Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

手机怎么运行ai模型

Answer

以下是在手机上运行 AI 模型的方法:

  1. AnLinux 安装:AnLinux 是一个能让安卓手机或平板电脑变身为小型 Linux 电脑的工具,有条件可自行下载 termux,软件地址为 https://github.com/EXALAB/AnLinux-App,也可选择安装包自行安装,如 file:app-release.apk 。
  2. termux 安装:termux 是一款基于 Android 平台的开源终端模拟器,可使用手机操作相关命令以跑通大模型。有条件可自行下载,软件地址 https://termux.dev/en/ ,也可选择安装包自行安装,如 file:termux-app_v0.118.0+github-debug_arm64-v8a.apk 。

此外,Phi-3-mini 是微软发布的一个小语言模型,有 38 亿参数,能在端侧流畅运行。可以使用开源工具 Ollama,从官网下载安装包后一路点下一步进行安装。之后打开终端,运行“ollama run phi3”系统就会自动下载 Phi-3 并安装。还可以通过套一层 Web UI 解决终端里给出答案无法格式化 markdown 的内容,如开源社区的 Open WebUI 就可以与 Ollama 无缝集成。相关链接:Ollama.https://ollama.com Open WebUI.https://github.com/open-webui/open-webui 。

更多报道介绍:

  • 微软发布 Phi-3,性能超 Llama-3,可手机端运行 https://mp.weixin.qq.com/s/kb_gfaYkXiW_cR22K2bX9g
  • 微软发布 Phi-3 Mini:3.8B 参数小到能塞进手机,性能媲美 GPT-3.5 https://mp.weixin.qq.com/s/lfDqYBLTaZ5-D4IUW18NJQ
  • 微软的 SLMs 之路:对 Phi-3 的看法&使用体验 https://mp.weixin.qq.com/s/wnAeBG5AYPCkpM-NtlF1IQ
  • Phi-3:小模型,大未来!(附魔搭社区推理、微调实战教程) https://mp.weixin.qq.com/s/pgvt5m4JnpX3kCkVI_wK8g
  • 大语言模型的深度比较:Mixtral 8x22B、Llama 3 与 Phi-3(2024.4) https://mp.weixin.qq.com/s/KiXKc_Xbs5g0XMhF96ICEA
  • 在 Macbook 上运行 Phi-3 https://mp.weixin.qq.com/s/akoUNFJe8gAlC5xLI8vlIw
Content generated by AI large model, please carefully verify (powered by aily)

References

盘盘:手机AI新时代轻松运行小型模型

什么是AnLinux?AnLinux是一个魔法盒子,它能让你的安卓手机或平板电脑变身为一台小型的Linux电脑。AnLinux是一个让安卓设备变得更加多才多艺的工具,可以随身携带的多功能电脑(模型)。有条件自行下载termux,软件地址https://github.com/EXALAB/AnLinux-App,也可以选择以下安装包自行安装,以下安装包是经过验证可行。file:app-release.apk[heading3]termux安装[content]什么是termux?termux是一款基于Android平台的开源终端模拟器,使用进行软件包的管理。可以使用手机操作相关命令,使得能正常跑通大模型。有条件自行下载termux,软件地址https://termux.dev/en/,也可以选择以下安装包自行安装,以下安装包是经过验证可行。file:termux-app_v0.118.0+github-debug_arm64-v8a.apk

盘盘:手机AI新时代轻松运行小型模型

[title]盘盘:手机AI新时代轻松运行小型模型[heading1]建立了【爱好者交流群】大家一起测试找和找场景作者:王三十九生活的幻觉原文:https://mp.weixin.qq.com/s/akoUNFJe8gAlC5xLI8vlIwPhi-3-mini是微软发布的一个小语言模型,有38亿参数,主打一个体积小,能在端侧流畅运行,并且效果不错。今天试着在自己的Macbook上跑了一下。主要用到了一个开源的工具Ollama,这个工具把在本地运行模型的流程做到了“傻瓜式”。除了Phi-3外,它还支持许多主流开源模型,包括Llama 3,Mistral,Gemma等。从官网下载Ollama安装包后一路点下一步进行安装。之后打开终端,运行一个命令ollama run phi3系统就会自动下载Phi-3并安装。这个模型体积只有2.3GB,比我预想的小很多。安装完成后,终端里会出现一个交互界面,在这里就可以直接开聊了。用起来第一感觉是速度非常快。对简单问题的回答也比较令人满意。终端里给出答案无法格式化markdown的内容,这可以通过给它套一层Web UI来解决。开源社区也有解决方案,比如Open WebUI就可以与Ollama无缝集成。根据Github上的说明安装好之后(需要预先安装Docker,之后也是执行一条命令),就可以通过浏览器访问运行在本地的Web聊天界面了。整体操作下来,感觉现在围绕大模型应用的工具链真的很成熟了,对新手很友好。而且在本地跑模型和直接调用API时的感受很不一样,看到它吐出答案的那一刻,很难想象LLM这样强大的技术竟然可以在自己的笔记本电脑上运行起来。1.相关链接Ollama.https://ollama.com Open WebUI.https://github.com/open-webui/open-webui

盘盘:手机AI新时代轻松运行小型模型

[title]盘盘:手机AI新时代轻松运行小型模型作者:盘盘[Welcome to P.|盘盘个人杂志](https://g10npwhy4nv.feishu.cn/docx/U1Iqduc3mox5F8xmbUzcCC6qnof)更多报道介绍:微软发布Phi-3,性能超Llama-3,可手机端运行https://mp.weixin.qq.com/s/kb_gfaYkXiW_cR22K2bX9g微软发布Phi-3 Mini:3.8B参数小到能塞进手机,性能媲美GPT-3.5https://mp.weixin.qq.com/s/lfDqYBLTaZ5-D4IUW18NJQ微软的SLMs之路:对Phi-3的看法&使用体验https://mp.weixin.qq.com/s/wnAeBG5AYPCkpM-NtlF1IQPhi-3:小模型,大未来!(附魔搭社区推理、微调实战教程)https://mp.weixin.qq.com/s/pgvt5m4JnpX3kCkVI_wK8g大语言模型的深度比较:Mixtral 8x22B、Llama 3与Phi-3(2024.4)https://mp.weixin.qq.com/s/KiXKc_Xbs5g0XMhF96ICEA在Macbook上运行Phi-3https://mp.weixin.qq.com/s/akoUNFJe8gAlC5xLI8vlIw最近微软发布Phi-3 Mini:性能媲美GPT-3.5,都宣传说可以塞进手机。那到底如何塞进手机里面呢?

Others are asking
我是一名小说家,需要ai帮助
以下是关于小说家利用 AI 进行小说创作的相关内容: 南瓜博士在人机协作小说创作中有着丰富的经历。除了无名猫视角的获奖作品,还为 LLM 小说比赛尝试了多种方法,包括编写 agent flow 框架让 AI 自动按步骤写作和评判,但因无法认同 AI 的审美而放弃。之后选择在 GPT 页面上对话,先让 AI 生成大量创意,自己进行判断挑选,写作时 AI 勤勤恳恳,自己负责掌舵,最后给出改进意见由 AI 遵循修改。 在具体创作过程中,为确保文章前后一致,先让 AI 写故事概要和角色背景介绍并略作修改。让 AI 以表格形式输出细节描述有三个好处:打破叙事习惯避免陈词滥调;按编号做局部调整容易;确保内容都是具体细节。然后把生成的表格依次复制粘贴让 AI 写文章,偶尔需要自己给建议。 在修改环节,小说大赛要求作品不能改动且不能超 2000 字,让 GPT4 改时它很快暴露出记性不好的缺点,求助 Claude 时关键情节被改没。总之,小说创作中,人有人的用处。
2025-01-23
有什么免费的制作思维导图的AI
以下是一些免费的制作思维导图的 AI 工具: 1. GitMind:免费的跨平台思维导图软件,支持多种模式,可通过 AI 自动生成思维导图。 2. ProcessOn:国内思维导图与 AIGC 结合的工具,能利用 AI 生成思维导图。 3. AmyMind:轻量级在线思维导图工具,无需注册登录,支持自动生成节点。 4. Xmind Copilot:Xmind 推出的基于 GPT 的 AI 思维导图助手,可一键拓展思路、生成文章大纲。 5. TreeMind:“AI 人工智能”思维导图工具,输入需求由 AI 自动完成生成。 6. EdrawMind:提供一系列 AI 工具,包括 AI 驱动的头脑风暴功能,提升生产力。 此外,以下是一些可以绘制逻辑视图、功能视图、部署视图的工具: 1. Lucidchart:流行的在线绘图工具,支持多种视图创建,有拖放界面。 2. Visual Paradigm:全面的 UML 工具,提供多种视图创建功能。 3. ArchiMate:开源建模语言,与 Archi 工具配合可创建逻辑视图。 4. Enterprise Architect:强大的建模、设计和生成代码工具,支持多种视图创建。 5. Microsoft Visio:广泛使用的图表和矢量图形应用程序,有丰富模板。 6. draw.io(现称 diagrams.net):免费在线图表软件,支持多种图表创建。 7. PlantUML:文本到 UML 转换工具,可自动生成部分视图。 8. Gliffy:基于云的绘图工具,支持创建部分架构图。 9. Archi:免费开源工具,支持创建逻辑视图。 10. Rational Rose:IBM 的 UML 工具,支持创建多种视图。
2025-01-23
会画图的AI有哪些
以下是一些可以画图的 AI 工具: 1. 对于绘制 CAD 图: CADtools 12:是 Adobe Illustrator 插件,添加 92 个绘图和编辑工具。 Autodesk Fusion 360:集成 AI 功能的云端 3D CAD/CAM 软件。 nTopology:基于 AI 的设计软件,可创建复杂 CAD 模型。 ParaMatters CogniCAD:根据输入自动生成 3D 模型。 主流 CAD 软件如 Autodesk 系列、SolidWorks 等的生成设计工具。 2. 绘制示意图: Lucidchart:强大的在线图表制作工具,集成 AI 功能,可绘制多种示意图。 Microsoft Visio:专业图表绘制工具,AI 功能可优化图表设计。 Diagrams.net:免费开源的在线图表绘制工具。 3. 绘制逻辑视图、功能视图、部署视图: Lucidchart:流行的在线绘图工具,支持多种视图创建。 Visual Paradigm:全面的 UML 工具,提供多种架构视图创建功能。 ArchiMate:开源建模语言,与 Archi 工具配合使用创建逻辑视图。 Enterprise Architect:强大的建模、设计和生成代码工具,支持多种视图创建。 Microsoft Visio:广泛使用的图表和矢量图形应用程序,提供丰富模板。 draw.io(diagrams.net):免费在线图表软件,支持多种图表创建。 PlantUML:文本到 UML 转换工具,自动生成多种视图。 Gliffy:基于云的绘图工具,支持创建架构图。 Archi:免费开源工具,支持逻辑视图创建。 Rational Rose:IBM 的 UML 工具,支持多种视图创建。 需要注意的是,这些工具通常需要一定的相关知识和技能才能有效使用。对于初学者,建议先学习基本技巧,然后尝试使用这些工具提高设计效率。
2025-01-23
写综述论文的ai?
在论文写作领域,AI 技术的应用发展迅速,能提供多方面的辅助,以下是一些相关的 AI 工具和平台: 1. 文献管理和搜索: Zotero:结合 AI 技术,可自动提取文献信息,助于管理和整理参考文献。 Semantic Scholar:由 AI 驱动的学术搜索引擎,能提供文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:通过 AI 技术提供文本校对、语法修正和写作风格建议,提升语言质量。 Quillbot:基于 AI 的重写和摘要工具,可精简和优化论文内容。 3. 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,便于数据分析和可视化。 Knitro:用于数学建模和优化的软件,有助于复杂数据分析和模型构建。 4. 论文结构和格式: LaTeX:结合自动化和模板,高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,有丰富模板库和协作功能,简化编写过程。 5. 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:通过与已发表作品比较,检测潜在抄袭问题。 利用 AI 写课题可参考以下步骤和建议: 1. 确定课题主题:明确研究兴趣和目标,选有价值和创新性的主题。 2. 收集背景资料:用学术搜索引擎和文献管理软件等 AI 工具搜集相关文献和资料。 3. 分析和总结信息:借助 AI 文本分析工具提取关键信息和主要观点。 4. 生成大纲:用 AI 写作助手生成包括引言、文献综述、方法论、结果和讨论等部分的大纲。 5. 撰写文献综述:利用 AI 工具确保内容准确完整。 6. 构建方法论:根据需求,采用 AI 建议的方法和技术设计研究方法。 7. 数据分析:若涉及数据收集和分析,使用 AI 数据分析工具处理和解释数据。 8. 撰写和编辑:用 AI 写作工具写各部分,并检查语法和风格。 9. 生成参考文献:用 AI 文献管理工具生成正确格式。 10. 审阅和修改:用 AI 审阅工具检查逻辑性和一致性,根据反馈修改。 11. 提交前的检查:用 AI 抄袭检测工具确保原创性,做最后的格式调整。 对于不会代码但想在 20 分钟内上手 Python + AI 的朋友,可循序渐进完成以下任务: 1. 完成一个简单程序。 2. 完成一个爬虫应用,抓取公众号文章。 3. 完成一个 AI 应用,为公众号文章生成概述。 请注意,AI 工具可辅助但不能完全替代研究者的专业判断和创造性思维,使用时应保持批判性思维,确保研究质量和学术诚信。
2025-01-23
我是一个AI小白,想系统学习AI,实现的目标是成为AI领域小能手,如果能用于变现则更好,我需要从什么开始学习,周期大概是多少?适合做哪些变现的项目呢
对于您这样的 AI 小白,想要系统学习 AI 并实现成为领域小能手甚至变现的目标,以下是一些建议: 1. 学习模式:可以采用输入→模仿→自发创造的模式。先广泛输入知识,然后进行模仿,最后尝试自发创造。 2. 学习内容:去 waytoAGI 社区发现自己感兴趣的 AI 领域,学习最新的内容。但要注意,一些旧的学习材料可能已经不适用。 3. 时间安排:学习时间不必每天依次进行,可以在有空的时候学习。 4. 学习状态:保持良好的学习状态,有意愿和动力去学。 5. 费用方面:学习资源大多是免费开源的。 新手学习 AI 可以这样做: 1. 了解 AI 基本概念:阅读「」部分,熟悉术语和基础概念,浏览入门文章了解其历史、应用和发展趋势。 2. 开始学习之旅:在「」中找到为初学者设计的课程,推荐李宏毅老师的课程,也可通过在线教育平台按自己节奏学习并获取证书。 3. 选择感兴趣模块深入:AI 领域广泛,如图像、音乐、视频等,可根据兴趣选择特定模块深入学习,掌握提示词技巧。 4. 实践和尝试:理论学习后进行实践,巩固知识,尝试使用各种产品做出作品,在知识库分享实践成果。 5. 体验 AI 产品:与 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人互动,了解其工作原理和交互方式。 学习周期因人而异,取决于您的学习时间投入、学习效率和理解能力等因素。 关于变现项目,比如可以尝试用 GPT 和 SD 制作图文故事绘本、小说推文等,但要注意项目可能存在的不确定性。
2025-01-23
面向新手个人的AI应用培训课程
以下是为新手个人推荐的一些 AI 应用培训课程: 1. 微软的 AI 初学者课程: 作者/来源:微软 推荐阅读《Introduction and History of AI》从这里起步 链接: 发布日期:2023/02/10 必看星标:👍🏻 2. AI for every one(吴恩达教程): 作者/来源:吴恩达 前 ChatGPT 时代的 AI 综述 链接: 发布日期:2023/03/15 必看星标:👍🏻 3. 大语言模型原理介绍视频(李宏毅): 作者/来源:李宏毅 可以说在众多中文深度学习教程中,李宏毅老师讲的应该是最好的,最通俗易懂 链接: 发布日期:2023/05/01 4. 谷歌生成式 AI 课程: 作者/来源:谷歌 注:前 4 节课为入门课 目录: 5. ChatGPT 入门: 作者/来源:OpenAI 注册、登录、简单使用方法等 目录: 新手学习 AI 的建议: 1. 了解 AI 基本概念: 建议阅读「」部分,熟悉 AI 的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,这些文章通常会介绍 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,你将找到一系列为初学者设计的课程。这些课程将引导你了解生成式 AI 等基础知识,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,你可以按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛(比如图像、音乐、视频等),你可以根据自己的兴趣选择特定的模块进行深入学习。 建议一定要掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出你的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎你实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动是学习 AI 的另一种有效方式。尝试使用如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 通过与这些 AI 产品的对话,你可以获得对 AI 在实际应用中表现的第一手体验,并激发你对 AI 潜力的认识。 此外,还有“90 分钟从 0 开始打造你的第一个 Coze 应用:证件照 2025 年 1 月 18 日副本”,其中包括: 1. Code AI 应用背景:智能体开发从最初的 chatbot 只有对话框,到有了更多交互方式,因用户需求扣子推出了 AI 应用,其低代码或零代码的工作流等场景做得较好。 2. AI CODING 现状:AI CODING 虽强,但目前适用于小场景和产品的第一个版本,复杂应用可能导致需求理解错误从而使产品出错。 3. 证件照应用案例:以证件照为例,说明以前实现成本高,现在有客户端需求并做了相关智能体和交互。 4. AI 应用学习过程:创建 AI 应用,学习操作界面、业务逻辑和用户界面,包括布局、搭建工作流、用户界面及调试发布,重点熟悉桌面网页版的用户界面。
2025-01-23
3d模型自动生成的ai 啊
在 3D 模型生成方面,AI 主要完成了对 3D 模型生成流程的“一步到位”。工作流中的每一个环节几乎都需要一位或一组 3D 美术工程师来完成,而使用 3D 生成模型可以直接完成一个可调整的 3D 粗模,大大提升效率。 以下为一些 AI 生成 3D 模型的工具介绍: 1. 3dfy.ai: 概览:是一家专注于开发先进技术的公司,能将稀疏数据转化为逼真的三维世界,领导团队由计算成像领域资深专家组成。 使用场景:数字 3D 互动体验流行度提升,但受 3D 内容可用性限制,其技术能利用稀疏数据自动创建高质量 3D 模型。 目标用户:数字内容创作者和艺术家、游戏开发者和动画制作人、教育和培训行业专业人士、医疗行业、建筑和工程领域。 应用案例:暂未提及。 2. xiaohu.ai 相关 3D 信息: MakeACharacter:一键生成 3D 数字人,可自定义面部特征,基于真实人类扫描数据,使用 Unreal Engine 渲染,支持中英文提示,兼容多个行业应用。 Rodin Gen1:3D 原生生成模型,拥有 1.5B 参数,可实现 3Dto3D 生成,生成 3D 模型及物理基础渲染材质,支持 3D LoRA 技术。 Skybox AI 0.9 版本更新:可以从文本提示或草图生成 360 度 3D 世界,使用 NeRF 技术,增强图像的空间深度和真实感,提供不同分辨率的 3D 网格下载。 扫描物体生成 3D 模型:使用 APP 扫描物体,完成 3D 全貌捕获,创建 AR QR 码,展示物体于任何地点,在苹果新品官网展示中有应用。
2025-01-23
大模型学习之路
大模型的学习之路包括以下几个重要方面: 什么是大模型: 通俗来讲,大模型是通过输入大量语料,让计算机获得类似人类的“思考”能力,能够进行文本生成、推理问答、对话、文档摘要等工作。 大模型的训练和使用过程: 1. 找学校:训练大模型需要大量计算,GPU更合适,只有购买得起大量GPU的才有资本训练自己的大模型。 2. 确定教材:大模型需要的数据量特别多,几千亿序列(Token)的输入基本是标配。 3. 找老师:即用合适的算法讲述“书本”中的内容,让大模型能够更好理解Token之间的关系。 4. 就业指导:为了让大模型能够更好胜任某一行业,需要进行微调(fine tuning)指导。 5. 搬砖:就业指导完成后,正式干活,比如进行翻译、问答等,在大模型里称之为推导(infer)。 Token: Token被视为模型处理和生成的文本单位,可以代表单个字符、单词、子单词,甚至更大的语言单位,具体取决于所使用的分词方法。在将输入进行分词时,会对其进行数字化,形成一个词汇表。 大模型的运作原理: 以“我今天吃了狮子头和蔬菜”这句话为例,在transformer中,会由attention层对这句话加入更多信息来补充,最终层与层之间,哪些信息需要补充、保留、传递,均由模型自主学习完成。这些层就好像人在阅读文章时的连贯性注意力的过程,大模型以词向量和transformer的模型学习海量知识,把知识作为向量空间中的一种关系网进行存储,并在接受输入时,通过向量空间中的一系列匹配进行输出。 大模型的构建过程: 1. 收集海量数据:如同教孩子成为博学多才的人,让其阅读大量书籍、观看纪录片、与人交谈,对于AI模型就是收集互联网上的文章、书籍、维基百科条目、社交媒体帖子等各种文本数据。 2. 预处理数据:像为孩子整理资料,AI研究人员也需要清理和组织收集到的数据,如删除垃圾信息、纠正拼写错误、将文本分割成易于处理的片段。 3. 设计模型架构:为孩子设计学习计划,研究人员需要设计AI模型的“大脑”结构,通常是一个复杂的神经网络,如使用Transformer架构。 4. 训练模型:如同孩子开始阅读和学习,AI模型开始“阅读”提供的数据,通过反复尝试预测句子中的下一个词,逐渐学会理解和生成人类语言。
2025-01-23
帮我用最简单的方法解释一下时间序列模型
时间序列模型是用于分析和处理随时间变化的数据的一类模型。 例如,在评估 GPT4V 对时间序列和视频内容的理解时,会考虑其对现实世界中随时间展开的事件的理解能力,像时间预测、排序、定位、推理和基于时间的理解等。 在视频生成方面,如 Video LDM 模型,先训练图像生成器,再微调添加时间维度以生成视频。 总的来说,时间序列模型旨在理解和预测数据在时间上的变化规律和趋势。
2025-01-23
以豆包为例,如何通过API调用豆包大模型?
要通过 API 调用豆包大模型,以下是一些相关步骤和信息: 1. 直接调用大模型(之前完成过 coze 对接的同学,直接去二、百炼应用的调用): 百炼首页:https://bailian.console.aliyun.com/ 以调用“qwenmax”模型为例,在/root/chatgptonwechat/文件夹下,打开 config.json 文件,需要更改"model",和添加"dashscope_api_key"。 获取 key 的视频教程: 获取 key 的图文教程:以下是参考配置。 注意:需要“实名认证”后,这些 key 才可以正常使用,如果对话出现“Access to mode denied.Please make sure you are eligible for using the model.”的报错,那说明您没有实名认证,点击去,或查看自己是否已认证。 2. 创建大模型问答应用: 首先可以通过创建一个百炼应用,来获取大模型的推理 API 服务,用于实现 AI 助手。 创建应用: 进入百炼控制台的,在页面右侧点击新增应用。在对话框,选择智能体应用并创建。 在应用设置页面,模型选择通义千问Plus,其他参数保持默认。您也可以选择输入一些 Prompt,比如设置一些人设以引导大模型更好的应对客户咨询。 在页面右侧可以提问验证模型效果。不过您会发现,目前它还无法准确回答你们公司的商品信息。点击右上角的发布,我们将在后面的步骤中去解决这一问题。 获取调用 API 所需的凭证: 在我的应用>应用列表中可以查看所有百炼应用 ID。保存应用 ID 到本地用于后续配置。 在顶部导航栏右侧,点击人型图标,点击 APIKEY 进入我的 APIKEY 页面。在页面右侧,点击创建我的 APIKEY,在弹出窗口中创建一个新 APIKEY。保存 APIKEY 到本地用于后续配置。 3. 配置 FastGpt、OneAPI: 首先配置 OneAPI,还记得刚刚让您白嫖的大模型 API 吗?阿里的接口,这时要派上用场了,去阿里模型的链接里创建 ApiKey,并复制下来。然后在 OneAPI 的页面,点击【渠道】添加新渠道。添加时,类型选择阿里通义千问,名称自己取个,类型选择好后模型是会默认加进去,您不用删减,还有就把刚刚阿里那复制的 ApiKey 粘贴到秘钥里去。这样就 OK 了。后续有其他的大模型也是一样的添加方式。
2025-01-23
大模型训练方式
大模型的训练方式如下: 1. 通俗来讲,大模型是输入大量语料,让计算机获得类似人类的“思考”能力,能进行文本生成、推理问答、对话、文档摘要等工作。可以用“上学参加工作”来类比其训练和使用过程: 找学校:训练大模型需要大量计算,GPU更合适,只有购买得起大量GPU的才有资本训练。 确定教材:大模型需要大量数据,几千亿序列(Token)的输入基本是标配。 找老师:即选择合适算法讲述“书本”内容,让大模型更好理解Token之间的关系。 就业指导:为让大模型更好胜任某一行业,需要进行微调(fine tuning)指导。 搬砖:就业指导完成后,进行如翻译、问答等工作,在大模型里称之为推导(infer)。Token被视为模型处理和生成的文本单位,能代表单个字符、单词等,在将输入进行分词时,会形成词汇表。 2. 100基础训练大模型的步骤: 步骤一·创建数据集:进入厚德云模型训练数据集(https://portal.houdeyun.cn/sd/dataset),在数据集一栏中点击右上角创建数据集,输入数据集名称。zip文件可以是包含图片+标签txt,也可以只有图片没有打标文件,也可以一张一张单独上传照片,但建议提前把图片和标签打包成zip上传。Zip文件里图片名称与标签文件应当匹配,例如:图片名"1.png",对应的达标文件就叫"1.txt"。上传zip以后等待一段时间,确认创建数据集,返回到上一个页面,等待一段时间后上传成功,可以点击详情检查,可预览到数据集的图片以及对应的标签。 步骤二·Lora训练:点击Flux,基础模型会默认是FLUX 1.0D版本,选择数据集,点击右侧箭头,会跳出所有上传过的数据集。触发词可有可无,取决于数据集是否有触发词。模型效果预览提示词则随机抽取一个数据集中的标签填入即可。训练参数这里可以调节重复次数与训练轮数,厚德云会自动计算训练步数,如果不知道如何设置,可以默认20重复次数和10轮训练轮数,可以按需求选择是否加速,点击开始训练,会显示所需要消耗的算力,然后等待训练,会显示预览时间和进度条,训练完成的会显示出每一轮的预览图,鼠标悬浮到想要的轮次模型,中间会有个生图,点击会自动跳转到使用此lora生图的界面。点击下方的下载按钮则会自动下载到本地。 步骤三·Lora生图:点击预览模型中间的生图会自动跳转到相应页面。模型上的数字代表模型强度,可在0.61.0之间调节,也可以自己添加lora文件,点击后会显示训练过的所有lora的所有轮次。VAE不需要替换,正向提示词输入写的提示词,可以选择基于这个提示词一次性生成几张图,选择生成图片的尺寸,横板、竖版、正方形。采样器和调度器新手小白可以默认,迭代步数可以在2030之间调整,CFG可以在3.57.5之间调整,随机种子1代表随机生成图。所有设置都好了以后,点击开始生态,生成的图会显示在右侧。如果有哪次生成结果觉得很不错,想要微调或者高分辨率修复,可以点开那张图,往下滑,划到随机种子,复制下来,粘贴到随机种子这里,这样下次生成的图就会和这次的结果近似。如果确认了一张很合适的种子和参数,想要搞清放大,则点开高清修复,可以选择想放大的倍数,新手小白可以就默认这个算法,迭代步数建议在2030之间,重回幅度根据需求调整,正常在0.30.7之间调整。 3. 今日作业:按照比赛要求,收集六个主题中一个主题的素材并且训练出lora模型后提交lora模型与案例图像。提交链接:https://waytoagi.feishu.cn/share/base/form/shrcnpJAtTjID7cIcNsWB79XMEd
2025-01-23
大模型下文档投喂后,大模型是如何解读文档提取出答案?
大模型在文档投喂后解读文档并提取答案的过程通常包括以下步骤: 1. 问题解析阶段:接收并预处理问题,通过嵌入模型(如 Word2Vec、GloVe、BERT)将问题文本转化为向量,以确保问题向量能有效用于后续检索。 2. 知识库检索阶段:知识库中的文档同样向量化后,比较问题向量与文档向量,选择最相关的信息片段,并抽取相关信息传递给下一步骤。 3. 信息整合阶段:接收检索到的信息,与上下文构建形成融合、全面的信息文本。整合信息准备进入生成阶段。 4. 大模型生成回答:整合后的信息被转化为向量并输入到 LLM(大语言模型),模型逐词构建回答,最终输出给用户。 在这个过程中还包括以下信息处理步骤: 1. 信息筛选与确认:系统会对检索器提供的信息进行评估,筛选出最相关和最可信的内容,同时对信息的来源、时效性和相关性进行验证。 2. 消除冗余:识别和去除多个文档或数据源中可能存在的重复信息,以防在生成回答时出现重复或相互矛盾的信息。 3. 关系映射:分析不同信息片段之间的逻辑和事实关系,如因果、对比、顺序等,构建一个结构化的知识框架,使信息在语义上更加连贯。 4. 上下文构建:将筛选和结构化的信息组织成一个连贯的上下文环境,包括对信息进行排序、归类和整合,形成一个统一的叙述或解答框架。 5. 语义融合:在必要时,合并意义相近但表达不同的信息片段,以减少语义上的重复并增强信息的表达力。 6. 预备生成阶段:整合好的上下文信息被编码成适合生成器处理的格式,如将文本转化为适合输入到生成模型的向量形式。 最终,全新的上下文被一起传递给大语言模型。由于这个上下文包括了检索到的信息,大语言模型相当于同时拿到了问题和参考答案,通过 LLM 的全文理解,最后生成一个准确和连贯的答案。 相关概念: LLM:Large language model 的缩写,即大语言模型。 Prompt:中文译作提示词,是输入给大模型的文本内容,可以理解为和大模型说的话、下达的指令。 Token:大模型语言体系中的最小单元,不同厂商的大模型对中文文本的切分方法不同,通常 1Token≈12 个汉字,大模型的收费计算方法及对输入输出长度的限制通常以 token 为单位计量。 上下文:英文通常翻译为 context,指对话聊天内容前、后的内容信息,上下文长度和上下文窗口都会影响大模型回答的质量。
2025-01-23
AI手机端和网页端的应用场景有什么区别?
AI 手机端和网页端的应用场景存在以下区别: 网页端产品更倾向于支持涉及内容创作和编辑的复杂、多步骤工作流程,例如 AI 语音工具包 ElevenLabs、AI 艺术创作器 Leonardo 以及 AI 演示文稿构建器 Gamma 等。 移动端应用更倾向于通用型助手,不少在功能上模仿了 ChatGPT。 在移动设备上,图片和视频的内容编辑是最常见的用途。例如,美图秀秀、SNOW 和 Adobe Express 等传统创意工具转型为生成式 AI 优先,并在移动排名中表现出色。 ChatGPT 以巨大优势成为网络和移动端排名第一的产品,而争夺最佳消费者助手的竞争正在升温。Perplexity 在网络上排名第三,专注于提供简明、实时和准确的查询答案,且用户参与度很高,还首次进入移动端前 50 名榜单。Anthropic 的 Claude 是 ChatGPT 的直接竞争对手,在网页排名中进入前五。
2025-01-16
我该如何了解AI相关的知识 通往AHI之路有手机端吗
以下是一些了解 AI 相关知识的途径: 1. 访问《通往 AGI 之路》知识库,其提供了全面系统的 AI 学习路径,涵盖从常见名词到应用等各方面知识。您可以通过访问。 2. 关注相关的社交媒体账号,如公众号“通往 AGI 之路”、等,获取 AI 消息和知识普及视频。 3. 学习 AE 软件,了解其功能及与 AI 结合运用的方式,比如在 B 站找丰富的入门课程自学,或从包图网下载工程文件学习。 4. 阅读相关的研究报告,如艾瑞的《2024 年移动端 AI 应用场景研究报告》。 另外,《通往 AGI 之路》知识库目前没有手机端。
2025-01-14
我想用coze写一个能够自动提取我手机的支付记录然后记账的应用要怎么做
要使用 Coze 写一个能够自动提取手机支付记录然后记账的应用,您可以参考以下步骤: 1. 了解 Coze:COZE 是字节跳动旗下子公司推出的 AI Agent 构建工具,允许用户在无编程知识的基础上,使用自然语言和拖拽等方式构建 Agent,目前有丰富的插件生态且可以免费使用海量大模型。 2. 配置变现模板: 设置套餐金额及时长:价格页信息默认包含 3 个套餐,可自行修改、删除、新增,套餐数量无上限,修改后无需保存即刻生效。 订单与用户信息查看:在“管理后台”页面除了可以进行智能体配置,还可查看已付费订单以及注册用户,方便运营维护。 完成所有项目配置后,点击【配置完成】即可邀请用户访问并体验您的 Coze 智能体。 激活支付功能:配置该功能后,可实现平台收款、退款等操作,实现项目的商业变现。通过支付宝申请电脑网站支付,将申请到的 AppId、商户私钥、公钥按要求配置即可。详细的配置教程可以在'Zion 帮助中心'中搜索'支付'找到。 3. 学习记账管家相关知识:记账管家是基于 COZE 平台的能力搭建的一个记账应用,您可以直接和 coze 说您今天的收入或者支出情况,coze 会自动帮您记账,同时帮您计算出账户余额,每一笔记账记录都不会丢失。 4. 搭建教学: 增加记账记录 add_accounting_record 工作流:用于增加记账的工作流,通过大语言模型把用户输入的非结构化数据转变成数据库能理解的结构化数据存入,并告诉用户结果。 开始:定义一个{{prompt}},把用户在 bot 输入的记账内容传入进来(例如:今天花了 233.32 元吃了一顿烧烤)。 大模型:本次任务比较简单,使用任意模型都可以胜任,无需调整大模型参数。输入定义了一个{{input}}引用了【开始节点】的 prompt 参数。提示词让大模型根据{{input}}传入的内容进行拆解,分别识别【记账事项】、【发生时间】、【变动金额】,并把识别出来的内容分别赋值到{{item}}、{{occurrence_time}}、{{balance_change}}。输出定义了【记账事项】、【发生时间】、【变动金额】对应的{{item}}、{{occurrence_time}}、{{balance_change}}。 数据库——插入记账记录:输入定义了{{item}}、{{occurrence_time}}、{{balance_change}},用于接收从大模型节点{{item}}、{{occurrence_time}}、{{balance_change}}输出传入的内容。SQL 命令:不会写没关系,直接使用自动生成语法,输入命令如下,注意我们数据库存入的金额最小单位是分,所以在最终的语法,{{account_change}}100;意思当用户说我花了 2.23 元,数据库存储的是 2.23100=223。提示词:把 item、occurrence_time、account_change 存入到 user_accounting_records 表的{{item}}、{{occurrence_time}}、{{account_change}}中。 数据库——查询账户余额。
2025-01-10
华为手机安装chatgpt
以下是华为手机安装 ChatGPT 的步骤: 1. 打开系统自带的谷歌服务框架: 打开系统设置。 拉到最底下,点击更多设置。 点击账号与同步。 点击谷歌基础服务。 打开基础服务按钮。 2. 安装 Google Play: 到华为应用商店搜索 Google Play 进行安装。 安装好后打开谷歌商店,点击右上角登录谷歌账号。 3. 安装 ChatGPT: 到谷歌商店搜索“ChatGPT”进行下载安装,注意开发者是 OpenAI,别下错。 可能会遇到“google play 未在您所在的地区提供此应用”的问题,解决方法如下: 在 google play 点按右上角的个人资料图标。 依次点按:设置>常规>帐号和设备偏好设置>国家/地区和个人资料。 在这里看到账号没有地区,可以“添加信用卡或借记卡”,国内的双币信用卡就行,填写信息时地区记得选美。 如果回到 google play 首页还搜不到 chatgpt,可以卸载重装 google play,操作过程保持梯子的 IP 一直是美,多试几次。 4. 体验 ChatGPT: 如果只想体验 ChatGPT 3.5 版本,不升级 GPT4,直接登录第二部注册好的 ChatGPT 账号即可。 5. 订阅 GPT4 Plus 版本: 先在 Google play 中的【支付和订阅】【支付方式】中绑定好银行卡。 然后在 ChatGPT 里订阅 Plus。
2025-01-07
AI最好用的手机APP
以下是一些好用的 AI 手机 APP: 图片和视频内容编辑方面:美图秀秀(https://apps.apple.com/us/app/meituphotoeditoraiart/id416048305)排名第 9 位、SNOW(https://apps.apple.com/us/app/snowaiprofile/id1022267439)排名第 30 位、Adobe Express(https://apps.apple.com/us/app/adobeexpressaiphotovideo/id1051937863)排名第 35 位。 消费者助手方面:ChatGPT 第三次以巨大优势成为网络和移动端排名第一的产品。 人工智能搜索引擎方面:Perplexity(http://perplexity.ai/)目前在网络上排名第三,专注于提供简明、实时和准确的查询答案,并引用来源,还首次进入移动端前 50 名榜单。 办公文档翻译工具:WPS 文档翻译功能,可快速翻译办公文档,提高工作效率。 美容护肤产品推荐平台:美丽修行 APP,根据用户肤质推荐适合的美容护肤产品。 儿童安全监控系统:360 儿童手表,利用 AI 技术实现定位、通话、安全区域设置等功能。 汽车保养提醒系统:汽车之家 APP,根据用户的汽车型号、行驶里程等信息提醒车主进行定期保养。 金融方面:Composer(免费可用),用 AI 构建、回测和执行交易算法。 移动 APP 方面:Hevy 是最佳移动应用程序获奖者,在 App Store 和 Google Play 商店中获得了 4.9 的评分,共有 71,000 条评论。ChatGPT for iOS(免费)是 ChatGPT 的官方 iOS 应用程序。Rainbow AI(免费)是精准降水预报 APP。
2025-01-05
AI最好用的手机APP(主要用于体制内 各类公文写作)
以下是一些适用于体制内公文写作的 AI 手机 APP: 1. 文小言 APP 中的“学习强国公文助手”:具有文汇检索、AI 公文书写、AI 公文润色等功能。它有权威的“学习强国”数据库背书,能快速溯源文字材料,重点用横线标注,还能一键看原文,内容覆盖文汇、重要活动、重要会议、指示批示等。 2. 邮件写作方面的 AI 工具: Grammarly:提供语法检查、拼写纠正、风格建议和语气调整等功能,易于使用,支持多种平台,适用于多种语言。网站:https://www.grammarly.com/ Hemingway Editor:简化句子结构,提高可读性,标记复杂句和冗长句。界面简洁,重点突出,适用于改善写作风格和简洁性。网站:http://www.hemingwayapp.com/ ProWritingAid:全面的语法和风格检查,提供详细的写作报告和建议。功能强大,支持多种平台和集成,特别适合专业写作者。网站:https://prowritingaid.com/ Writesonic:基于 AI 生成各种类型的文本,包括电子邮件、博客文章、广告文案等。生成速度快,适合需要快速创作和灵感的用户。网站:https://writesonic.com/ Lavender:专注于邮件写作优化,提供个性化建议和模板,帮助用户提高邮件打开率和回复率。
2025-01-05
有什么AI代码工具,能直接在浏览器端运行
以下是一些能在浏览器端运行的 AI 代码工具: 1. Bolt․new:这是一款终极写代码工具,AI 能帮您自动写代码、自动运行并自动部署,全部在浏览器中完成。您只需撰写简单提示,它就能自动编写代码,并支持一键编辑、运行和自动部署复杂的全栈应用。它依托于 WebContainers 技术,支持现代开发工具链,如 npm、Vite 和 Next.js。但需注意,该功能处于 alpha 测试阶段,可能会有问题,目前仅支持小到中型仓库,且不支持分叉或提交。您可以通过在 GitHub URL 前添加 2. 对于处理文档和数据: 对于数据(以及您对代码的任何奇思妙想):代码解释器。 对于大型文档或同时处理多个文档:Claude 2。 对于较小的文档和网页:Bing 侧边栏(Edge 浏览器的一部分,可以“查看”浏览器中的内容,让 Bing 处理该信息,尽管上下文窗口的大小有限)。
2025-01-13
我想用AI完成一个编程项目,帮我从零到一完成一个个人介绍网站,我现在使用vo.dev完成了一个网站,但是不可以供我使用我上传github后再vercel运行发现会出现404请问我该怎么办
很抱歉,暂时没有关于您所描述问题的相关内容。出现 404 错误通常是由于页面未找到导致的。您可以先检查一下以下几个方面: 1. 确认您在 GitHub 上的代码上传是否完整且正确,包括相关的配置文件和依赖项。 2. 检查 Vercel 的部署设置,确保配置正确,例如域名绑定、环境变量等。 3. 查看服务器的日志,以获取更详细的错误信息,从而确定问题的具体原因。 希望这些建议能对您有所帮助,如果问题仍未解决,建议您进一步查阅相关的技术文档或向技术社区寻求帮助。
2024-12-19
Coze代码测试成功,运行示例时报错
关于您提到的 Coze 代码测试成功但运行示例时报错的问题,以下是相关的信息和可能的解决办法: 图片生成方面:理想生成图片只实现了一次,其他几次生成文字加链接,链接需点进去查看且图片需渲染或加载,无互动趣味性,增加等待时间。因为默认返回的是 markdown 格式,微信不支持 markdown 格式,可在 github 上搜索 nicecoze 插件,基于 cow,把 markdown 转换为图片消息。 模型配置方面:Coze 里面模型配置用的 GPT4o,程序运行调用的是 GPT3.5 Turno。这是因为没有查询到 4o 的 token 计算方式,所以采用 3.5 的,但依然使用的是 GPT4o,只是 token 计算方式用的 3.5。 插件功能方面:Coze 加入了插件 Data Analysia(数据分析)、Browser 和 GPT4v 互动过程无法实现功能。这需要在 coze 里进行鼓捣,和 cow 的 config 无关。 外层 bot 方面:在外层 bot 进行运行时容易出现报错,暂时无法确定原因,猜测可能是外层 bot 的并发不够稳定,不如直接在工作流编辑面板中获取精度结果。如果自行实验时多次报错且无法定位问题原因,不要急着怪自己,相关 bug 已提交给 Coze 团队,希望能加紧优化。
2024-11-19
如何在Mac上运行comfyUI
在 Mac 上运行 ComfyUI 的步骤如下: 1. 电脑配置:MacBook Pro,M1 芯片,16G 内存,Sonoma 14.6.1 系统版本。 2. 部署 ComfyUI: 安装依赖:在终端中输入“pip3 install r requirements.txt”安装 ComfyUI 的依赖文件。终端提示需要特定版本的 numpy 时,输入“Y”卸载当前版本,然后输入“pip3 install numpy==1.26.4”安装指定版本。 启动 ComfyUI:在终端中输入“pwd”查看 ComfyUI 的文件路径,复制文件路径,替换启动命令中的相应部分,然后将命令“source cf/bin/activate && cd /Users/vina/Documents/ComfyUI && python main.py autolaunch listen dontupcastattention outputdirectory ~/Desktop”复制到终端。启动成功后,浏览器会自动跳转,但网页地址可能不对,直接在浏览器打开“http://localhost:8188/”即可使用。 3. 管理器和资源占用插件:官方的 ComfyUI 安装包不带管理器和资源占用视图,需要从 GitHub 下载。管理器插件下载地址:https://github.com/ltdrdata/ComfyUIManager 。资源占用视图插件装不装均可,下载地址:https://github.com/crystian/ComfyUICrystools 。 此外,还有一种搭建自己第一个 ComfyUI 的方法(熟手推荐 自定义创建): 1. 创建工作空间:进入工作空间,点击自定义创建,按照以下内容配置,点击立即创建。镜像选择 lanruicomfyui 镜像;网盘默认挂载;数据集默认挂载 sdbase;启动方式默认选择手动启动。待实例状态由启动中变为运行中后,稍等一会,点击进入 JupyterLab,选择 terminal 终端。 2. 启动 ComfyUI:进入终端后,先参考配置学术加速。运行如下启动命令后按回车键,等待 1 分钟左右。(每次启动都需要输入启动命令)如果想要长时间持续运行任务,请用 nonhup 启动:启动命令“nohup bash /home/user/start.sh > comfy.log 2>&1 &”;查看启动/出图进度命令“tail fn 500 comfy.log”;停止命令“pkill 9 f '27777'”。当页面显示“To see the GUI go to:http://0.0.0.0:27777”,说明已启动成功。 3. 访问 ComfyUI 界面:返回工作空间,点击实例右侧的「打开调试地址」到浏览器,就可以使用 ComfyUI 啦。 需要注意的是,在 Mac 上使用 ComfyUI 存在一些难点: 1. 生图慢,因为 Mac M 只有 CPU,没有 GPU。 2. 生图的大模型在 CPU 环境中不一定适配、好用。 3. 用 Mac 生图的人少,能一起讨论的人也少,解决方案也少,需要自己摸索。 4. 大神们在 Windows 系统里做的一键包,在 Mac 中不能用。 5. 大神们的工作流也要做适配 Mac 的修改,需要一点点代码阅读和修改的能力。
2024-11-15
本地运行Llama3需要的电脑是什么配置的?
本地运行 Llama3 所需电脑配置的相关信息如下: 1. 安装 Docker Desktop: 点击/复制到浏览器下载:https://docs.docker.com/desktop/install/windowsinstall/ 。 下载后,双击下载项目,出现相关界面点击 ok 开始加载文件。注意下载相对较快,完成后不要点击“close and restart”,以免导致 llama3 下载中断。等待终端的模型下载完成后再点击重启。 重启后,点击“Accept”,选择第一个,点击“Finish”。 然后会提示注册账号,若打不开网页,可能需要科学上网。按照正常流程注册账号并登录 Docker 即可。 2. 下载 Llama3 模型: 打开终端。如果是 Windows 电脑,点击 win+R,输入 cmd 点击回车;如果是 Mac 电脑,按下 Command(⌘)+ Space 键打开 Spotlight 搜索,输入“Terminal”或“终端”,然后从搜索结果中选择“终端”应用程序。 复制相关命令行,粘贴进入并回车,会开始自动下载,文件下载较慢,可同时进行安装 Docker 的步骤。 3. 下载 Open WebUI: 回到桌面,再打开一个新的终端窗口。如果是 Windows 电脑,点击 win+R,输入 cmd 点击回车;如果是 Mac 电脑,按下 Command(⌘)+ Space 键打开 Spotlight 搜索,输入“Terminal”或“终端”,然后从搜索结果中选择“终端”应用程序。 将相关命令输入,等待下载。 点击或复制相关地址进入浏览器,进行注册登录。 登入后,点击顶部的 Model,选择“llama3:8b”。 需要注意的是,模型的回复速度取决于您电脑的配置。另外,您还可以参考开源项目 。同时,有教程提到可以通过购买算力解决本地电脑配置不够的问题,但需要充值 50 元。
2024-11-14
coze 是否可以通过LLM生成python代码运行查询excel表格信息?
在 Coze 中,可以通过以下步骤实现相关操作: 1. 进入 Coze,点击「个人空间 工作流 创建工作流」,打开创建工作流的弹窗。 2. 根据弹窗要求,自定义工作流信息,点击确认完成工作流的新建。 3. 新建后的编辑视图与功能中,左侧「选择节点」模块根据子任务需要,实际用到的有: 插件:提供一系列能力工具,拓展 Agent 的能力边界。如本案例中的思维导图、英文音频,无法通过 LLM 生成,需依赖插件实现。 大模型:调用 LLM,实现各项文本内容的生成。如本案例中的中文翻译、英文大纲、单词注释等依赖大模型节点。 代码:支持编写简单的 Python、JS 脚本,对数据进行处理。 4. 编辑面板中的开始节点、结束节点,分别对应分解子任务流程图中的原文输入和结果输出环节。 5. 按照流程图,在编辑面板中拖入对应的 LLM 大模型、插件、代码节点,即可完成工作流框架的搭建。 需要注意的是,因为前面需要对多维表格操作,所以要先在 http://open.feishu.cn 上建一个飞书机器人,并添加知识库或多维表格编辑权限,具体可参考飞书文档。
2024-10-16