,最大化奖励或最小化损失;类似训小狗。6)深度学习——一种方法,参照人脑有神经网络和神经元(因为有很多层所以叫深度)。神经网络可以用于监督学习、无监督学习、强化学习。7)生成式AI——可以生成文本、图片、音频、视频等内容形式8)LLM——大语言模型。对于生成式AI,其中生成图像的扩散模型就不是大语言模型;对于大语言模型,生成只是其中一个处理任务,比如谷歌的BERT模型,可用于语义理解(不擅长文本生成),如上下文理解、情感分析、文本分类;3、技术里程碑——2017年6月,谷歌团队发表论文《Attention is All You Need》。这篇论文首次提出了Transformer模型,它完全基于自注意力机制(Self-Attention)来处理序列数据,而不需要依赖于循环神经网络(RNN)或卷积神经网络(CNN)。GPT含义:Transformer是关键。Transformer比RNN更适合处理文本的长距离依赖性。

【AI学习笔记】小白如何理解技术原理与建立框架(通俗易懂内容推荐)

[title]【AI学习笔记】小白如何理解技术原理与建立框架(通俗易懂内容推荐)一、视频一主要回答了什么是AI大模型,原理是什么。1、概念:生成式AI生成的内容,叫做AIGC2、概念与关系:相关技术名词1)AI——人工智能2)机器学习——电脑找规律学习,包括监督学习、无监督学习、强化学习。3)监督学习——有标签的训练数据,算法的目标是学习输入和输出之间的映射关系。包括分类和回归。4)无监督学习——学习的数据没有标签,算法自主发现规律。经典任务包括聚类,比如拿一堆新闻文章,让模型根据主题或内容特征分成具有相似特征的组。5)强化学习——从反馈里学习,最大化奖励或最小化损失;类似训小狗。6)深度学习——一种方法,参照人脑有神经网络和神经元(因为有很多层所以叫深度)。神经网络可以用于监督学习、无监督学习、强化学习。7)生成式AI——可以生成文本、图片、音频、视频等内容形式8)LLM——大语言模型。对于生成式AI,其中生成图像的扩散模型就不是大语言模型;对于大语言模型,生成只是其中一个处理任务,比如谷歌的BERT模型,可用于语义理解(不擅长文本生成),如上下文理解、情感分析、文本分类;3、技术里程碑——2017年6月,谷歌团队发表论文《Attention is All You Need》。这篇论文首次提出了Transformer模型,它完全基于自注意力机制(Self-Attention)来处理序列数据,而不需要依赖于循环神经网络(RNN)或卷积神经网络(CNN)。GPT含义:Transformer是关键。Transformer比RNN更适合处理文本的长距离依赖性。

Others are asking
如何利用 AIGC 技术实现游戏产业的生产力革命,请结合相关技术的原理和框架图进行阐述
利用 AIGC 技术实现游戏产业的生产力革命主要体现在以下几个方面: 1. 降低开发成本:AIGC 技术能够极大程度地减少游戏开发过程中的人力、物力和时间投入。 2. 缩减制作周期:加快游戏的制作速度,使游戏能够更快地面向市场。 3. 提升游戏质量:例如生成新的高质量游戏内容,如地图、角色和场景,改进游戏的图像和声音效果等。 4. 带来新的交互体验:为玩家提供更加丰富和独特的游戏体验。 游戏人工智能技术的未来发展方向还包括: 1. 探索将游戏环境中的成果迁移至现实世界:电子游戏作为人工智能算法的测试场,为人工智能模型的构建与训练提供了理想化的场所,但将游戏中的技术推广到现实世界应用仍面临诸多挑战,需要进一步研究和发展。 2. 为通用人工智能的孵化给予帮助:经多个复杂游戏训练后的“玩游戏”的人工智能体,将为通用人工智能的发展提供支持。 随着游戏中生成式人工智能革命的进展,它将彻底重塑用户生成内容(UGC),创造一个任何人都可以构建游戏的世界,并将游戏市场扩大到超出许多人的想象。在未来几年,深厚的技术知识或艺术掌握将不再是开发游戏所需的基本技能,创作者只会受到他们的精力、创造力和想象力的限制。生成式人工智能将通过使游戏创作民主化来改变和颠覆 UGC 游戏领域,让数百万人能够制作他们的第一款游戏,新一代游戏开发者将释放出一波游戏设计创造力浪潮,从而永远改变游戏行业。
2024-12-24
costar 框架
COSTAR 框架是一个获奖的提示词框架,由 Sheila Teo 开发。作者在新加坡首届 GPT4 Prompt Engineering 大赛中使用该框架并获得冠军。此框架由新加坡政府科技署(GovTech)组织的大赛中产生,汇聚了超过 400 位优秀的参与者。 COSTAR 框架涵盖以下要素: 1. Context(上下文):提供必要的背景信息,帮助大型语言模型(LLM)理解对话或请求的环境和条件。没有足够的上下文,LLM 可能会误解问题或给出不相关的信息。明确的上下文有助于确保 LLM 的回答既准确又相关。例如,如果文章是为一个特定的行业会议撰写,那么上下文中应该包含会议的主题、参与者的背景信息以及任何相关的行业趋势。 2. Objective(目标):明确说明希望从 LLM 那里得到的具体结果或行动。清晰的目标可以帮助 LLM 集中精力解决问题,并减少无关的回答。例如,如果目标是撰写一篇文章,那么应具体说明文章的目的(比如介绍新技术、分析市场趋势等)以及期望达到的效果(比如提高品牌知名度、激发行业讨论等)。 3. Style(风格):明确您期望的写作风格。您可以指定一个特定的著名人物或某个行业专家的写作风格,如商业分析师或 CEO。这将指导 LLM 以一种符合您需求的方式和词汇选择进行回应。 4. Tone(语气):设置回应的情感调。设定适当的语气,确保 LLM 的回应能够与预期的情感或情绪背景相协调。可能的语气包括正式、幽默、富有同情心等。 5. Audience(受众):识别目标受众。针对特定受众定制 LLM 的回应,无论是领域内的专家、初学者还是儿童,都能确保内容在特定上下文中适当且容易理解。 6. Response(回复):规定输出的格式。确定输出格式是为了确保 LLM 按照您的具体需求进行输出,便于执行下游任务。常见的格式包括列表、JSON 格式的数据、专业报告等。对于大部分需要程序化处理 LLM 输出的应用来说,JSON 格式是理想的选择。 在使用大语言模型时,有效的提示构建至关重要。COSTAR 框架,由新加坡政府科技局数据科学与 AI 团队创立,是一个实用的提示构建工具。它考虑了所有影响大语言模型响应效果和相关性的关键因素,帮助您获得更优的反馈。 应用 COSTAR 框架时: 1. (C)上下文:为任务提供背景信息。通过为大语言模型(LLM)提供详细的背景信息,可以帮助它精确理解讨论的具体场景,确保提供的反馈具有相关性。 2. (O)目标:明确您要求大语言模型完成的任务。清晰地界定任务目标,可以使大语言模型更专注地调整其回应,以实现这一具体目标。 3. (S)风格:明确您期望的写作风格。您可以指定一个特定的著名人物或某个行业专家的写作风格,如商业分析师或 CEO。 4. (T)语气:设置回应的情感调。设定适当的语气,确保大语言模型的回应能够与预期的情感或情绪背景相协调。 5. (A)受众:识别目标受众。针对特定受众定制大语言模型的回应,无论是领域内的专家、初学者还是儿童,都能确保内容在特定上下文中适当且容易理解。 6. (R)响应:规定输出的格式。确定输出格式是为了确保大语言模型按照您的具体需求进行输出,便于执行下游任务。常见的格式包括列表、JSON 格式的数据、专业报告等。对于大部分需要程序化处理大语言模型输出的应用来说,JSON 格式是理想的选择。
2024-12-23
输出12个精选prompt框架
以下是 12 种精选的 Prompt 框架: 1. Key Result(关键结果):明确想要的具体效果,通过试验并调整。包括改进输入、改进答案和重新生成等方法。 2. Evolve(试验并改进):三种改进方法自由组合,如从答案不足之处改进背景、目标与关键结果,在后续对话中指正 ChatGPT 答案缺点,或在 Prompt 不变情况下多次生成结果优中选优。 3. CONTEXT(上下文背景):为对话设定舞台。 4. OBJECTIVE(目的):描述目标。 5. ACTION(行动):解释所需的动作。 6. SCENARIO(方案):描述场景。 7. TASK(任务):描述任务。 8. ICIO 框架:相关链接 9. CRISPE 框架:相关链接 10. BROKE 框架:作者陈财猫,相关链接 11. PATFU 泡芙提示词框架:作者口袋君,包括清晰表述需要解决的问题、问题所在领域及需要扮演的角色、解决问题需要执行的具体任务。 12. Format(格式):详细定义输出的格式和限制条件,以及记录提示词版本并根据输出结果对提示词迭代。
2024-12-16
Prompts提示词有哪些写作框架?
以下是一些常见的 Prompts 提示词写作框架: 1. 情境:先描述所处的情境,明确要完成的任务,阐述采取的行动,最后说明期望得到的结果。 2. 假设情景:鼓励探讨假设性场景,例如“假设全球变暖持续恶化,我们需要采取哪些措施应对?” 3. 数据:鼓励使用统计数据或数据支持主张,比如“在关于电动汽车的文章中提供销售数据和环境影响数据。” 4. 个性化:根据用户偏好或特点要求个性化,像“请根据用户对喜剧电影的喜好推荐几部好看的电影。” 5. 语气:指定所需语气,如正式、随意、信息性、说服性,例如“请用正式语气编写一篇关于气候变化的文章。” 6. 格式:定义格式或结构,如论文、要点、大纲、对话,比如“请为我提供一个关于健康饮食的要点清单。” 7. 限制:指定约束条件,如字数或字符数限制,例如“请提供一个关于太阳能的 100 字简介。” 8. 引用:要求包含引用或来源以支持信息,比如“请在关于全球变暖的文章中引用权威研究。” 9. 语言:如果与提示不同,请指明回应的语言,例如“请用法语回答关于巴黎旅游景点的问题。” 10. 反驳:要求解决潜在的反驳论点,比如“针对抵制疫苗接种的观点提出反驳。” 11. 术语:指定要使用或避免的行业特定或技术术语,例如“请用通俗易懂的语言解释区块链技术。” 您可以根据具体需求选择适合的框架来编写提示词。如果您觉得这些框架过于复杂,还可以结合自己的生活或工作场景,想一个能帮助简单自动化的场景,比如自动给班级里的每个孩子起个昵称、自动排版微信群经常发的运营小文案、自动帮您安排周一到周日的减脂餐、帮您列一个清晰的学习计划等。
2024-12-09
生成文章摘要及框架的提示词
以下是关于生成文章摘要及框架的提示词相关内容: 办公通用场景: 总结助手:请帮我总结以下文章,将以下文本总结为 100 个单词,使其易于阅读和理解。摘要应简明扼要,并抓住文本的要点。避免使用复杂的句子结构或技术术语。 周报生成器:根据日常工作内容,提取要点并适当扩充,以生成周报。 相关链接: Chain of Density:为给定文章生成越来越精简且信息丰富的摘要,重复两个步骤 5 次。步骤 1 找出 1 3 项先前摘要中遗漏的信息实体“informative entity”,步骤 2 生成新的更紧凑的摘要,涵盖先前所有信息实体及缺失实体。回复格式为 JSON,包含“Missing_Entities”和“Denser_Summary”两个键值。 利用 AI 打造爆款公众号文章:关键在于提供清晰且具指导性的提示词,好的提示词能让 AI 更准确理解需求并生成符合预期的内容。可从基础提示词进阶到更详细、具创意的提示词,为 AI 设定文章语气、风格和重点,最终产出内容可能需微调以符合预期和公众号风格。
2024-12-05
智能体是什么?设计框架及关键技术是什么?如何从通用大模型搭建一款智能体
智能体是建立在大模型之上的具有特定功能的系统。 其特点包括: 1. 强大的学习能力:能通过大量数据学习,理解和处理语言、图像等多种信息。 2. 灵活性:适应不同任务和环境。 3. 泛化能力:将学到的知识泛化到新情境,解决未见过的类似问题。 智能体的应用领域广泛,如: 1. 自动驾驶:感知周围环境并做出驾驶决策。 2. 家居自动化:根据环境和用户行为自动调节设备。 3. 游戏 AI:游戏中的对手角色和智能行为系统。 4. 金融交易:根据市场数据做出交易决策。 5. 客服聊天机器人:通过自然语言处理提供自动化客户支持。 6. 机器人:各类机器人中的智能控制系统。 设计和实现一个智能体通常涉及以下步骤: 1. 定义目标:明确需要实现的目标或任务。 2. 感知系统:设计传感器系统采集环境数据。 3. 决策机制:定义决策算法,根据感知数据和目标做出决策。 4. 行动系统:设计执行器或输出设备执行决策。 5. 学习与优化:若为学习型智能体,设计学习算法以改进。 从通用大模型搭建一款智能体,可参考以下流程: 本智能体的实现包含 3 个工作流和 6 个图像流,整体包含 171 个节点。采用单 Agent 管理多工作流策略,流程包括: 1. 信息聚合与数据挖掘:通过高度集成的数据采集机制,全面收集产品关键信息。 2. 卖点提炼与优化:运用先进的大模型分析信息,提炼具有市场竞争力和独特性的卖点。 3. 买点转化与策略应用:将卖点转化为消费者视角的买点,增强产品吸引力。 4. 视觉化信息呈现:设计直观且具有冲击力的卡片展示,确保信息传达的有效性和视觉吸引力。 5. 文案与脚本调整:根据目标受众偏好和媒体渠道,动态调整文案或脚本,实现内容的最佳适配。 6. 流程结果存储与分析:将处理结果系统化地存储到飞书,以供未来策略优化和决策支持。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2024-12-04
有没有这些生成式人工智能的url
以下是一些与生成式人工智能相关的 URL: 生成式人工智能简介的视频学习地址: https://youtu.be/G2fqAlgmoPo 中文版本推荐: 生成式人工智能如何改变创意工作相关的框架:NVIDIA 的 2024 年人工智能现状报告链接: 英文解读链接:
2024-12-24
现在市面上面有什么好用的生成式人工智能吗?
目前市面上有许多好用的生成式人工智能,以下为您列举部分: 在文本和图像生成方面,有 OpenAI 的 GPT3(用于文本)、DALLE2(用于图像)、Whisper(用于语音),以及 Midjourney(在艺术竞赛中表现出色)等。 在创建可信角色方面,有 Charisma.ai、Convai.com、Inworld.ai 等,它们旨在为具有情感和自主权的 3D 角色提供动力,并提供工具以便创作者给角色设定目标。 一体化平台方面,Runwayml.com 较为成功,它在一个单一的软件包中汇集了一系列广泛的创作者工具。 在企业应用方面,Menlo Ventures 投资组合公司中的 Sana(企业搜索)、Eve(法律研究副驾驶)和 Typeface(内容生成 AI)等都是早期突破性的代表。 此外,还有 Google 的 BERT 和 LaMDA、Facebook 的 OPT175B 和 BlenderBot 等。同时,有数百公司正在构建通用聊天机器人,如 Replika 和 Anima 等。但需要注意的是,这些模型的训练通常需要大量数据和计算能力,大多数公司难以从头开始训练自己的此类模型。
2024-12-24
生成式人工智能或者专门的书籍教程是什么意思?这种人工智能有什么用?现在市面上有免费的吗?要是没有免费的我去翻外网也可以
生成式人工智能是一种能够创建新内容的人工智能技术。以下是关于生成式人工智能的一些详细信息: 课程方面: 台湾大学李宏毅教授的生成式 AI 课程,主要介绍了其基本概念、发展历程、技术架构和应用场景等内容。课程共 12 讲,每讲约 2 小时。通过学习该课程,可掌握基本概念和常见技术,能使用相关框架搭建简单模型,了解发展现状和未来趋势。学习内容包括: 1. 什么是生成式 AI:定义和分类,与判别式 AI 的区别,应用领域。 2. 生成式模型:基本结构和训练方法,评估指标,常见模型及其优缺点。 3. 生成式对话:基本概念和应用场景,系统架构和关键技术,基于模型的对话生成方法。 4. 预训练语言模型:发展历程和关键技术,优缺点,在生成式 AI 中的应用。 5. 生成式 AI 的挑战与展望:面临的挑战和解决方法,未来发展趋势和研究方向。 改变创意工作方面: 生成式人工智能在创意工作中发挥着重要作用。例如,生成模型经过训练后,可针对特定内容领域进行“微调”,催生了用于生物医学、法律、法语等的专用模型,以及适用于不同目的的 GPT3 等。NVIDIA 的 BioNeMo 是用于在超级计算规模上训练、构建和部署大型语言模型的框架,适用于生成化学、蛋白质组学和 DNA/RNA 等内容。但使用生成式人工智能仍需人工参与,人类要输入提示让其创建内容,创造性的提示会产生创造性的输出,“即时工程师”可能成为新职业。该领域已出现 DALLE 2 图像提示书和提示市场。 学习资源: 1. 教材:《生成式 AI 导论 2024》,李宏毅。 2. 参考书籍:《深度学习》,伊恩·古德费洛等。 3. 在线课程:李宏毅的生成式 AI 课程。 4. 开源项目:OpenAI GPT3、字节跳动的云雀等。 学习方法:根据课程内容和资源,制定适合自己的学习计划,多实践、多思考。 目前市面上有部分免费的生成式人工智能资源,但也有收费的。需要注意的是,未经许可翻外网可能存在法律风险,请您谨慎选择。
2024-12-24
如何掌握生成式AI
以下是关于掌握生成式 AI 的一些建议: 课程学习: 可以学习台湾大学李宏毅教授的生成式 AI 课程,该课程主要介绍了生成式 AI 的基本概念、发展历程、技术架构和应用场景等内容,共分为 12 讲,每讲约 2 小时。 通过学习本课程,能够掌握生成式 AI 的基本概念和常见技术,能够使用相关框架搭建简单的生成式模型,了解生成式 AI 的发展现状和未来趋势。 学习内容: 了解什么是生成式 AI,包括其定义、分类,以及与判别式 AI 的区别和应用领域。 学习生成式模型的基本结构、训练方法、评估指标,以及常见模型的优缺点。 掌握生成式对话的基本概念、应用场景、系统架构和关键技术,以及基于生成式模型的对话生成方法。 熟悉预训练语言模型的发展历程、关键技术、优缺点及其在生成式 AI 中的应用。 知晓生成式 AI 面临的挑战和解决方法,以及未来发展趋势和研究方向。 学习资源: 教材:《生成式 AI 导论 2024》,李宏毅。 参考书籍:《深度学习》,伊恩·古德费洛等。 在线课程:李宏毅的生成式 AI 课程。 开源项目:OpenAI GPT3、字节跳动的云雀等。 学习方法: 了解 AI 基本概念:首先,建议阅读「」部分,熟悉 AI 的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。浏览入门文章,这些文章通常会介绍 AI 的历史、当前的应用和未来的发展趋势。 开始 AI 学习之旅:在「」中,你将找到一系列为初学者设计的课程。这些课程将引导你了解生成式 AI 等基础知识,特别推荐李宏毅老师的课程。通过在线教育平台(如 Coursera、edX、Udacity)上的课程,你可以按照自己的节奏学习,并有机会获得证书。 选择感兴趣的模块深入学习:AI 领域广泛(比如图像、音乐、视频等),可以根据自己的兴趣选择特定的模块进行深入学习。建议一定要掌握提示词的技巧,它上手容易且很有用。 实践和尝试:理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出作品。在知识库提供了很多大家实践后的作品、文章分享。 体验 AI 产品:与现有的 AI 产品进行互动是学习 AI 的另一种有效方式。尝试使用如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。通过与这些 AI 产品的对话,可以获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。
2024-12-18
生成式AI
生成式 AI 是一种能够生成新内容的人工智能技术,其生成的内容可以是多模态的,包括文本(如文章、报告、诗歌等)、图像(如绘画、设计图、合成照片等)、音频(如音乐、语音、环境声音等)、视频(如电影剪辑、教程、仿真等)。 生成式 AI 和 AIGC 的关系:Generative AI 是“生成式人工智能”的正式称呼,AIGC 指的是由人工智能生成的内容的创作方式,实际上是 Generative AI 的应用结果。 ChatGPT 方面,从 OpenAI 的官网可知,2022 年宣发时称其为一种模型,官网帮助页面称其为一种服务,目前我们所熟知的 ChatGPT 逐渐演变成了一种可以兼容多种 GPT 模型的聊天应用(服务),且依赖 GPT 系列模型来运转。 在艺术形态方面,以 Midjourney 等工具为代表,通过背后的人工智能模型,用户根据提供的文本描述可生成高度相关和创造性的图像。这种通过文本命令获得图像的方式叫做 Prompting,是一种全新形态的人机交互。其核心机制涉及数据(包括获取世界上万事万物的图像存档、创建特定数据集等)、映射(使用算法识别和提取图片中的关键视觉特征)和扩散(利用学习到的数据和视觉特征创造新的视觉表达形式)。 生成式 AI 可以应用于广泛的场景,例如文档摘要、信息提取、代码生成、营销活动创建、虚拟协助、呼叫中心机器人等。 其工作方式包括训练阶段(从大量现有内容中学习,得到基础模型)和应用阶段(基础模型可生成内容并解决一般性问题,还可使用特定领域新数据集进一步训练以解决特定问题)。 Google Cloud 提供了相关工具,如 Vertex AI(端到端机器学习开发平台)、Generative AI Studio(允许快速制作原型和自定义生成式 AI 模型)、Model Garden(提供 MLOps 工具,用于自动化机器学习管道)。
2024-12-18
免费的生成式 人工智能
以下是为您提供的关于免费的生成式人工智能的相关信息: 免费试用和折扣: 从 12 月 16 日起向奥德赛计划注册用户开放,已筹集超过 75 万美元的免费试用机会,助力开启人工智能电影制作之旅。 图像与视频生成平台: Civitai:是开源生成式人工智能的家园,使命是使工具和资源普及化。提供模型托管、图像/视频生成和模型训练服务,已发展成拥有 650 万月活跃成员的社区。 KLING AI:下一代一站式人工智能创作平台,拥有强大的人工智能图像和视频生成能力,通过提示和图像激发创造力,具有先进的文本理解能力、精细的细节处理和多种风格。提供积分试用套餐和高级功能抢先体验。 Viggle:允许用户通过 3D 视频基础模型 JST 指定角色的动作。创作者、品牌和电影制作人可轻松替换角色、复制动作并将想法变为现实。前 5000 名注册用户可享受 1 个月的 Viggle 专业计划。 Hailuo Video by MiniMax:强大的人工智能驱动的视频生成引擎。从将简单文本转换为生动、专业品质的视频,到将静态图像转换为动态视觉故事。3 天内为用户提供 1000 积分。 Hedra:开创性的视频基础模型公司,正在构建能够实现控制、情感和创造性智能的全栈创作工作室。前 5000 名注册用户可享受 1 个月的 Hedra 基本计划。 生成式人工智能的相关知识: 生成式人工智能是可以产生各种类型内容的人工智能,包括文本、图像、音频和合成数据。 它需要在流程的开始和结束时进行人工参与,人类需向生成模型输入提示才能让其创建内容。 生成式人工智能输出自然语言、图像或音频,而非生成式人工智能输出数字或类别。 生成式人工智能模型使用统计模型预测预期的响应,并根据训练数据的基础结构生成新的内容。 生成式人工智能的力量来自于使用了 Transformers 技术,但也可能产生幻觉。 学习资源: 视频学习地址:https://youtu.be/G2fqAlgmoPo 中文版本推荐:和超正经学术君
2024-12-17
AIGC的技术原理
AIGC(Artificial Intelligence Generated Content,人工智能生成内容)的技术原理如下: 生成式人工智能(GenAI):基于深度学习技术和机器学习算法,从已有数据中学习并生成新的数据或内容。通过大规模数据集训练深度神经网络模型,学习各种数据的规律和特征,实现对输入数据的分析、理解和生成。典型的 GenAI 包括 OpenAI 推出的语言模型 ChatGPT、GPT4、图像模型 DALLE 以及百度推出的文心一言、阿里云推出的通义千问等。 机器学习:让机器自动从资料中找到公式。 深度学习:一种更厉害的手段,类神经网络,具有非常大量参数的函数。 大语言模型:是一类具有大量参数的“深度学习”模型。 AIGC 工具通常以自然语言处理为基础,分析大型文本数据集,并学习如何生成风格和语气相似的新内容,从而能够生成包括文本、图像、音频、视频和三维模型等多种形式的内容。
2024-12-24
AIGC是什么?
AIGC 即 AI generated content,又称为生成式 AI,意为人工智能生成内容。 AIGC 能够通过机器学习和深度学习算法,根据输入的数据和指令生成符合特定要求的内容,在内容创作、广告、媒体等领域有着广泛的应用。 其应用包括但不限于以下方面: 1. 文字生成:使用大型语言模型(如 GPT 系列模型)生成文章、故事、对话等内容。 2. 图像生成:使用 Stable Diffusion、DALLE 等模型生成艺术作品、照片等。 3. 视频生成:使用 Runway、KLING 等模型生成动画、短视频等。 类似的名词缩写还有 UGC(普通用户生产),PGC(专业用户生产)等。能进行 AIGC 的产品项目也很多,能进行 AIGC 的媒介也很多,包括且不限于: 1. 语言文字类:OpenAI 的 GPT,Google 的 Bard,百度的文心一言,还有一种国内大佬下场要做的的 LLM 都是语言类的。 2. 语音声音类:Google 的 WaveNet,微软的 Deep Nerual Network,百度的 DeepSpeech 等,还有合成 AI 孙燕姿大火的开源模型 Sovits。 3. 图片美术类:早期有 GEN 等图片识别/生成技术,去年大热的扩散模型又带火了我们比较熟悉的、生成质量无敌的 Midjourney,先驱者谷歌的 Disco Diffusion,一直在排队测试的 OpenAI 的 Dalle·2,以及 stability ai 和 runaway 共同推出的 Stable Diffusion。 AIGC 强调的是 GC 部分,也就是 decoder 部分。常见的生成算法包括 VAE、GAN、Flow Model 和 Diffusion Model,同时还有 IS(Inception Score)和 FID(Frechet Inception Distance)两种生成图片常见评价指标。
2024-12-24
AIGC提示词工程师怎么考
成为 AIGC 提示词工程师通常需要具备以下条件: 1. 学历要求:本科及以上学历,计算机科学、人工智能、机器学习相关专业背景。 2. 工具熟悉度:熟悉 ChatGPT、Llama、Claude 等 AI 工具的使用及原理,并具有实际应用经验;熟练掌握 ChatGPT、Midjourney 等 AI 工具的使用及原理。 3. 项目经验:负责制定和执行 AI 项目,如 Prompt 设计平台化方法和模板化方法。 4. 技术理解:了解并熟悉 Prompt Engineering,包括常见的 Prompt 优化策略(例如 CoT、Fewshot 等)。 5. 数据分析能力:对数据驱动的决策有深入的理解,能够基于数据分析做出决策。 6. 创新思维:具有创新思维,能够基于业务需求提出并实践 AI first 的解决方案。 7. 行业关注:对 AIGC 领域有深入的理解与实际工作经验,保持对 AI 技术前沿的关注。 8. 编程能力:具备一定的编程和算法研究能力,能应用新的 AI 技术和算法于对话模型生成;具有一定的编程基础,熟练使用 Python、Git 等工具。 在面试过程中,以下方面是加分项: 1. 需求拆解能力/产品需求嗅觉:考验需求拆解、控制 AI 稳定输出理想结果的能力。 2. 懂技术:Prompt 设计离不开有 AIGC 开发经验,懂开发和底层原理才能写出更好的 Prompt。 3. 有参与做过 AIGC 产品应用:例如用 Langchain 等框架去写,解决应用场景及其中的技术细节,包括商业化变现、解决 OpenAI 请求需要科学上网的问题、负载均衡/APIKey 管理等。 4. 想法在用户需求认知前面:面试官给出行业场景(例如美妆),在无提示情况下,能畅享 AI 在该行业上赋能的功能场景,能联想到 To B 或 B2B2C 的场景是加分项。因为用户往往无法感知到 AI 能带来的帮助,需要面试者去了解用户工作流,有种“创造需求”的感觉。 公司在筛选几百份简历后,最终选择的 AIGC 提示词工程师和 AI 训练师,通常是像爱折腾的 00 后,有技术开发背景,对 Prompt 有独特深刻见解的人员。
2024-12-22
我想要一个AIGC 图像审查领域的专家
以下是关于 AIGC 图像审查领域的相关信息: 如何判断一张图片是否 AI 生成: AI 技术自身带来造假难题,可通过一些网站如 ILLUMINARTY(https://app.illuminarty.ai/)对大量图片数据抓取和分析来判断画作属性,但存在测试中真实摄影作品被误判为 AI 作图的情况,这是因为鉴定 AI 的逻辑算法不能像人类一样综合考虑各种不符合逻辑的表现。 从不同角度看鉴别 AIGC 的需求: 技术出身的朋友多出于对 AI 产物底层逻辑的追溯兴趣,关心能否通过数据检测等手段实现鉴别并应用于创造收益。 产业领域的朋友面对 AI 技术冲击,关注其在工作流中的影响,以求应对可能的裁员风险。 法律背景的朋友认为鉴别 AIGC 对未来著作权法律判定有意义,首例 AIGC 侵权案件悬而未决,需判定 AI 作品中智力投入占比。 最近招聘信息:猿印教育招聘 AIGC 图像生成算法工程师/专家,工作地点在北京五道口附近。简历发送至:stephen.wang@yyinedu.com 。岗位职责包括开发针对性图像生成解决方案、负责模型部署和推理性能优化、推动团队技术水平提升等。任职要求为计算机相关专业本科及以上学历,具备扎实计算机基础知识,熟练掌握 Python 语言和主流深度学习框架,对相关理论和方法有深入理解,具有良好的学习、沟通和团队合作能力。
2024-12-22
我的论文aicg率太高了,我如何降低aigc率
以下是一些常用的 AIGC 论文检测网站和工具,以及它们的功能和使用方法,可帮助您降低论文的 AIGC 率: 1. Turnitin: 功能:是广泛使用的学术剽窃检测工具,最近增加了检测 AI 生成内容的功能。 使用方法:用户上传论文,系统自动分析文本并提供详细报告,标示出可能由 AI 生成的部分。 2. Copyscape: 功能:主要用于检测网络上的剽窃行为,虽不是专门的 AIGC 检测工具,但能发现可能被 AI 生成的重复内容。 使用方法:输入文本或上传文档,系统扫描网络以查找相似或重复内容。 3. Grammarly: 功能:提供语法检查和剽窃检测功能,剽窃检测部分可帮助识别可能由 AI 生成的非原创内容。 使用方法:将文本粘贴到 Grammarly 的编辑器中,选择剽窃检测功能,系统提供分析报告。 4. Unicheck: 功能:基于云的剽窃检测工具,适用于教育机构和学术研究,可检测 AI 生成内容的迹象。 使用方法:上传文档或输入文本,系统分析并生成报告,显示潜在的剽窃和 AI 生成内容。 5. : 功能:专门设计用于检测 AI 生成内容,使用先进算法分析文本,识别是否由 GPT3 或其他 AI 模型生成。 使用方法:上传文档或输入文本,系统提供详细报告,包括可能的 AI 生成内容。
2024-12-20
有没有关于健身的人工智能,可以提供适合自己的锻炼计划
以下是一些关于健身的人工智能产品和案例,可为您提供适合自己的锻炼计划: 1. AI 健身是指利用人工智能技术来辅助或改善健身训练和健康管理。它能根据用户的健康状况、身体指标、运动目标和偏好,提供定制化的训练计划和建议。 2. 健身的 AI 工具: Keep:中国最大的健身平台,提供全面的健身解决方案。网址:https://keep.com/ Fiture:由核心 AI 技术打造,集硬件、丰富课程内容、明星教练和社区于一体。网址:https://www.fiture.com/ Fitness AI:利用人工智能进行锻炼,增强力量和速度。网址:https://www.fitnessai.com/ Planfit:健身房家庭训练与 AI 健身计划,AI 教练使用 800 多万条文本数据和 ChatGPT 实时提供指导。网址:https://planfit.ai/ 3. 案例: 马多克斯先生利用 ChatGPT 制定锻炼计划,例如让其总结锻炼笔记并提出建议。 森博斯基女士让 ChatGPT 写无麸质饮食计划。 此外,还有一些其他专门为协助特定任务而设计的 AI 驱动工具,如可提升沟通能力。
2024-12-24
从集团标准化管理、应用赋能、运营定位、迭代提升四个方面展开阐述人工智能赋能连锁药店运营管理的核心竞争力
很抱歉,目前知识库中没有关于从集团标准化管理、应用赋能、运营定位、迭代提升四个方面阐述人工智能赋能连锁药店运营管理核心竞争力的相关内容。但我可以为您提供一个大致的框架思路供您参考: 集团标准化管理方面: 利用人工智能制定统一的药品分类、库存管理和服务流程标准,确保各连锁药店的运营一致性和规范性。 通过智能数据分析,监测各门店对标准的执行情况,及时发现并纠正偏差。 应用赋能方面: 借助人工智能的图像识别技术,实现药品的快速准确盘点和库存监控。 利用智能客服系统,为顾客提供 24 小时不间断的咨询服务,提高服务效率和质量。 运营定位方面: 基于大数据和人工智能算法,分析不同地区、不同消费群体的需求特点,为各连锁药店精准定位目标市场和商品品类。 运用智能营销工具,实现个性化的促销活动推送,提高营销效果和顾客满意度。 迭代提升方面: 利用人工智能收集和分析顾客反馈、市场变化等数据,持续优化运营策略和服务模式。 建立基于人工智能的预测模型,提前洞察市场趋势和顾客需求变化,为连锁药店的发展提供前瞻性指导。 希望以上内容对您有所帮助,您可以根据实际情况进一步细化和完善。
2024-12-24
我能不能用人工智能做一个二手车批发的APP,让车商能在里面自由批发车辆,这个APP要异于常规APP,具备人工智能?
使用人工智能来开发一个二手车批发的 APP 是可行的,但具有一定的挑战性。 首先,从技术角度来看,要实现车商在其中自由批发车辆的功能,需要具备强大的数据库和稳定的网络架构,以确保车辆信息的准确、及时更新和交易的顺利进行。 对于人工智能的应用,可以考虑以下几个方面: 1. 智能推荐:根据车商的浏览历史、交易记录和偏好,为其推荐可能感兴趣的车辆。 2. 价格预测:利用机器学习算法,对二手车的价格进行预测,为车商提供参考。 3. 风险评估:通过分析车辆的历史数据、市场趋势等,评估交易中的风险。 然而,要开发这样一个 APP 也面临一些困难和需要注意的问题: 1. 数据质量和安全性:确保车辆数据的准确性、完整性和安全性,防止数据泄露和滥用。 2. 法律法规:二手车交易涉及众多法律法规,需要确保 APP 的运营符合相关规定。 3. 用户体验:要设计简洁、易用的界面,让车商能够方便地进行操作。 总之,虽然具有挑战性,但如果能够充分利用人工智能技术,并解决好上述问题,开发一个具备人工智能的独特二手车批发 APP 是有可能的。
2024-12-22