Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

知识图谱

Answer

知识图谱: 知识图谱是一种揭示实体之间关系的语义网络,能够对现实世界的事物及其相互关系进行形式化描述。它于 2012 年 5 月 17 日由 Google 正式提出,初衷是提高搜索引擎能力,增强用户搜索质量和体验,实现从网页链接到概念链接的转变,支持按主题检索和语义检索。 关键技术包括:

  1. 知识抽取:通过自动化技术抽取可用的知识单元,包含实体抽取(命名实体识别)、关系抽取、属性抽取。
  2. 知识表示:如属性图、三元组。
  3. 知识融合:在同一框架规范下进行异构数据整合、消歧、加工、推理验证、更新等,包括实体对齐、知识加工、本体构建、质量评估、知识更新,以形成高质量知识库。
  4. 知识推理:在已有知识库基础上挖掘隐含知识。

外置知识: 外置知识由外部数据库提供,能够动态更新和调整。涉及多种数据存储和组织方式,包括向量数据库、关系型数据库和知识图谱。向量数据库优化了向量检索操作,常用于处理和索引非结构化数据;关系型数据库通过表格形式存储结构化数据,支持复杂查询,适用于事务性数据存储;知识图谱以图的形式组织数据,强调实体之间的关系,适合复杂的语义分析和知识推理。在实际应用中,外置知识的集成和管理常采用 RAG 架构,它结合了检索和生成,通过检索外部知识源增强模型的生成能力。

知识表示: 知识是存在于我们脑海中、代表对世界理解的东西,通过活跃的学习过程从接收到的信息碎片整合而来。要区分知识与信息、数据,例如书籍内容实际是数据,我们阅读后转化为知识。通常用 DIKW 金字塔整合知识与其他相关概念,包含数据、信息、知识、智慧。知识表示的问题是找到以数据形式在计算机中表示知识并能自动化使用的有效方法,这是一个连续谱,左侧有简单但不灵活的表示方式如算法,右侧有功能强大但不适合自动化推理的自然语言等方式。

Content generated by AI large model, please carefully verify (powered by aily)

References

知识图谱

1.知识抽取:通过自动化的技术抽取出可用的知识单元实体抽取:命名实体识别(Named Entity Recognition,NER)从数据源中自动识别命名实体;关系抽取(Relation Extraction):从数据源中提取实体之间的关联关系,形成网状的知识结构;属性抽取:从数据源中采集特定实体的属性信息。2.知识表示属性图三元组3.知识融合:在同一框架规范下进行异构数据整合、消歧、加工、推理验证、更新等,达到数据、信息、方法、经验等知识的融合,形成高质量知识库实体对齐(Entity Alignment):消除异构数据中的实体冲突、指向不明等不一致性问题;知识加工:对知识统一管理,形成大规模的知识体系本体构建:以形式化方式明确定义概念之间的联系;质量评估:计算知识的置信度,提高知识的质量。知识更新:不断迭代更新,扩展现有知识,增加新的知识4.知识推理:在已有的知识库基础上挖掘隐含的知识

AI Agent系列(二):Brain模块探究

第二种知识类型是外置知识,它由外部数据库提供,与内置知识相比,其特点是能够进行动态更新和调整。当我们深入探讨外置知识时,通常会涉及到多种数据存储和组织方式,包括向量数据库、关系型数据库,以及知识图谱。这些数据库和图谱构成了智能体的知识库,它们可以是:向量数据库:优化了向量检索操作,常用于处理和索引非结构化数据,如图像和文本。关系型数据库:通过表格形式存储结构化数据,支持复杂的查询,适用于事务性数据存储。知识图谱:以图的形式组织数据,强调实体之间的关系,适合于复杂的语义分析和知识推理。在实际应用中,外置知识的集成和管理常常采用RAG(Retrieval-Augmented Generation)架构。RAG架构是一种结合了检索(Retrieval)和生成(Generation)的模型,它通过检索外部知识源来增强模型的生成能力。这种架构允许智能体在生成响应或执行任务时,不仅依赖于内置知识,还能够实时地检索和整合最新的外部信息。

知识表示和专家系统

符号人工智能的一个重要概念是知识(knowledge)。必须将知识与信息(information)或数据(data)区分开来。例如,我们可以说书籍包含了知识,因为我们可以通过阅读书籍成为专家。然而,书籍所包含的内容实际上被称为数据,通过阅读书籍将这些数据整合进我们的世界模型中,我们就将这些数据转换成了知识。✅知识是存在于我们脑海中的东西,代表着我们对世界的理解。知识是通过活跃的学习过程获得的,它将我们接收到的信息碎片整合到我们对世界的活跃模型中。在大多数情况下,我们并不严格定义知识,而是使用[DIKW金字塔](https://en.wikipedia.org/wiki/DIKW_pyramid)将知识与其他相关概念进行整合。该金字塔包含以下概念:数据(Data)是以书面文字或口头语言等物理介质表示的东西。数据独立于人类而存在,可以在人与人之间传递。信息(Information)我们在头脑中解释数据的方式。例如,当我们听到“计算机”这个词时,会对它有一定的了解。知识(Knowledge)融入我们世界模型的信息。例如,一旦我们知道了计算机是什么,我们就会开始对它的工作原理、价格以及用途有一些概念。这个相互关联的概念网络构成了我们的知识。智慧(Wisdom)是我们理解世界的更高一个层次,它象征着元知识(meta-knowledge),例如关于如何以及何时使用知识的一些概念。因此,知识表示的问题是找到某种有效的方法,以数据的形式在计算机中表示知识,使其能够自动化使用。这可以看作是一个连续谱:在左侧,有几种非常简单的知识表示可以被计算机有效利用。最简单的是算法,即用计算机程序来表示知识。然而,这并不是表示知识的最佳方式,因为它并不灵活。我们头脑中的知识往往是非算法性的。右边是自然语言等知识表示方式。它的功能最强大,但不能用于自动化推理。✅想一想,你是如何在头脑中呈现知识并将其转化为笔记的。是否有一种特定的格式对你来说非常有效,有助于记忆?

Others are asking
知识图谱
知识图谱是一种揭示实体之间关系的语义网络,可以对现实世界的事物及其相互关系进行形式化地描述。它于 2012 年 5 月 17 日由 Google 正式提出,初衷是提高搜索引擎的能力,增强用户的搜索质量和体验,实现从网页链接到概念链接的转变,支持按主题检索和语义检索。 知识图谱的关键技术包括: 1. 知识抽取: 实体抽取:通过命名实体识别从数据源中自动识别命名实体。 关系抽取:从数据源中提取实体之间的关联关系,形成网状知识结构。 属性抽取:从数据源中采集特定实体的属性信息。 2. 知识表示:包括属性图和三元组。 3. 知识融合: 实体对齐:消除异构数据中的实体冲突、指向不明等不一致性问题。 知识加工:对知识统一管理,形成大规模的知识体系。 本体构建:以形式化方式明确定义概念之间的联系。 质量评估:计算知识的置信度,提高知识质量。 知识更新:不断迭代更新,扩展现有知识,增加新知识。 4. 知识推理:在已有的知识库基础上挖掘隐含的知识。 在国家人工智能产业综合标准化体系建设指南中,知识图谱标准规范了知识图谱的描述、构建、运维、共享、管理和应用,包括知识表示与建模、知识获取与存储、知识融合与可视化、知识计算与管理、知识图谱质量评价与互联互通、知识图谱交付与应用、知识图谱系统架构与性能要求等标准。
2025-04-17
学习大模型请给我一张知识图谱
以下是为您提供的大模型知识图谱: 1. 非技术背景,一文读懂大模型 整体架构 基础层:为大模型提供硬件支撑,数据支持等,例如 A100、数据服务器等。 数据层:企业根据自身特性维护的垂域数据,分为静态的知识库和动态的三方数据集。 模型层:LLm 或多模态模型,LLm 即大语言模型,如 GPT,一般使用 transformer 算法实现;多模态模型包括文生图、图生图等,训练所用数据与 llm 不同,用的是图文或声音等多模态的数据集。 平台层:模型与应用间的平台部分,如大模型的评测体系,或者 langchain 平台等。 表现层:也就是应用层,用户实际看到的地方。 2. AI Agent 系列:Brain 模块探究 知识 内置知识 常识知识:包括日常生活中广泛认可的事实和逻辑规则,帮助智能体具备泛化能力。 专业知识:涉及深入特定领域的详细信息,如医学、法律、科技、艺术等领域的专有概念和操作方法。 语言知识:包括语法规则、句型结构、语境含义以及文化背景等,还涉及非文字部分如语调、停顿和强调等。 3. 大模型入门指南 通俗定义:输入大量语料,让计算机获得类似人类的“思考”能力,能够进行文本生成、推理问答、对话、文档摘要等工作。 类比学习过程 找学校:训练 LLM 需要大量计算,GPU 更合适,只有购买得起大量 GPU 的才有资本训练大模型。 确定教材:大模型需要的数据量特别多,几千亿序列(Token)的输入基本是标配。 找老师:用算法讲述“书本”中的内容,让大模型能够更好理解 Token 之间的关系。 就业指导:为了让大模型能够更好胜任某一行业,需要进行微调(fine tuning)指导。 搬砖:就业指导完成后,进行如翻译、问答等工作,在大模型里称之为推导(infer)。 Token:被视为模型处理和生成的文本单位,可代表单个字符、单词、子单词等,在将输入进行分词时,会对其进行数字化,形成词汇表。
2025-04-07
RAG和知识图谱的结合,需要如何实现
要实现 RAG 和知识图谱的结合,可以参考以下步骤: 1. 数据加载:根据数据源的类型选择合适的数据加载器,如对于网页数据源,可使用 WebBaseLoader 利用 urllib 和 BeautifulSoup 加载和解析网页,获取文档对象。 2. 文本分割:依据文本特点选用合适的文本分割器,将文档对象分割成较小的文档对象。例如,对于博客文章,可使用 RecursiveCharacterTextSplitter 递归地用常见分隔符分割文本,直至每个文档对象大小符合要求。 3. 嵌入与存储:根据嵌入质量和速度选择合适的文本嵌入器和向量存储器,将文档对象转换为嵌入并存储。比如,可使用 OpenAI 的嵌入模型和 Chroma 的向量存储器,即 OpenAIEmbeddings 和 ChromaVectorStore。 4. 创建检索器:使用向量存储器检索器,传递向量存储器对象和文本嵌入器对象作为参数,创建用于根据用户输入检索相关文档对象的检索器。 5. 创建聊天模型:根据模型性能和成本选择合适的聊天模型,如使用 OpenAI 的 GPT3 模型,即 OpenAIChatModel,根据用户输入和检索到的文档对象生成输出消息。 此外,通用语言模型通过微调能完成常见任务,而对于更复杂和知识密集型任务,可基于语言模型构建系统并访问外部知识源。Meta AI 研究人员引入的 RAG 方法把信息检索组件和文本生成模型结合,能接受输入并检索相关文档,组合上下文和原始提示词送给文本生成器得到输出,适应事实变化,无需重新训练模型就能获取最新信息并产生可靠输出。Lewis 等人(2021)提出通用的 RAG 微调方法,使用预训练的 seq2seq 作为参数记忆,用维基百科的密集向量索引作为非参数记忆。
2025-03-28
知识图谱
知识图谱是一种揭示实体之间关系的语义网络,能够对现实世界的事物及其相互关系进行形式化描述。它于 2012 年 5 月 17 日由 Google 正式提出,初衷是提高搜索引擎能力,增强用户搜索质量和体验,实现从网页链接到概念链接的转变,支持按主题检索和语义检索。 知识图谱的关键技术包括: 1. 知识抽取: 实体抽取:通过命名实体识别从数据源中自动识别命名实体。 关系抽取:从数据源中提取实体之间的关联关系,形成网状知识结构。 属性抽取:从数据源中采集特定实体的属性信息。 2. 知识表示:包括属性图、三元组等。 3. 知识融合: 实体对齐:消除异构数据中的实体冲突、指向不明等不一致性问题。 知识加工:对知识统一管理,形成大规模知识体系。 本体构建:以形式化方式明确定义概念之间的联系。 质量评估:计算知识的置信度,提高知识质量。 知识更新:不断迭代更新,扩展现有知识,增加新知识。 4. 知识推理:在已有的知识库基础上挖掘隐含的知识。 在国家人工智能产业综合标准化体系建设指南中,知识图谱标准规范了知识图谱的描述、构建、运维、共享、管理和应用,包括知识表示与建模、知识获取与存储、知识融合与可视化、知识计算与管理、知识图谱质量评价与互联互通、知识图谱交付与应用、知识图谱系统架构与性能要求等标准。
2025-03-21
知识图谱产品
知识图谱(Knowledge Graph,KG)是一种揭示实体之间关系的语义网络,可以对现实世界的事物及其相互关系进行形式化地描述。 知识图谱于 2012 年 5 月 17 日被 Google 正式提出,其初衷是为了提高搜索引擎的能力,增强用户的搜索质量以及搜索体验。知识图谱可以将 Web 从网页链接转向概念链接,支持用户按照主题来检索,实现语义检索。 知识图谱的关键技术包括: 1. 知识抽取:通过自动化的技术抽取出可用的知识单元,包括实体抽取(命名实体识别(Named Entity Recognition,NER)从数据源中自动识别命名实体)、关系抽取(从数据源中提取实体之间的关联关系,形成网状的知识结构)、属性抽取(从数据源中采集特定实体的属性信息)。 2. 知识表示:属性图、三元组。 3. 知识融合:在同一框架规范下进行异构数据整合、消歧、加工、推理验证、更新等,达到数据、信息、方法、经验等知识的融合,形成高质量知识库。包括实体对齐(消除异构数据中的实体冲突、指向不明等不一致性问题)、知识加工(对知识统一管理,形成大规模的知识体系)、本体构建(以形式化方式明确定义概念之间的联系)、质量评估(计算知识的置信度,提高知识的质量)、知识更新(不断迭代更新,扩展现有知识,增加新的知识)。 4. 知识推理:在已有的知识库基础上挖掘隐含的知识。
2025-03-21
知识图谱
知识图谱是一种揭示实体之间关系的语义网络,可以对现实世界的事物及其相互关系进行形式化地描述。它于 2012 年 5 月 17 日由 Google 正式提出,初衷是提高搜索引擎的能力,增强用户的搜索质量和体验,实现从网页链接到概念链接的转变,支持按主题检索和语义检索。 知识图谱的关键技术包括: 1. 知识抽取: 实体抽取:通过命名实体识别从数据源中自动识别命名实体。 关系抽取:从数据源中提取实体之间的关联关系,形成网状知识结构。 属性抽取:从数据源中采集特定实体的属性信息。 2. 知识表示:包括属性图和三元组。 3. 知识融合: 实体对齐:消除异构数据中的实体冲突、指向不明等不一致性问题。 知识加工:对知识统一管理,形成大规模的知识体系。 本体构建:以形式化方式明确定义概念之间的联系。 质量评估:计算知识的置信度,提高知识质量。 知识更新:不断迭代更新,扩展现有知识,增加新知识。 4. 知识推理:在已有的知识库基础上挖掘隐含的知识。 在国家人工智能产业综合标准化体系建设指南中,知识图谱标准规范了知识图谱的描述、构建、运维、共享、管理和应用,包括知识表示与建模、知识获取与存储、知识融合与可视化、知识计算与管理、知识图谱质量评价与互联互通、知识图谱交付与应用、知识图谱系统架构与性能要求等标准。
2025-03-21
coze搭建智能体,用上传的文件和知识库的文件做对比,分析差异点。
以下是关于在 Coze 中搭建智能体的相关信息: 1. 证件照相关操作: 展示原图上传结果,基本脸型已换,生成效果与上传照片特征有关。 改背景可利用改图功能,一键改图效果更好,输出数据类型为图片。 豆包节点生成的是 URL 地址,与前者不同,在工作流使用有差异,可参考简单提示词。 介绍证件照工作流相关操作,包括通过提示词改背景颜色,设置输出方式为返回变量;讲解消耗 token 及保存结果相关问题;对按钮、表单添加事件并设置参数,限制上传文件数量;还涉及给表单和图片绑定数据,以及每次操作后刷新界面确保设置生效。 围绕操作讲解与优化展开,介绍 for meet 的设置,如表单事件操作、图片上传数量修改等,提及编程基础知识。还讲述成果图连接、绑定数据方法及注意事项。展示基本功能实现情况,分析换性别等问题成因,指出需在工作流优化提示词,也可尝试用视频模型解决,最后进入问答环节。 2. 多维表格的高速数据分析: 创建智能体,使用单 Agent 对话流模式。 编排对话流,创建新的对话流并关联智能体。 使用代码节点对两个插件获取的结果进行数据处理,注意代码节点输出的配置格式。 测试,找到一篇小红书笔记,试运行对话流,在对话窗口输入地址查看数据。 发布,选择多维表格,配置输出类型为文本,输入类型选择字段选择器,完善上架信息,可选择仅自己可用以加快审核。 3. 智能体与微信和微信群的连接: 创建知识库,可选择手动清洗数据提高准确性,包括在线知识库和本地文档。 在线知识库创建时,飞书在线文档中每个问题和答案以分割,可编辑修改和删除。 本地文档中注意拆分内容提高训练数据准确度,如将课程章节按固定方式人工标注和处理。 发布应用,确保在 Bot 商店中能够搜到。
2025-04-18
coze搭建知识库和上传文件做对比分析
以下是关于 Coze 搭建知识库和上传文件的对比分析: 创建文本型知识库: 自动分段与清洗:扣子可对上传的内容进行自动解析,支持复杂布局的文件处理,如识别段落、页眉/页脚/脚注等非重点内容,支持跨页跨栏的段落合并,支持解析表格中的图片和文档中的表格内容(目前仅支持带线框的表格)。操作步骤为在分段设置页面选择自动分段与清洗,然后依次单击下一步、确认,可查看分段效果,不满意可重新分段并使用自定义分段。 自定义:支持自定义分段规则、分段长度及预处理规则。操作时在分段设置页面选择自定义,然后依次设置分段规则和预处理规则,包括选择分段标识符、设置分段最大长度和文本预处理规则,最后单击下一步完成内容分段。 创建表格型知识库: 目前支持 4 种导入类型:本地文档、API、飞书、自定义。 本地文档:选择本地文档从本地文件中导入表格数据,目前支持上传 Excel 和 CSV 格式的文件,文件不得大于 20M,一次最多可上传 10 个文件,且表格内需要有列名和对应的数据。 API:参考特定操作从 API 返回数据中上传表格内容,包括选择 API、单击新增 API、输入 API URL 并选择数据更新频率,然后单击下一步。 飞书:参考特定操作从飞书表格中导入内容,包括选择飞书、在新增知识库页面单击授权并选择要导入数据的飞书账号、单击安装扣子应用(仅首次导入需授权和安装),然后选择要导入的表格并单击下一步。目前仅支持导入“我的空间”下的飞书文档,云文档的创建者必须是自己,暂不支持导入知识库和共享空间下的云文档。 上传文本内容: 在线数据:扣子支持自动抓取指定 URL 的内容,也支持手动采集指定页面上的内容,上传到数据库。 自动采集方式:适用于内容量大、需批量快速导入的场景。操作步骤为在文本格式页签下选择在线数据,然后依次单击下一步、自动采集、新增 URL,输入网站地址、选择是否定期同步及周期,最后单击确认,上传完成后单击下一步,系统会自动分片。 手动采集:适用于精准采集网页指定内容的场景。操作步骤为安装扩展程序,在文本格式页签下选择在线数据,然后依次单击下一步、手动采集、授予权限,输入采集内容的网址,标注提取内容,查看数据确认无误后完成并采集。
2025-04-18
知识库怎么构建
构建知识库的方法主要有以下几种: 1. 使用 Flowith 构建: 选择“Manage Your Knowledge Base”,进入知识库管理页面。 点击左上角的加号添加新的知识库,为其起一个便于分辨的名字。 点击添加文件,建议使用 Markdown 格式的文件。 等待 Flowith 对文件进行抽取等处理,处理完毕后可在知识库管理页面测试检索。 2. 使用 Dify 构建: 准备数据:收集文本数据,进行清洗、分段等预处理。 创建数据集:在 Dify 中创建新数据集,上传准备好的文档并编写描述。 配置索引方式:根据需求选择高质量模式、经济模式或 Q&A 分段模式。 集成至应用:将数据集集成到对话型应用中,配置数据集的使用方式。 持续优化:收集用户反馈,更新知识库内容和优化索引方式。 3. 本地部署大模型并搭建个人知识库(涉及 RAG 技术): 了解 RAG 技术:大模型训练数据有截止日期,RAG 可通过检索外部数据并在生成步骤中传递给 LLM 来解决依赖新数据的问题。 RAG 应用的 5 个过程: 文档加载:从多种来源加载文档,如 PDF、SQL 等。 文本分割:把文档切分为指定大小的块。 存储:包括将文档块嵌入转换成向量形式,并将向量数据存储到向量数据库。 检索:通过检索算法找到与输入问题相似的嵌入片。 输出:将问题和检索出的嵌入片提交给 LLM 生成答案。 文本加载器:将用户提供的文本加载到内存中以便后续处理。
2025-04-15
如何搭建知识库
搭建知识库的方法如下: 使用 flowith 搭建: 选择“Manage Your Knowledge Base”,进入知识库管理页面。 点击左上角的加号添加新的知识库,给知识库起一个便于分辨的名字。 点击添加文件,建议使用 Markdown 格式的文件。 Flowith 会对文件进行抽取等处理,处理完毕后可在知识库管理页面测试检索。 使用 Dify 搭建: 准备数据:收集文本数据,进行清洗、分段等预处理。 创建数据集:在 Dify 中创建新数据集,上传准备好的文档并编写描述。 配置索引方式:提供三种索引方式,根据需求选择,如高质量模式、经济模式和 Q&A 分段模式。 集成至应用:将数据集集成到对话型应用中,配置数据集的使用方式。 持续优化:收集用户反馈,更新知识库内容和优化索引方式。 使用 Coze 智能体搭建: 手动清洗数据: 在线知识库:点击创建知识库,创建 FAQ 知识库,选择飞书文档,输入区分问题和答案,可编辑修改和删除,添加 Bot 并在调试区测试效果。 本地文档:注意拆分内容,提高训练数据准确度,按章节进行人工标注和处理,然后创建自定义清洗数据。 发布应用:点击发布,确保在 Bot 商店中能搜到。
2025-04-14
如何搭建自己的知识库
以下是搭建自己知识库的方法: 1. 选择“Manage Your Knowledge Base”,进入知识库管理页面。 2. 在页面左上角点击加号,添加新的知识库,并为其起一个易于分辨的名字。 3. 点击添加文件,建议使用 Markdown 格式的文件。 4. 等待 Flowith 对文件进行抽取等处理。 5. 处理完毕后,可在知识库管理页面测试检索,输入关键词过滤相关内容。 此外,搭建本地知识库还需了解 RAG 技术: 1. RAG 是一种当需要依靠不包含在大模型训练集中的数据时所采用的主要方法,即先检索外部数据,然后在生成步骤中将这些数据传递给 LLM。 2. 一个 RAG 的应用包括文档加载、文本分割、存储、检索和输出 5 个过程。 文档加载:从多种不同来源加载文档,LangChain 提供了 100 多种不同的文档加载器。 文本分割:把 Documents 切分为指定大小的块。 存储:将切分好的文档块进行嵌入转换成向量的形式,并将 Embedding 后的向量数据存储到向量数据库。 检索:通过某种检索算法找到与输入问题相似的嵌入片。 输出:把问题以及检索出来的嵌入片一起提交给 LLM,生成更合理的答案。 对于基于 GPT API 搭建定制化知识库,涉及给 GPT 输入定制化的知识。由于 GPT3.5 一次交互支持的 Token 有限,OpenAI 提供了 embedding API 解决方案。Embeddings 是一个浮点数字的向量,两个向量之间的距离衡量它们的关联性,小距离表示高关联度。在 OpenAI 词嵌入中,靠近向量的词语在语义上相似。文档上有创建 embeddings 的示例。
2025-04-14