模型微调主要有以下方式:
fine_tuned_model
字段将填充模型名称。您现在可以将此模型指定为我们的Completions API
的参数,并使用Playground
向它发出请求。在您的工作首次完成后,您的模型可能需要几分钟时间才能准备好处理请求。如果对您的模型的完成请求超时,可能是因为您的模型仍在加载中。如果发生这种情况,请在几分钟后重试。您可以通过将模型名称作为model
完成请求的参数传递来开始发出请求,包括OpenAI
命令行界面、cURL
、Python
、Node.js
等方式。您还可以继续使用所有其他完成参数,如temperature
、frequency_penalty
、presence_penalty
等对这些请求进行微调模型。API
提供的模型中获得更多收益,比如比即时设计更高质量的结果、能够训练比提示中更多的例子、由于更短的提示而节省了Token
、更低的延迟请求。GPT-3
已经在来自开放互联网的大量文本上进行了预训练。当给出仅包含几个示例的提示时,它通常可以凭直觉判断出您要执行的任务并生成合理的完成,这通常称为“小样本学习”。微调通过训练比提示中更多的示例来改进小样本学习,让您在大量任务中取得更好的结果。对模型进行微调后,您将不再需要在提示中提供示例,这样可以节省成本并实现更低延迟的请求。在高层次上,微调涉及以下步骤:准备和上传训练数据、训练新的微调模型、使用您的微调模型。DPO
等方法。还采用了[在线模型合并]的方法减少对齐税。不久后,通义千问团队将推出Qwen2
的技术报告。当作业成功时,该fine_tuned_model字段将填充模型名称。您现在可以将此模型指定为我们的Completions API的参数,并使用Playground向它发出请求。在您的工作首次完成后,您的模型可能需要几分钟时间才能准备好处理请求。如果对您的模型的完成请求超时,可能是因为您的模型仍在加载中。如果发生这种情况,请在几分钟后重试。您可以通过将模型名称作为model完成请求的参数传递来开始发出请求:OpenAI命令行界面:cURL:Python:Node.js:您可以继续使用所有其他完成参数,如temperature等,对这些frequency_penalty请求presence_penalty进行微调模型。
通过提供以下内容,微调可让您从API提供的模型中获得更多收益:1.比即时设计更高质量的结果2.能够训练比提示中更多的例子3.由于更短的提示而节省了Token4.更低的延迟请求GPT-3已经在来自开放互联网的大量文本上进行了预训练。当给出仅包含几个示例的提示时,它通常可以凭直觉判断出您要执行的任务并生成合理的完成。这通常称为“小样本学习”。微调通过训练比提示中更多的示例来改进小样本学习,让您在大量任务中取得更好的结果。对模型进行微调后,您将不再需要在提示中提供示例。这样可以节省成本并实现更低延迟的请求。在高层次上,微调涉及以下步骤:1.准备和上传训练数据2.训练新的微调模型3.使用您的微调模型
大规模预训练后,通义千问团队对模型进行精细的微调,以提升其智能水平,让其表现更接近人类。这个过程进一步提升了代码、数学、推理、指令遵循、多语言理解等能力。此外,模型学会对齐人类价值观,它也随之变得更加对人类有帮助、诚实以及安全。通义千问团队的微调过程遵循的原则是使训练尽可能规模化的同时并且尽可能减少人工标注。团队探索了如何采用多种自动方法以获取高质量、可靠、有创造力的指令和偏好数据,其中包括针对数学的[拒绝采样](https://arxiv.org/pdf/2308.01825)、针对代码和指令遵循的代码执行反馈、针对创意写作的回译、针对角色扮演的[scalable oversight](https://arxiv.org/pdf/2401.12474)、等等。在训练方面,团队结合了有监督微调、反馈模型训练以及在线DPO等方法。还采用了[在线模型合并](https://arxiv.org/pdf/2405.17931)的方法减少对齐税。这些做法都大幅提升了模型的基础能力以及模型的智能水平。不久后,通义千问团队将推出Qwen2的技术报告。四、Qwen2系列模型在开源社区的影响力怎么样?