Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

我计划编写一本关于生成式人工智能的书籍,但是在开始前,我需要确定一个合适的大纲框架来组织我的思路。这个框架应该包括那些部分,以及如何将各个部分连接起来,以便读者能够理解掌握AIGC的概念和应用

Answer

以下是为您编写关于生成式人工智能书籍提供的大纲框架建议:

一、引言 介绍编写本书的目的和背景,引导读者进入生成式人工智能的世界。

二、基础概念

  1. 什么是生成式人工智能(AIGC)
    • 定义和特点
    • 与传统人工智能的区别
  2. 相关技术名词
    • AI(人工智能)
    • 机器学习(包括监督学习、无监督学习、强化学习)
    • 深度学习(神经网络、神经元)
    • 生成式 AI(可生成文本、图片、音频、视频等内容形式)
    • LLM(大语言模型)

三、AIGC 的应用领域

  1. 文字生成(如使用大型语言模型生成文章、故事、对话等)
  2. 图像生成(如使用 Stable Diffusion、DALL-E 等模型生成艺术作品、照片等)
  3. 视频生成(如使用 Runway、KLING 等模型生成动画、短视频等)

四、AIGC 与其他内容生成方式的关系

  1. AIGC 与 UGC(用户生成内容)
    • 区别与联系
    • 各自的优势和适用场景
  2. AIGC 与 PGC(专业生成内容)
    • 区别与联系
    • 相互的影响和融合

五、技术原理

  1. Transformer 模型
    • 自注意力机制
    • 处理序列数据的优势
  2. 技术里程碑(如谷歌团队发表的《Attention is All You Need》论文)

六、实际案例分析 展示不同领域中成功的 AIGC 应用案例,分析其实现过程和效果。

七、挑战与展望

  1. 面临的挑战(如数据隐私、伦理问题等)
  2. 未来发展趋势和前景

八、结论 总结全书重点内容,对 AIGC 的未来发展进行展望。

各个部分之间可以通过逻辑递进、案例引用、对比分析等方式进行连接,使读者能够逐步深入理解掌握 AIGC 的概念和应用。

Content generated by AI large model, please carefully verify (powered by aily)

References

十七问解读生成式人工智能

AIGC(人工智能生成内容)是一种利用人工智能技术生成各种类型内容的应用方式。这种技术能够通过机器学习和深度学习算法,根据输入的数据和指令生成符合特定要求的内容。AIGC在内容创作、广告、媒体等领域有着广泛的应用。1.文字生成:使用大型语言模型(如GPT系列模型)生成文章、故事、对话等内容。2.图像生成:使用Stable Diffusion、DALL-E等模型生成艺术作品、照片等。3.视频生成:使用Runway、KLING等模型生成动画、短视频等。[heading1]问题二、AIGC、UGC、PGC的关系是什么?[content]AIGC、UGC和PGC都是内容生成的不同方式,这三种内容生成方式的主要区别在于内容的创作者和生成方式。1.AIGC(AI-Generated Content):由人工智能生成的内容。AI通过学习大量的数据,能够自动生成文本、图像、视频等内容。AIGC的优势在于可以快速、大规模地生成内容,适用于需要大量内容的场景,如自动化新闻、广告创作等。2.UGC(User-Generated Content):由用户生成的内容。用户通过社交媒体、博客、论坛等平台发布自己的内容,如文章、评论、照片、视频等。UGC的优势在于内容丰富多样,能够反映用户的真实想法和创意,适用于社交媒体、社区论坛等互动性强的平台。3.PGC(Professionally-Generated Content):由专业人士或机构生成的内容。专业团队或机构根据特定的标准和流程创作高质量的内容,如新闻报道、影视作品、专业文章等。PGC的优势在于内容质量高、专业性强,适用于新闻媒体、专业网站等需要高质量内容的平台。

【AI学习笔记】小白如何理解技术原理与建立框架(通俗易懂内容推荐)

[title]【AI学习笔记】小白如何理解技术原理与建立框架(通俗易懂内容推荐)一、视频一主要回答了什么是AI大模型,原理是什么。1、概念:生成式AI生成的内容,叫做AIGC2、概念与关系:相关技术名词1)AI——人工智能2)机器学习——电脑找规律学习,包括监督学习、无监督学习、强化学习。3)监督学习——有标签的训练数据,算法的目标是学习输入和输出之间的映射关系。包括分类和回归。4)无监督学习——学习的数据没有标签,算法自主发现规律。经典任务包括聚类,比如拿一堆新闻文章,让模型根据主题或内容特征分成具有相似特征的组。5)强化学习——从反馈里学习,最大化奖励或最小化损失;类似训小狗。6)深度学习——一种方法,参照人脑有神经网络和神经元(因为有很多层所以叫深度)。神经网络可以用于监督学习、无监督学习、强化学习。7)生成式AI——可以生成文本、图片、音频、视频等内容形式8)LLM——大语言模型。对于生成式AI,其中生成图像的扩散模型就不是大语言模型;对于大语言模型,生成只是其中一个处理任务,比如谷歌的BERT模型,可用于语义理解(不擅长文本生成),如上下文理解、情感分析、文本分类;3、技术里程碑——2017年6月,谷歌团队发表论文《Attention is All You Need》。这篇论文首次提出了Transformer模型,它完全基于自注意力机制(Self-Attention)来处理序列数据,而不需要依赖于循环神经网络(RNN)或卷积神经网络(CNN)。GPT含义:Transformer是关键。Transformer比RNN更适合处理文本的长距离依赖性。

【AI学习笔记】小白如何理解技术原理与建立框架(通俗易懂内容推荐)

[title]【AI学习笔记】小白如何理解技术原理与建立框架(通俗易懂内容推荐)一、视频一主要回答了什么是AI大模型,原理是什么。1、概念:生成式AI生成的内容,叫做AIGC2、概念与关系:相关技术名词1)AI——人工智能2)机器学习——电脑找规律学习,包括监督学习、无监督学习、强化学习。3)监督学习——有标签的训练数据,算法的目标是学习输入和输出之间的映射关系。包括分类和回归。4)无监督学习——学习的数据没有标签,算法自主发现规律。经典任务包括聚类,比如拿一堆新闻文章,让模型根据主题或内容特征分成具有相似特征的组。5)强化学习——从反馈里学习,最大化奖励或最小化损失;类似训小狗。6)深度学习——一种方法,参照人脑有神经网络和神经元(因为有很多层所以叫深度)。神经网络可以用于监督学习、无监督学习、强化学习。7)生成式AI——可以生成文本、图片、音频、视频等内容形式8)LLM——大语言模型。对于生成式AI,其中生成图像的扩散模型就不是大语言模型;对于大语言模型,生成只是其中一个处理任务,比如谷歌的BERT模型,可用于语义理解(不擅长文本生成),如上下文理解、情感分析、文本分类;3、技术里程碑——2017年6月,谷歌团队发表论文《Attention is All You Need》。这篇论文首次提出了Transformer模型,它完全基于自注意力机制(Self-Attention)来处理序列数据,而不需要依赖于循环神经网络(RNN)或卷积神经网络(CNN)。GPT含义:Transformer是关键。Transformer比RNN更适合处理文本的长距离依赖性。

Others are asking
知识库框架
以下是关于知识库框架的相关内容: 智能体的目标和框架: 智能体的交互能力:包括大模型本身的交互能力、多 Agent 的灵活性、workflow 的妙用(如引导用户输入车辆信息便于大模型理解和分析)以及上下文说明。 智能体的知识体量:涵盖豆包大模型本身的行业数据和语料库、知识库(包括结构化数据与非结构化数据),以及创建知识库的步骤和参赛用知识库,还涉及大模型 RAG 检索、大模型的选择和参数设定以及新模型的调用方法。 智能体的记忆能力:包含变量、数据库和信息记录。 知识: 外置知识是由外部数据库提供,能动态更新和调整。涉及多种数据存储和组织方式,如向量数据库(常用于处理和索引非结构化数据)、关系型数据库(适用于事务性数据存储)、知识图谱(适合复杂语义分析和知识推理)。在实际应用中,外置知识的集成和管理常采用 RAG 架构,能结合检索和生成,增强模型生成能力,实时检索和整合最新外部信息。 陈财猫团队的提示词相关知识库文章索引:
2025-02-18
类似于ollama和vllm这样的LLM 框架有哪些
以下是类似于 ollama 和 vllm 的 LLM 框架: 1. Encoderonly 框架(也叫 AutoEncoder),典型代表如 BERT 等。 2. Encoderdecoder 框架,典型代表如 T5 和 GLM 等。 3. Decoderonly 框架(也叫 AutoRegressive),典型代表如 GPT 系列、LLaMa、PaLM 等。 此外,还有一些在 LLM 应用中发挥重要作用的框架,如: 1. LangChain:是当前大模型应用开发的主流框架之一,提供了一系列工具和接口,其核心在于“链”概念,包括 Model I/O、Retrieval、Chains、Agents、Memory 和 Callbacks 等组件,生态系统还包括 LangSmith、LangGraph 和 LangServe 等工具。 2. LlamaIndex:在促进 LLM 和整合上下文数据方面表现出色,抽象出许多提示链的细节,与外部 API 的接口,从向量数据库检索上下文数据,并在多个 LLM 调用中维持内存。
2025-02-17
12个精选prompt框架
以下是 12 个精选的 prompt 框架: 1. ICIO 框架: 指令:执行的具体任务。 背景信息:提供执行任务的背景信息、上下文内容,让大模型更好地回答。 输入信息:大模型需要用到的一些信息。 输出信息:明确输出的具体信息的要求,比如字数、风格、格式。 2. BROKE 框架:通过 GPT 的设计提示,来提升整体反馈的效率。 背景:提供足够背景信息,让大模型可以理解问题的上下文。 角色设定:特定的角色,让 GPT 根据特定的角色能力的特点来形成响应。 目标:明确任务的目标,让大模型知道您想让它做什么。 结果定义:明确可以衡量的结果,让大模型清楚自己做的情况。 调整:根据具体的情况,来调整具体的结果。 3. CRISPIE 框架: 能力和角色:您期望大模型扮演的角色洞察,提供幕后洞察力、背景信息和上下文。 声明:简洁明了地说明希望完成的任务。 个性:回应的风格、个性或者方式。 实验:提供多个回答的示例。 4. 课件中的 Prompt 之术“三板斧”: 分配角色。 给出示例(fewshots)。 思维链(ChainofThought)。
2025-02-17
移动端自动化测试框架
很抱歉,目前知识库中没有关于移动端自动化测试框架的相关内容。但一般来说,常见的移动端自动化测试框架有 Appium、Espresso、XCUITest 等。Appium 支持多种移动平台和编程语言;Espresso 是 Android 平台的专用框架,具有高效和稳定的特点;XCUITest 则是用于 iOS 平台的测试框架。您可以根据您的具体需求和项目情况选择适合的框架。
2025-02-15
ai开发框架
以下是关于 AI 开发框架的相关信息: 1. AI 架构与技术选型的 4 条原则: 选主流框架:优先选择语料多、生成质量好的语言和框架。 测试覆盖率:用 AI 辅助生成测试代码,确保代码质量。 避免私有框架:尽量使用流行框架生成独立模块代码。 模块化设计:降低耦合度,方便 AI 快速开发和维护。参考链接: 2. OpenAI 相关: o1 API 正式版:速度更快,成本降低 60%,支持视觉识别、函数调用、结构化输出等功能。 语音交互升级:引入 WebRTC 支持,12 行代码即可实现实时语音交互,音频处理费用降低 60%。 偏好微调功能:让 AI 回答更具个性化,企业 AI 准确率提升显著。 新增 Go 和 Java 工具包,简化 API 密钥申请流程。参考链接: 3. 基于 Marscode 的 AI 新闻聚合器 MVP 开发实战: 项目架构主要分为三个模块:数据采集模块负责抓取新闻、AI 处理模块使用大模型处理新闻、Web 展示模块基于 gradio 构建界面。 LangChain 是强大的 AI 应用开发框架,特点包括提供统一接口调用各种大语言模型、支持记忆功能保持对话上下文、内置多种提示词模板方便构建复杂 AI 交互、支持知识库集成让 AI 基于特定领域知识回答。 Gradio 是用于快速构建机器学习应用界面的 Python 库,优势在于只需几行代码就能创建漂亮 Web 界面、支持多种输入输出类型、内置分享功能可一键生成公开链接、完全基于 Python 对开发者友好。 4. Dify: 是开源的大模型应用开发平台,通过结合后端即服务和 LLMOps 理念,为用户提供直观界面快速构建和部署生产级别的生成式 AI 应用。 具备强大工作流构建工具,支持广泛模型集成,提供功能丰富的提示词 IDE 以及全面的 RAG Pipeline 用于文档处理和检索。 允许用户定义 Agent 智能体,并通过 LLMOps 功能对应用程序性能进行持续监控和优化。 提供云服务和本地部署选项,满足不同用户需求,通过开源特性确保对数据完全控制和快速产品迭代。 一般地,如果是个人研究,推荐单独使用 Dify,如果是企业级落地项目推荐使用多种框架结合,效果更好。参考链接:Dify 官方手册:https://docs.dify.ai/v/zhhans
2025-02-15
目前我有个数据源头,可能是excle或mysql数据库。他们都含义以下字段: 发货日期 物料编号 物料描述 板块 实际已交货量 销售单位 金额(RMB) 金额(不含税RMB) 国家 品牌; 我需要创建一个智能体助手,用于分析这些数据,这个智能通助手需要能按用户需要,分析各个维度的数据,并按板块等维度汇总,并转为柱状图图表表现出现,并表现用户所有日期的近一周的变化,并阐明变化或波动是由哪些数据导致的? 结合以上需求,我需要在飞书上构建一个企业每日利润表分析与汇报助手,该选定哪种prompt框架
很抱歉,目前飞书知识库中没有关于您所描述的这种特定需求下应选定哪种 prompt 框架的相关内容。但一般来说,构建这样的企业每日利润表分析与汇报助手的 prompt 框架可以考虑以下几个方面: 1. 明确数据来源和格式:清晰描述数据来自 Excel 或 MySQL 数据库,以及包含的具体字段。 2. 定义分析维度和指标:如按板块、国家等维度汇总数据,关注利润相关的指标。 3. 设定时间范围:明确分析近一周的数据变化。 4. 描述图表要求:指定以柱状图展示数据。 5. 解释变化原因:阐明导致数据变化或波动的关键因素。 您可以根据实际情况进一步细化和完善这个框架。
2025-02-15
生成式AI教育场景应用 项目式学习 中小学案例
以下是一些中小学在生成式 AI 教育场景应用中采用项目式学习的案例: 北京市新英才学校: 开设“AI 创作家”小学课后服务特色课程,12 个五、六年级的学生在老师的引导和帮助下,主导设计一款实用的桌游。 学生们提出解决学校面积大导致新生和访客迷路的问题,决定制作一款学校地图桌游。 课程中,学生有时听老师讲解人工智能知识和工具使用方法,有时自己写 prompt 与大语言模型对话,还使用文生图 AI 工具生成桌游卡牌背后的图案,手绘第一版学校地图,选择游戏机制并梳理游戏流程。 在教育领域,生成式 AI 带来了诸多改变: 解决了教育科技长期以来在有效性和规模之间的权衡问题,可大规模部署个性化学习计划,为每个用户提供“口袋里的老师”,如实时交流并给予发音或措辞反馈的语言老师。 出现了众多辅助学习的产品,如教授新概念、帮助学习者解决各学科问题、指导数学作业、提升写作水平、协助创建演示文稿等。
2025-02-18
生成式AI教育场景应用 中小学案例
以下是北京市新英才学校在中小学教育场景中生成式 AI 的应用案例: 特色课程方面:学校开设了“AI 创作家”小学课后服务特色课程,12 个五、六年级的学生在老师的引导下,用 AIGC 工具设计一款实用的桌游。学生主导从收集需求、定义问题到设计背景、机制、内容、视觉,再到测试、迭代的全过程。例如,为解决学校面积大导致新生和访客迷路的问题,学生决定做一款学校地图桌游。课程中,学生学习人工智能知识、使用工具写 prompt 与大语言模型对话,还使用 OpenInnoLab平台生成桌游卡牌图案、手绘地图、选择游戏机制、梳理游戏流程。此外,还邀请中国传媒大学的吴卓浩教授合作,采用“大学生,小学生同上一节课”的方式,大学生为小学生讲解 AI 工具、试玩桌游。本学期,学生们测试并迭代桌游,使用 3D 打印机打印配件,用 ChatGPT 和 Midjourney 增强视觉设计,用 Kimi 辅助编写说明书,还计划让学生尝试用文生音乐工具 Suno 制作歌曲加入桌游 2.0 版本。 英语主课方面:初中部的英语课也融入了 AIGC 工具。魏一然协助初中部的英文老师杨佳欣和刘奕玚进行探索。在课程初期,更多是老师带着学生使用 AIGC 工具,prompt 由学生提出,老师引导。例如,在研究学校食堂食物浪费问题时,老师带着学生与 ChatGPT 对话,了解处理方法,让 ChatGPT 为学生生成生词解释和例句,形成生词库,并灵活加工生词生成题目、游戏或文章帮助学生复习单词。在关于社交媒体的英语辩论课上,尝试让学生自主使用 AIGC 工具做辩论准备。
2025-02-18
中小学AI教育场景 生成式 全息
以下是关于中小学 AI 教育场景生成式的相关内容: 北京市新英才学校在中小学 AI 教育方面进行了积极探索。跨学科项目老师带着学生用 AIGC 做学校地图桌游,英语老师在 AIGC 帮助下备课和授课,生物和信息科技老师合作带着学生训练 AI 模型以识别植物。数字与科学中心 EdTech 跨学科小组组长魏一然深入参与其中。 在英语课上,对于初中以上学生,一开始更多是老师带着使用 AIGC 工具,由学生提出 prompt,老师引导。例如在研究学校食堂食物浪费问题时,老师带着学生与 ChatGPT 对话获取信息,还让 ChatGPT 生成单词解释和例句,加工生词生成题目、游戏或文章帮助学生复习单词。在社交媒体的英语辩论课上,尝试让学生自主使用 AIGC 工具做辩论准备。 教育科技长期以来在有效性和规模之间权衡,而有了 AI 这种状况不再存在。现在可以大规模部署个性化学习计划,为每个用户提供“口袋里的老师”。像 Speak、Quazel、Lingostar 已在做实时交流并给予反馈的语言教学。Photomath、Mathly 指导学生解决数学问题,PeopleAI、Historical Figures 通过模拟与杰出人物聊天教授历史。学生在作业中也利用 Grammarly、Orchard、Lex 等工具提升写作水平,处理其他形式内容的产品如 Tome、Beautiful.ai 协助创建演示文稿。
2025-02-17
影视行业的生成式AI工具有哪些?帮我分一下类
以下是影视行业常见的生成式 AI 工具分类: 视频和图像类:Civitai、Kling AI、Viggle、Hailuo、Hedra、RunPod、Higgsfield、ThinkDiffusion、neural frames、Genmo、fal、LTX Video、CogVideoX、Morph Studio、Domo、Haiper、Pony Diffusion、Leonardo AI、Rubbrband 音频类:ElevenLabs、Hailuo、Cartesia、Sync、Tunes by Freepik 3D 类:Playhouse、Playbook、Tripo AI 故事板类:SAGA 在视频大类的分类下,按场景分,主要有以下几类: 1. 纯 AI 视频生成(RunwayML 等为代表) 2. 数字人(Heygen 等) 3. 营销类视频生成及编辑(生成内容以模板化,商业化内容为主) 4. 视频编辑(全面编辑,长剪短等) 此外,全球最大的生成式 AI 视频竞赛之一 Project Odyssey 第二季已开始,相关信息如下: 赛事官网:https://www.projectodyssey.ai/ 注册地址:https://projectodyssey.myflodesk.com/season2 赛事 Discord:https://discord.com/invite/projectodysseyai 提交地址:https://www.projectodyssey.ai/submission 时间线: 12 月 2 日:Project Odyssey 第二季开放报名 12 月 9 日:比赛规则公布 12 月 16 日:报名用户可解锁免费试用、完整规则正式发布、作品提交正式开启 1 月 16 日:提交截止,进入评审阶段 2 月 14 日:直播颁奖 参赛类别: 叙事类:通过鲜明的角色和深刻的故事情节,讲述能够打动人心的故事。 音乐视频:将视觉效果与原创音乐完美结合,打造震撼体验。 品牌创意:构思创意广告或活动视频,为虚拟品牌注入灵魂。(短于 60 秒) 创意预告片:制作极具吸引力的预告片或片头,为电影或剧集呈现特别概念。(短于 2 分 30 秒)
2025-02-16
吴恩达有《面向所有人的生成式 AI 入门课程 Generative AI for Everyone》下载资源
以下是吴恩达《面向所有人的生成式 AI 入门课程 Generative AI for Everyone》的相关资源: B 站: 学习笔记: 飞书: 下的相关课程
2025-02-07
李宏毅《生成式人工智能导论》课件
以下是关于李宏毅《生成式人工智能导论》的相关信息: 课程目录: 1. 第 0 讲:课程说明(2024 年 2 月 24 日) 2. 第 1 讲:生成式 AI 是什么?(2024 年 2 月 24 日) 3. 第 2 讲:今日的生成式人工智慧厉害在哪里?从「工具」变为「工具人」(2024 年 3 月 3 日) 4. 第 3 讲:训练不了人工智慧?你可以训练你自己—神奇咒语与提供更多资讯(2024 年 3 月 3 日) 5. 第 4 讲:训练不了人工智慧?你可以训练你自己—拆解问题与使用工具(2024 年 3 月 10 日) 6. 待更新…… 第 0 讲课程说明的要点: 1. 知道:有能力自己开发、何时需要自己开发、何时可以用现成的人工智能。 2. 目标:了解生成式 AI 背后的原理和更多可能性,作为你魔术师的开始。包括体验用生成式 AI 打造应用、体验训练自己的生成式 AI 模型。同时提到负面体验,如大模型训练花时间(以周为单位)、结果不可控。 3. 影响模型能力的指标很多,常规会看参数的量级来评估,量级指数级增长,FOMO,如 2019 年 GPT2.0 15b 参数,2024 年 GPT3.5 70b 参数。 附录: 1. 课程介绍:这是台湾大学李宏毅教授的生成式 AI 课程,主要介绍生成式 AI 的基本概念、发展历程、技术架构和应用场景等内容。课程共 12 讲,每讲约 2 小时。 2. 学习目标:掌握生成式 AI 的基本概念和常见技术,能够使用相关框架搭建简单的生成式模型,了解生成式 AI 的发展现状和未来趋势。 3. 学习内容:包括什么是生成式 AI、生成式模型、生成式对话、预训练语言模型、生成式 AI 的挑战与展望等方面。 4. 学习资源:教材《生成式 AI 导论 2024》,参考书籍《深度学习》,在线课程李宏毅的生成式 AI 课程,开源项目 OpenAI GPT3、字节跳动的云雀等。 5. 学习方法。 课程地址:https://www.youtube.com/watch?v=AVIKFXLCPY8
2025-01-16
什么是aigc
AIGC(人工智能生成内容)是一种利用人工智能技术生成各种类型内容的应用方式。它能够通过机器学习和深度学习算法,根据输入的数据和指令生成符合特定要求的内容,在内容创作、广告、媒体等领域有着广泛的应用。 具体来说,AIGC 包括以下方面: 1. 文字生成:使用大型语言模型(如 GPT 系列模型)生成文章、故事、对话等内容。 2. 图像生成:使用 Stable Diffusion、DALLE 等模型生成艺术作品、照片等。 3. 视频生成:使用 Runway、KLING 等模型生成动画、短视频等。 AIGC 作为一种强大的技术,能赋能诸多领域,但也存在多重潜在的合规风险。目前,我国对 AIGC 的监管框架由《网络安全法》《数据安全法》及《个人信息保护法》构成,并与《互联网信息服务算法推荐管理规定》、《互联网信息服务深度合成管理规定》、《生成式人工智能服务管理暂行办法》、《科技伦理审查办法(试行)》等形成了共同监管的形势。 AIGC 主要分为语言文本生成、图像生成和音视频生成。语言文本生成利用马尔科夫链、RNN、LSTMs 和 Transformer 等模型生成文本,如 GPT4 和 Gemini Ultra。图像生成依赖于 GANs、VAEs 和 Stable Diffusion 等技术,应用于数据增强和艺术创作,代表项目有 Stable Diffusion 和 StyleGAN 2。音视频生成利用扩散模型、GANs 和 Video Diffusion 等,广泛应用于娱乐和语音生成,代表项目有 Sora 和 WaveNet。此外,AIGC 还可应用于音乐生成、游戏开发和医疗保健等领域,展现出广泛的应用前景。 例如 AI 文本续写,文字转图像的 AI 图、AI 主持人等,都属于 AIGC 的应用。类似的名词缩写还有 UGC(普通用户生产),PGC(专业用户生产)等。能进行 AIGC 的产品项目也很多,能进行 AIGC 的媒介也很多,包括且不限于: 1. 语言文字类:OpenAI 的 GPT,Google 的 Bard,百度的文心一言,还有一种国内大佬下场要做的的 LLM 都是语言类的。 2. 语音声音类:Google 的 WaveNet,微软的 Deep Nerual Network,百度的 DeepSpeech 等,还有合成 AI 孙燕姿大火的开源模型 Sovits。 3. 图片美术类:早期有 GEN 等图片识别/生成技术,去年大热的扩散模型又带火了我们比较熟悉的、生成质量无敌的 Midjourney,先驱者谷歌的 Disco Diffusion,一直在排队测试的 OpenAI 的 Dalle·2,以及 stability ai 和 runaway 共同推出的 Stable Diffusion。
2025-02-18
我的毕业论文是AIGC的陶寺遗址空间可视分析技术研究,请问有何思路
对于您的毕业论文主题“AIGC 的陶寺遗址空间可视分析技术研究”,以下是一些可能的思路供您参考: 首先,深入了解陶寺遗址的相关背景和特点,包括其历史、文化、地理等方面的信息,这将为后续的分析提供基础。 其次,研究 AIGC 技术在空间可视分析方面的应用现状和前沿成果,了解相关的算法、模型和工具。 然后,考虑如何收集和整理陶寺遗址的空间数据,例如通过实地测量、卫星图像、考古记录等方式获取数据,并对数据进行预处理和清洗。 接着,运用合适的 AIGC 技术和算法,对陶寺遗址的空间数据进行可视化呈现,例如创建三维模型、绘制地图、生成动态图像等,以直观展示遗址的空间特征和关系。 在可视化的基础上,进行深入的分析,例如探究遗址的布局规律、空间结构、功能分区等,挖掘潜在的历史和文化信息。 最后,对研究结果进行评估和验证,确保其准确性和可靠性,并提出进一步的改进和优化方向。 希望这些思路能对您有所帮助,祝您顺利完成毕业论文!
2025-02-18
AGI和AIGC是啥关系,分别是什么的缩写
AGI 指通用人工智能,是一种能够像人类一样执行各种智能任务的人工智能。 AIGC 是人工智能生成内容的缩写,在公众传播层面,最初指用 Stable Diffusion 或 Midjourney 生成图像内容,后来泛指用 AI 生成音乐、图像、视频等内容。AIGC 是一种利用人工智能技术生成各种类型内容的应用方式,包括文字生成(如使用 GPT 系列模型生成文章、故事、对话等)、图像生成(如使用 Stable Diffusion、DALLE 等模型生成艺术作品、照片等)、视频生成(如使用 Runway、KLING 等模型生成动画、短视频等)。 AIGC、UGC(用户生成内容)和 PGC(专业人士或机构生成内容)都是内容生成的不同方式。UGC 由用户通过社交媒体等平台发布自己的内容,内容丰富多样,反映用户真实想法和创意,适用于互动性强的平台。PGC 由专业团队或机构根据特定标准和流程创作高质量内容,适用于需要高质量内容的平台。AIGC 的优势在于可以快速、大规模地生成内容,适用于需要大量内容的场景。
2025-02-13
想在手机上通过宠物照片给宠物建模,是宠物可以有一些动态性,需要怎么做?利用 AIGC 能快速的实现吗?
在手机上通过宠物照片给宠物建模并实现一定的动态性,可以考虑以下几种方式: 1. 利用 3D 引擎:目前有一些公司提供通过手机摄像头快速创建虚拟人身体的服务,例如 NextHuman。不过,3D 引擎在拟真程度高的同时,定制化成本也较高。 2. 借助 AIGC:虽然 AIGC 省去了建模流程,能直接生成数字人的展示图片,但可能存在数字人难以保持 ID 一致性、帧与帧连贯性不佳等问题。典型的相关项目有 wav2lip等。但需要注意的是,如果对模型真实度要求较高,AIGC 方式可能不太理想,因为算法发展很快,未来可能会有更好的连贯度生成方式。 目前利用 AIGC 来快速实现可能存在一些挑战,但随着技术的发展,未来有可能更便捷高效地达成您的需求。
2025-02-13
AIGC工程师
以下是为您整理的 AIGC 相关招聘信息: 猿印教育 AIGC 图像生成算法工程师/专家(北京五道口附近) 简历请发送至:stephen.wang@yyinedu.com 岗位职责: 面向 AIGC 领域,结合应用场景,开发针对性图像生成解决方案。 负责模型的部署和推理性能优化,确保模型在实际应用中的高效性和稳定性。 持续关注最新的技术发展和业界趋势,积极推动团队技术水平的提升,并将新技术应用到实际项目中。 任职要求: 计算机相关专业本科及以上学历,具备扎实的计算机基础知识。 熟练掌握 Python 语言,熟悉至少一种主流深度学习框架(TensorFlow/Pytorch 等)。 对深度学习和计算机视觉领域的基础理论和方法有深入理解,熟悉 DDPM,DDIM,Stable Diffusion 原理,了解 Dreambooth,ControlNet 等可控生成技术。 具有强烈的技术兴趣和钻研精神,具备良好的学习能力、沟通能力和团队合作精神。 数字银行 AIGC 产品经理(深圳) 请直接飞书联系@Eason 任职要求: 相信 AIGC:有过第一次用 chatgpt 时的兴奋,记得去年那个 AI 疯狂的 3 月份,熬夜看过 gpt4、copilot 的发布会,想过各种办法搞定 plus 账号,现在在翘首以盼 gpt5。 喜欢用:用过各种 AIGC 应用,如 GPT4,newbing,Kimi,Perplexity,Suno 等等。看到新的爆款产品,就会第一时间玩一玩。 能上手:可以简单的上手,不限于调用 api 做个小 demo,会写复杂的提示词,做一个简单的 RAG 应用,文生图、视频,微调模型等。 岗位职责: 构建赋能海量用户的大模型工程化产品,帮助某数字银行塑造技术领先性。 探索和设计工程化产品,来支持更快的 AI 原生应用构建(类似 Langchain,Llamaindex 等等,或者由您亲自来颠覆它们,做一个 Langxx,Llamaxx)。 在重点业务场景中深入探索大模型的应用落地,用最新的理念,做出真正能在海量金融业务场景中跑起来的应用(把类似 MetaGPT,AutoGen,Advanced RAG 真正落地,或者创造自己的 multi agent 应用)。 此外,3 月 2 日接龙中涉及 AIGC 相关人员的工作内容包括: 雯琋(Vinci)AIGC 不会编程但会鼓励编程。 AI 译文打杂文案。 AI 译然,AI 视频相关的都会一点,就是完全不会做网站。 Stanico,产品、运营、prompt。
2025-02-10
AIGC
AIGC 是利用 GenAI(生成式 AI)创建的内容。GenAI 能够从已有数据中学习并生成新的数据或内容。 AIGC 存在多种法律与道德风险: 1. 知识产权方面: 由于与输入数据的关联性,可能造成作品、专利、商标侵权、不正当竞争、侵犯商业秘密等问题。 存在是否构成侵犯著作权的争议,根源在于 GenAI 系统的训练方式。 对于 AIGC 产品是否构成著作权保护的产品以及著作权归属问题,目前存在需要重点探讨的方面。目前中国法律体系下,著作权主体仅限于自然人、法人或者非法人组织,AIGC 是否构成作品尚无法律明确规定,但我国已有认定 AIGC 享有著作权的先例。 2. 其他应用风险: AIGC 本身可能被滥用,产生误导性虚假信息,被用于不法目的。 面临社会伦理风险,可能延续和放大人类作品中的歧视、偏见,生成不当言论,被用于网络攻击、网络炒作和不正当商业营销等。 我国针对 AIGC 的应用出台了一系列法律法规进行规范,如《网络安全法》《数据安全法》《个人信息保护法》《互联网信息服务算法推荐管理规定》《互联网信息服务深度合成管理规定》《生成式人工智能服务管理暂行办法》《网络音视频信息服务管理规定》等。
2025-02-09
人工智能简史
人工智能作为一个领域始于二十世纪中叶。最初,符号推理流行,带来了如专家系统等重要进展,但因从专家提取知识并以计算机可读形式表现及保持知识库准确的复杂性和高成本,20 世纪 70 年代出现“人工智能寒冬”。 随着时间推移,计算资源便宜、数据增多,神经网络方法在计算机视觉、语音理解等领域展现卓越性能,过去十年中“人工智能”常被视为“神经网络”的同义词。 在国际象棋对弈程序方面,早期以搜索为基础,发展出阿尔法贝塔剪枝搜索算法,后来采用基于案例的推理,如今能战胜人类棋手的程序基于神经网络和强化学习。 在创建“会说话的程序”方面,早期如 Eliza 基于简单语法规则,现代助手如 Cortana、Siri 或谷歌助手是混合系统,未来有望出现完整基于神经网络的模型处理对话,如 GPT 和 TuringNLG 系列神经网络已取得巨大成功。 最初,查尔斯·巴贝奇发明计算机用于按明确程序运算,现代计算机仍遵循相同理念。但有些任务如根据照片判断人的年龄无法明确编程,这正是人工智能感兴趣的。 译者:Miranda,原文见 https://microsoft.github.io/AIForBeginners/lessons/1Intro/README.md
2025-02-17
人工智能时代对社会有什么冲击
人工智能时代对社会的冲击主要体现在以下几个方面: 1. 劳动力市场:预计在未来几年对劳动力市场产生重大影响,包括好的和坏的方面,但工作变化速度比多数人想象的慢,人们不必担心缺乏事情可做。 2. 能力放大:能使人类天生的创造和彼此有用的欲望得到前所未有的放大,社会将重新进入不断扩张的世界。 3. 深度学习:是一种有效的算法,计算能力和数据量越大,解决难题的能力越强,将随着规模而变得更好,对全球人民生活产生有意义的改善。 4. 个人助理:人工智能模型将很快作为自主的个人助理,代表用户执行特定任务。 5. 资源分配:获得充足的计算和能源对于实现人工智能民主化和防止不平等至关重要。 6. 风险控制:控制人工智能的风险对于最大限度地发挥其优势并确保积极的未来至关重要。 同时,在教育方面,孩子将拥有虚拟导师,能够提供个性化教学,类似概念还可应用于医疗保健改进、创建各种软件等领域,带来共享的繁荣。
2025-02-16
什么是人工智能
人工智能(Artificial Intelligence)是一门研究如何使计算机表现出智能行为的科学,例如做一些人类所擅长的事情。 最初,查尔斯·巴贝奇发明了计算机,用于按照明确的程序(即算法)进行数字运算。现代计算机虽更先进,但仍遵循受控计算理念。若知道实现目标的每一步骤及顺序,就能编写程序让计算机做事。 然而,像“根据照片判断一个人的年龄”这类任务,因无法明确大脑完成此任务的具体步骤,所以难以编写程序让计算机完成,这类任务正是人工智能感兴趣的。 人工智能分为 ANI(artificial narrow intelligence 弱人工智能)和 AGI(artificial general intelligence)。ANI 只可做一件事,如智能音箱、网站搜索、自动驾驶、工厂与农场的应用等;AGI 能做任何人类可以做的事。 在人工智能术语方面: 机械学习是让电脑在不被编程的情况下自己学习的研究领域,是学习输入输出的映射,一般有输入 A 必然输出 B 的软件。 数据科学是分析数据集,从数据中获取结论与提示,输出结果往往是幻灯片、结论、PPT 等。 神经网络/深度学习有输入层、输出层和中间层(隐藏层)。
2025-02-16
关于音频生成的人工智能工具有哪些
以下是一些关于音频生成的人工智能工具: ElevenLabs:一家前沿人工智能公司,专注于文本转语音、语音变声器、配音、文本转音效和语音克隆,为创作者、企业和开发者提供超逼真和可定制的语音解决方案。前 5000 名注册用户可享受 2 个月的入门计划。 Hailuo Audio by Minimax:面向创作者和电影制作人的下一代音乐生成、文本转语音和语音克隆模型。 Cartesia:优质文本转语音服务,既以开发者为中心,又适合实时对话用例,专注于行业领先的延迟、逼真的声音和准确的发音。提供 1 个月的专业计划。 Sync:研究公司,致力于为动画师、开发者和视频编辑提供前沿的人工智能视频口型同步解决方案。2 个月的 Sync 创作者层级+额外生成积分。 Tunes by Freepik:使用 Freepik Tunes 让您的项目更具表现力。发现精选音乐、高质量音效和强大的音频工具,可在 Freepik Tunes 上无限制下载。 以下是一些人工智能音频初创公司: Lemonaide Music:与 DAW 集成的生成音乐工具,100%免版权费。 tuney.io:为创意媒体提供的伦理音乐 AI。 KORUS AI:AI 音乐创作平台和探索声音宇宙的个人音乐制作人。 TRINITI:通过音乐赋予新的创作和表达方式。 voice swap:使用 AI 改变歌唱声音。 mix audio:为创造力和生产力提供 AI 音乐。 Audiogen:使用 AI 生成声音、音效、音乐、样本、氛围等。 Wavtool:带有 AI 助手并支持本地 VST 插件的网页 DAW。 Wavacity:Audacity®音频编辑器的网页版。
2025-02-16
人工智能对现在时代有什么冲击
人工智能对现在时代的冲击主要体现在以下几个方面: 1. 劳动力市场:预计在未来几年对劳动力市场产生重大影响,包括好的和坏的方面,但工作变化速度比多数人想象的慢。 2. 社会发展:使社会重新进入不断扩张的世界,人们可以再次专注于正和游戏,天生的创造和彼此有用的欲望将得到前所未有的放大。 3. 技术进步:深度学习有效,随规模扩大预期改善,能帮助解决难题,模型将作为个人助理执行特定任务,促进各领域科学进展。 4. 资源与普及:降低计算成本以普及人工智能,否则可能导致其成为有限资源,引发战争并成为富人工具。 5. 社会变革:社会和经济将发生长期巨大变革,人们会发现新的做事、互助和竞争方式。 6. 不均衡影响:AGI 将产生不均衡影响,一些行业变化小,科学进步可能更快,许多商品价格大幅下跌,奢侈品和受限资源价格上涨。 7. 公共政策:关于如何将人工智能系统融入社会的公共政策和集体意见非常重要,要权衡安全性和个人授权。 8. 社会控制:存在专制政府利用人工智能进行大规模监控从而剥夺人民自主权的风险。
2025-02-16
如果让你来给小学生设计一门人工智能视频课,12集,你会怎么设计
对于为小学生设计一门 12 集的人工智能视频课,以下是我的设计思路: 第一集:《走进神奇的 AI 世界》 介绍什么是人工智能,通过有趣的例子展示 AI 在日常生活中的应用,激发学生的兴趣。 第二集:《AI 的历史之旅》 讲述人工智能的发展历程,从早期的概念到现代的突破。 第三集:《AI 如何理解我们》 讲解 AI 是如何处理和理解人类输入的信息,如语言、图像等。 第四集:《智能机器人小伙伴》 介绍机器人如何通过 AI 技术实现各种功能和动作。 第五集:《AI 在游戏中的魔法》 展示 AI 在游戏中的应用,如游戏角色的智能行为。 第六集:《AI 与医疗保健》 讲述 AI 在医疗领域的作用,如疾病诊断、医疗影像分析等。 第七集:《AI 与交通出行》 介绍 AI 如何改善交通状况,如智能交通系统。 第八集:《AI 与教育的碰撞》 探讨 AI 在教育中的应用,如个性化学习、智能辅导。 第九集:《AI 绘画的奇妙世界》 让学生了解 AI 绘画的原理和创作过程。 第十集:《AI 音乐的旋律》 介绍 AI 在音乐创作和演奏方面的应用。 第十一集:《AI 的未来展望》 一起畅想未来 AI 可能带来的更多变化和创新。 第十二集:《我和 AI 的故事》 鼓励学生分享自己对 AI 的理解和想象,总结课程内容。 在每一集的设计中,都会采用生动有趣的动画、简单易懂的案例和互动环节,让小学生能够轻松理解和参与。
2025-02-14