直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

大模型的结构和训练方式

回答

大模型的结构和训练方式如下:

  • 整体架构:
    • 基础层:为大模型提供硬件支撑和数据支持,例如 A100、数据服务器等。
    • 数据层:包括静态的知识库和动态的三方数据集。
    • 模型层:分为 LLm(大语言模型,如 GPT,一般使用 transformer 算法实现)和多模态模型(如文生图、图生图等模型,训练数据为图文或声音等多模态数据集)。
    • 平台层:如大模型的评测体系或 langchain 平台等,提供模型与应用间的组成部分。
    • 表现层:即应用层,是用户实际看到的地方。
  • 训练方式:
    • 收集海量数据:如研究人员会收集互联网上的文章、书籍、维基百科条目、社交媒体帖子等各种文本数据。
    • 预处理数据:包括删除垃圾信息、纠正拼写错误、将文本分割成易于处理的片段等。
    • 设计模型架构:通常是一个复杂的神经网络,如可能会使用 Transformer 架构。
    • 训练模型:模型反复阅读数据,尝试预测句子中的下一个词,通过不断重复逐渐学会理解和生成人类语言。

此外,大模型的特点包括预训练数据量大(往往来自互联网,包括论文、代码、公开网页等,一般用 TB 级别的数据进行预训练)和参数多(如 Open 在 2020 年发布的 GPT-3 就已达到 170B 的参数)。模型架构方面,有 encoder-only(适用于自然语言理解任务,代表模型是 BERT)、encoder-decoder(同时结合 Transformer 架构的 encoder 和 decoder 来理解和生成内容,代表是 google 的 T5)、decoder-only(更擅长自然语言生成任务,众多 AI 助手采用此结构)。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

Ranger:【AI 大模型】非技术背景,一文读懂大模型(长文)

首先为方便大家对大模型有一个整体的认知,我们先从大模型的整体架构着手,来看看大模型的组成是怎么样的。下面是我大致分的个层。从整体分层的角度来看,目前大模型整体架构可以分为以下几层:[heading3]1.基础层:为大模型提供硬件支撑,数据支持等[content]例如A100、数据服务器等等。[heading3]2.数据层[content]这里的数据层指的不是用于基层模型训练的数据基集,而是企业根据自己的特性,维护的垂域数据。分为静态的知识库,和动态的三方数据集[heading3]3.模型层:LLm或多模态模型[content]LLm这个大家应该都知道,large-language-model,也就是大语言模型,例如GPT,一般使用transformer算法来实现。多模态模型即市面上的文生图、图生图等的模型,训练所用的数据与llm不同,用的是图文或声音等多模态的数据集[heading3]4.平台层:模型与应用间的平台部分[content]比如大模型的评测体系,或者langchain平台等,提供模型与应用间的组成部分[heading3]5.表现层:也就是应用层,用户实际看到的地方[content]这个就很好理解了,就不用我多作解释了吧

从 0 到 1 了解大模型安全,看这篇就够了

encoder-only:这些模型通常适用于可以自然语言理解任务,例如分类和情感分析.最知名的代表模型是BERTencoder-decoder:此类模型同时结合了Transformer架构的encoder和decoder来理解和生成内容。该架构的一些用例包括翻译和摘要。encoder-decoder的代表是google的T5decoder-only:此类模型更擅长自然语言生成任务。典型使用包括故事写作和博客生成。这也是我们现在所熟知的众多AI助手的结构我们目前耳熟能详的AI助手基本都来自左侧的灰色分支,当然也包括ChatGPT。这些架构都是根据谷歌2017年发布的论文“attention is all you need”中提出的transformer衍生而来的,在transformer中,包括Encoder,Decoder两个结构目前的大型语言模型就是右侧只使用Decoder的Decoder-only架构的模型大模型又大在哪呢?第一,大模型的预训练数据非常大,这些数据往往来自于互联网上,包括论文,代码,以及可进行爬取的公开网页等等,一般来说,现在最先进的大模型一般都是用TB级别的数据进行预训练。第二,参数非常多,Open在2020年发布的GPT-3就已经达到170B的参数在GPT3中,模型可以根据用户输入的任务描述,或给出详细的例子,完成任务但这与我们熟知的ChatGPT仍然有着很大的差距,使用ChatGPT只需要像和人类一样对话,就可以完成任务。除了形式上的不同之外,还有一个更加重要的差距,那就是安全性上的差别。

胎教级教程:万字长文带你理解 RAG 全流程

旁白当你发现大模型的效果并没有你预期想的那么好时,你打算放弃但是你也听到了另一种声音:如果大模型没有你想的那么好,可能是你没有了解他的能力边界。你不想就这么放弃,为了更好的理解大模型,你首先了解了他的创建过程[heading2]1.收集海量数据[content]想象一下,我们要教一个孩子成为一个博学多才的人。我们会怎么做?我们会让他阅读大量的书籍,观看各种纪录片,与不同背景的人交谈等。对于AI模型来说,这个过程就是收集海量的文本数据。例子:研究人员会收集互联网上的文章、书籍、维基百科条目、社交媒体帖子等各种文本数据。[heading2]2.预处理数据[content]在孩子开始学习之前,我们可能会先整理这些资料,确保内容适合他的年龄和学习能力。同样,AI研究人员也需要清理和组织收集到的数据。例子:删除垃圾信息,纠正拼写错误,将文本分割成易于处理的片段。[heading2]3.设计模型架构[content]就像我们要为孩子设计一个学习计划一样,研究人员需要设计AI模型的"大脑"结构。这通常是一个复杂的神经网络。这里我们就不展开了,我们只需要了解,为了让AI能够很好的学习知识,科学家们设计了一种特定的架构。例子:研究人员可能会使用Transformer架构,这是一种特别擅长处理序列数据(如文本)的神经网络结构。[heading2]4.训练模型[content]就像孩子开始阅读和学习一样,AI模型开始"阅读"我们提供的所有数据。这个过程被称为"训练"。例子:模型会反复阅读数据,尝试预测句子中的下一个词。比如给出"太阳从东方__",模型学会预测"升起"。通过不断重复这个过程,模型逐渐学会理解和生成人类语言。

其他人在问
如何利用AGI创建3D打印的模型
利用 AGI 创建 3D 打印模型的方法如下: 1. 将孩子的画转换为 3D 模型: 使用 AutoDL 部署 Wonder3D:https://qa3dhma45mc.feishu.cn/wiki/Pzwvwibcpiki2YkXepaco8Tinzg (较难) 使用 AutoDL 部署 TripoSR:https://qa3dhma45mc.feishu.cn/wiki/Ax1IwzWG6iDNMEkkaW3cAFzInWe (小白一学就会) 具体实物(如鸟/玩偶/汽车)的 3D 转换效果最佳,wonder3D 能智能去除背景(若效果不佳,需手动扣除背景) 对于一些非现实类玩偶类作品,wonder3D 识别效果不佳时,可先使用 StableDiffusion 将平面图转换为伪 3D 效果图再生成模型。以 usagi 为例,先通过 SD 生成 3D 的 usagi,再将 usagi 输入 wonder3D。 2. 生成特定模型,如创建一个乐高 logo 的 STL 文件: 设计乐高 logo:使用矢量图形编辑软件(如 Adobe Illustrator 或 Inkscape)创建或获取矢量格式的乐高 logo,确保符合标准。 导入 3D 建模软件:将矢量 logo 导入到 3D 建模软件(如 Blender、Fusion 360 或 Tinkercad)中。 创建 3D 模型:在 3D 建模软件中根据矢量图形创建 3D 模型,调整尺寸和厚度以适合打印。 导出 STL 文件:将完成的 3D 模型导出为 STL 文件格式。 以下是在 Blender 中使用 Python 脚本创建简单 3D 文本作为乐高 logo 并导出为 STL 文件的步骤: 打开 Blender,切换到“脚本编辑器”界面。 输入脚本,点击“运行脚本”按钮,Blender 将创建 3D 文本对象并导出为 STL 文件。 检查生成的 STL 文件,可根据需要调整脚本中的参数(如字体、位置、挤压深度等)以获得满意的乐高 logo 3D 模型。 此外,还有一些其他动态: 阿里妈妈发布了:https://huggingface.co/alimamacreative/FLUX.1TurboAlpha ,演示图片质量损失小,比 FLUX schell 本身好很多。 拓竹旗下 3D 打印社区 Make World 发布 AI:https://bambulab.com/zh/signin ,3D 生成模型找到落地和变现路径。 上海国投公司搞了一个:https://www.ithome.com/0/801/764.htm ,基金规模 100 亿元,首期 30 亿元,并与稀宇科技(MiniMax)、阶跃星辰签署战略合作协议。 智谱的:https://kimi.moonshot.cn/ 都推出基于深度思考 COT 的 AI 搜索。 字节跳动发布:https://mp.weixin.qq.com/s/GwhoQ2JCMQwtLN6rsrJQw ,支持随时唤起豆包交流和辅助。 :https://x.com/krea_ai/status/1844369566237184198 ,集成了海螺、Luma、Runway 和可灵四家最好的视频生成模型。 :https://klingai.kuaishou.com/ ,现在可以直接输入文本指定对应声音朗读,然后再对口型。
2024-12-20
如何通过提示词提高模型数据对比和筛选能力
以下是一些通过提示词提高模型数据对比和筛选能力的方法: 1. 选择自定义提示词或预定义话题,在网站上使用如 Llama3.1 8B Instruct 模型时,输入对话内容等待内容生成,若右边分析未刷新可在相关按钮间切换。由于归因聚类使用大模型,需稍作等待,最终结果可能因模型使用的温度等因素而不同。 2. 在写提示词时不能依赖直觉和偷懒,要实话实说,补充详细信息以避免模型在边缘情况上犯错,这样也能提高数据质量。 3. 在分类问题中,提示中的每个输入应分类到预定义类别之一。在提示末尾使用分隔符如“\n\n\n\n”,选择映射到单个 token 的类,推理时指定 max_tokens=1,确保提示加完成不超过 2048 个 token,每班至少有 100 个例子,可指定 logprobs=5 获得类日志概率,用于微调的数据集应在结构和任务类型上与模型使用的数据集相似。例如在确保网站广告文字正确的案例中,可微调分类器,使用合适的分隔符和模型。
2024-12-20
通过提示词可以提高模型的数学计算能力吗
通过提示词可以在一定程度上提高模型的数学计算能力。例如 PoT 技术,它是思维链技术的衍生,适用于数值推理任务,会引导模型生成一系列代码,再通过代码解释器工具进行运算,这种方式能显著提升模型在数学问题求解上的表现。PoT 作为 CoT 的衍生技术,遵循零样本和少样本的学习范式,零样本 PoT 与 CoT 方法相似,不需要大量样本即可进行有效推理,少样本 PoT 也通过较少样本优化模型表现。但需要注意的是,大模型在解决数学问题时可能存在不够可靠的情况。
2024-12-20
哪一个开源大语言模型对中文支持比较好?
以下是一些对中文支持较好的开源大语言模型: 1. OpenChineseLLaMA: 地址: 简介:基于 LLaMA7B 经过中文数据集增量预训练产生的中文大语言模型基座,对比原版 LLaMA,该模型在中文理解能力和生成能力方面均获得较大提升,在众多下游任务中均取得了突出的成绩。 2. BELLE: 地址: 简介:开源了基于 BLOOMZ 和 LLaMA 优化后的一系列模型,同时包括训练数据、相关模型、训练代码、应用场景等,也会持续评估不同训练数据、训练算法等对模型表现的影响。 3. Panda: 地址: 简介:开源了基于 LLaMA7B,13B,33B,65B 进行中文领域上的持续预训练的语言模型,使用了接近 15M 条数据进行二次预训练。 4. Llama2Chinese13bChat: 地址: 5. Gemma7bit: 地址: 此外,AndesGPT 在语言理解与抽取、角色扮演能力上排名国内前一,在代码、生成与创作、上下文对话能力上排名国内前三,各项能力较为均衡,聚焦在移动设备端的应用。Baichuan213BChat 是百川智能自主训练的开源大语言模型,是中文开源模型的主导力量。
2024-12-20
说明jetson orin nano可以使用什么模型?Grok-1模型可以吗?
目前没有关于 Jetson Orin Nano 是否可以使用 Grok1 模型的明确信息。但一般来说,Jetson Orin Nano 可以支持多种常见的深度学习模型,如基于 TensorFlow、PyTorch 框架开发的模型等。具体能够使用哪些模型,还需要考虑模型的计算需求、内存占用以及 Jetson Orin Nano 的硬件配置和性能限制等因素。
2024-12-20
怎么用已经公布的源代码,自己拥有一个私人ai。详细步骤,并且列出硬件设施,说明jetson orin nano可以使用什么模型?
目前已公布的源代码种类繁多,要利用其拥有一个私人 AI 并非简单直接的过程,且需要一定的技术知识和经验。 一般来说,以下是大致的步骤: 1. 选择合适的源代码:根据您的需求和技术能力,从众多已公布的源代码中选择适合的项目。 2. 环境搭建:安装所需的开发工具、编程语言和相关依赖库。 3. 数据准备:收集和整理适合训练和优化模型的数据。 4. 代码理解与修改:深入理解所选源代码的结构和逻辑,根据您的需求进行必要的修改和优化。 5. 训练模型:使用准备好的数据对模型进行训练。 6. 评估与优化:对训练好的模型进行评估,根据评估结果进行进一步的优化。 关于硬件设施,Jetson Orin Nano 是一款性能不错的嵌入式计算设备。它可以支持多种模型,例如常见的深度学习模型如卷积神经网络(CNN)、循环神经网络(RNN)等。但具体能使用哪些模型,还取决于模型的规模、计算需求以及您对性能和资源的要求。
2024-12-20
你是Ai产品经理,我想使用训练一个智能体帮我改写新闻标题,请告诉我应该怎么做
训练一个智能体来改写新闻标题,您可以按照以下步骤进行: 1. 明确需求和目标:确定您希望智能体改写新闻标题的风格、重点和要求,例如更简洁、更吸引人、突出特定信息等。 2. 收集数据:收集大量的新闻标题样本,包括各种类型和主题的,以便智能体有足够的学习材料。 3. 选择合适的技术和框架:根据您的技术能力和需求,选择适合的人工智能框架和算法,例如自然语言处理相关的技术。 4. 数据预处理:对收集到的数据进行清洗、分词、标记等预处理操作,以便智能体能够更好地理解和学习。 5. 训练模型:使用预处理后的数据训练智能体,调整参数以优化训练效果。 6. 评估和优化:使用测试数据评估智能体的性能,根据评估结果对模型进行优化和改进。 7. 部署和应用:将训练好的智能体部署到实际应用中,并不断监测和改进其表现。 需要注意的是,训练智能体是一个复杂的过程,可能需要一定的技术知识和经验。
2024-12-19
怎么训练模型进行标题改写
训练模型进行标题改写可以参考以下方法: Sora 模型: 对于视频标题改写,首先训练一个能够为视频生成详细描述的视频标题生成器。可利用 CoCa 架构进行视频标题生成,如 VideoCoCa,通过取视频的多个帧并将每个帧输入到图像编码器,产生的帧令牌嵌入被展平并连接成一个长序列的视频表示,再由生成性池化器和对比性池化器处理,与对比损失和标题生成损失一起联合训练。构建视频标题生成器的其他替代方法包括 mPLUG2、GIT、FrozenBiLM 等。为确保用户提示与训练数据中的描述性标题格式一致,执行额外的提示扩展步骤,用 GPT4V 将用户输入扩展为详细的描述性提示。 对于语言指令跟随,通过开发一个能够生成长而详细标题的字幕器,然后用这些标题来训练模型。但收集用于训练此类字幕器的数据的过程未知,且可能需要大量劳动。 DALL·E 3 模型:通过用详细、描述性的标题重新标注现有图像来解决指令遵循问题。首先训练一个图像标题生成器,这是一个视觉语言模型,用于生成精确和描述性的图像标题。然后,使用标题生成器生成的描述性图像标题来微调文本到图像模型。具体来说,DALL·E 3 遵循对比标题生成器(CoCa)的方法,联合训练一个图像标题生成器,该生成器具有 CLIP 架构和一个语言模型目标。进一步在详细描述图像的主要对象、周围环境、背景、文本、风格和颜色方面进行微调后,图像标题生成器能够为图像生成详细的描述性标题。文本到图像模型的训练数据集是由图像标题生成器生成的重新标注数据集和真实人类编写的数据混合而成,通过上采样来解决实际用户提示与训练数据中的描述性图像描述之间的不匹配问题。 关于 Midjourney 的训练 prompt: The issue with DMs is that the powerful ones often consume hundreds of GPU days,and inference is quite expensive due to sequential evaluations.To enable DM training on limited computational resources without compromising their quality as well as flexibility,DMs are applied in the latent space of powerful pretrained autoencoders. Training a diffusion model on such a representation makes it possible to achieve an optimal point between complexity reduction and detail preservation,significantly improving visual fidelity.Introducing a cross attention layer to the model architecture turns the diffusion model into a powerful and flexible generator for generally conditioned inputs such as text and bounding boxes,enabling highresolution convolutionbased synthesis. Midjourney 会例行发布新的模型版本以提高效率、连贯性和质量。最新的模型是默认的,但可以使用 version 或 v 参数或通过 /settings 命令选择其他模型版本。不同的模型在不同类型的图像上表现出色。Midjourney V5 模型是最新和最先进的模型,于 2023 年 3 月 15 日发布。使用此模型,可在 prompt 末尾添加 v 5 参数,或使用 /settings 命令并选择 MJ Version 5。该模型具有很高的连贯性,擅长解释自然语言提示,分辨率更高,并支持诸如 tile 等高级功能。其新特点包括更广泛的风格范围、对提示更敏感、更高的图像质量、更详细的图像、细节更可能正确以及更少不需要的文本。
2024-12-19
怎么自己训练ai?
自己训练 AI 通常包括以下主要步骤: 1. 选择合适的部署方式: 本地环境部署。 云计算平台部署。 分布式部署。 模型压缩和量化。 公共云服务商部署。需根据自身的资源、安全和性能需求来选择。 2. 准备训练所需的数据和计算资源: 确保有足够覆盖目标应用场景的训练数据。 准备足够的计算资源,如 GPU 服务器或云计算资源。 3. 选择合适的预训练模型作为基础: 可以使用开源的预训练模型如 BERT、GPT 等。 也可以自行训练一个基础模型。 4. 针对目标任务进行模型微调训练: 根据具体应用场景对预训练模型进行微调训练。 优化模型结构和训练过程以提高性能。 5. 部署和调试模型: 将训练好的模型部署到生产环境。 对部署的模型进行在线调试和性能优化。 6. 注意安全性和隐私保护: 大模型涉及大量数据和隐私信息,要重视安全性和合规性。 总的来说,训练自己的 AI 需要综合考虑多方面因素,包括部署方式、数据准备、模型训练、部署调试以及安全性等。要根据具体需求选择合适的方法,并注意优化各个环节以提高模型性能和应用效果。 在独立游戏开发中,如《玩具帝国》的人机 AI 采用 Unity 的 mlagent 进行训练,有以下经验: 选择自己开发 AI 是因为游戏是离线模式且对决策实时性和本地 AI 运行性能有要求,无法使用线上接口。 通过“即时奖励”和“预测奖励”进行长周期决策 AI 的训练,数学模型可调,可改变 AI 的决策倾向。 为让每次输入的向量等长,对观察的内容进行处理。 先训练掌握基本规则的底模,再在此基础上做分支训练得到适用于不同文明策略的模型。 为避免过拟合,在每个 Episode 前对初始条件进行随机,决策时对 AI 的可选项进行随机 Dropout。 关于判断一张图片是否为 AI 生成,目前已有不少网站通过对大量图片数据的抓取和分析来给出画作属性的判断可能性,例如 ILLUMINARTY 网站。但在测试中存在一些问题,如结构严谨的真实摄影作品可能被误判为 AI 作图,这是因为鉴定 AI 自身的逻辑算法不能像人类一样综合考虑各种不符合逻辑的表现。
2024-12-16
哪么我需要怎么做才能训练它呢
要在 Comfy UI 中训练 LoRA 模型,您可以按照以下步骤进行: 1. 下载相关文件并解压放入 custom_nodes 文件夹中,然后安装所需的依赖项。 打开命令提示符,输入相应内容。 确保后面有一个空格,将 requirements_win.txt 文件(Windows 系统)或 requirements.txt 文件(其他系统)拖到命令提示符中,按 Enter 键安装依赖项。如果为 Comfy 使用了虚拟环境,需先激活。 2. 注意一些事项: 图像必须放在以命名的文件夹中,数字应较小,如 5,且下划线必须有。 对于 data_path,必须写入包含数据库文件夹的文件夹路径。 3. 参数设置: 在第一行,可从 checkpoint 文件夹中选择任何模型,但据说进行 LoRA 训练需选择一个基本模型。 4. 训练过程: 选择一个名字为您的 LoRA,如果默认值不好,可更改值(epochs 数应接近 40),然后启动工作流程。 点击 Queue Prompt 后,所有事情会在命令提示符中发生,可查看训练进度。 5. 注意事项: 建议与字幕自定义节点和 WD14 标签一起使用。 制作字幕时禁用 LoRA 训练节点,防止 Comfy 在制作字幕前启动训练。 目前训练会在 Comfy 的根文件夹中的 log 文件夹中创建日志文件,该日志可能可在 Tensorboard UI 中加载。 默认情况下,训练结果直接保存在 ComfyUI 的 lora 文件夹中,训练后只需刷新并选择 LoRA 就可以测试。
2024-12-15
国内有哪些gpu算力平台,支持快速搭建AI大模型预训练环境 和 微调环境
国内的 GPU 算力平台中,支持快速搭建 AI 大模型预训练环境和微调环境的有: 1. 阿里云:提供云计算资源,用户可根据需求租用算力服务。 2. 腾讯云:具备相应的算力支持,为用户提供灵活的选择。 3. 亚马逊 AWS:基础设施提供商建立的“算力集市”,可满足用户的算力需求。 在搭建环境时,通常需要考虑以下步骤: 1. 选择合适的部署方式,如本地环境部署、云计算平台部署、分布式部署、公共云服务商部署等,根据自身的资源、安全和性能需求进行选择。 2. 准备训练所需的数据和计算资源,确保有足够的训练数据覆盖目标应用场景,并准备足够的计算资源,如 GPU 服务器或云计算资源。 3. 选择合适的预训练模型作为基础,例如可以使用开源的预训练模型如 BERT、GPT 等,也可以自行训练一个基础模型。 4. 针对目标任务进行模型微调训练,根据具体应用场景对预训练模型进行微调训练,优化模型结构和训练过程以提高性能。 5. 部署和调试模型,将训练好的模型部署到生产环境,并对部署的模型进行在线调试和性能优化。 6. 注意安全性和隐私保护,大模型涉及大量数据和隐私信息,需要重视安全性和合规性。 此外,英伟达还发布了统一的超算平台 DGX B200,用于 AI 模型训练、微调和推理。它包括 8 个 Blackwell GPU 和 2 个第五代 Intel Xeon 处理器,包含 FP4 精度功能,提供高达 144 petaflops 的 AI 性能、1.4TB 的 GPU 内存和 64TB/s 的内存带宽。但模型训练能耗也是一个关键问题,例如由 8 张 A100 GPU 组成的 DGX 服务器,最大功率达到 6.5 千瓦,运行一小时就会消耗 6.5 度电,若有 1000 台这样的服务器同时运行,每天的电费将达到惊人的 20 万元。
2024-12-14
开源大模型训练推理,应用开发agent 平台
以下是一些关于开源大模型训练推理、应用开发 agent 平台的相关信息: Agent 构建平台: Coze:新一代一站式 AI Bot 开发平台,集成丰富插件工具,适用于构建各类问答 Bot。 Mircosoft 的 Copilot Studio:主要功能包括外挂数据、定义流程、调用 API 和操作,可将 Copilot 部署到多种渠道。 文心智能体:百度推出的基于文心大模型的智能体平台,支持开发者打造产品能力。 MindOS 的 Agent 平台:允许用户定义 Agent 的个性、动机、知识等,并访问第三方数据和服务或执行工作流。 斑头雁:2B 基于企业知识库构建专属 AI Agent 的平台,适用于客服、营销、销售等场景,提供多种成熟模板。 钉钉 AI 超级助理:依托钉钉优势,在处理高频工作场景如销售、客服、行程安排等方面表现出色。 Gemini 相关:大型语言模型的推理能力在构建通用 agents 方面有潜力,如 AlphaCode 团队构建的基于 Gemini 的 agent 在解决竞争性编程问题方面表现出色。同时,Gemini Nano 提升了效率,在设备上的任务中表现出色。 成为基于 Agent 的创造者的学习路径:未来的 AI 数字员工以大语言模型为大脑串联工具。Agent 工程如同传统软件工程学有迭代范式,包括梳理流程、任务工具化、建立规划、迭代优化。数字员工的“进化论”需要在 AI 能力基础上对固化流程和自主思考作出妥协和平衡。
2024-12-12
请给我一份李继刚的结构化的prompt方法论
李继刚的结构化的 prompt 方法论如下: 如何写好 Prompt:结构化 结构化:对信息进行组织,使其遵循特定的模式和规则,从而方便有效理解信息。 语法:支持 Markdown 语法、YAML 语法,甚至纯文本手动敲空格和回车都可以。 结构:结构中的信息可根据自己需要进行增减,常用模块包括: Role:<name>,指定角色会让 GPT 聚焦在对应领域进行信息输出。 Profile author/version/description:Credit 和迭代版本记录。 Goals:一句话描述 Prompt 目标,让 GPT Attention 聚焦起来。 Constrains:描述限制条件,帮 GPT 进行剪枝,减少不必要分支的计算。 Skills:描述技能项,强化对应领域的信息权重。 Workflow:重点中的重点,希望 Prompt 按什么方式来对话和输出。 Initialization:冷启动时的对白,强调需注意重点。 示例 贡献者:李继刚,Sailor,田彬玏,Kyle😜,小七姐等群友。 李继刚的。 每个角色都有版本迭代,标注版本号,争取每个都更新到最新的版本。 李继刚写了上百个这种 Prompt,有具体场景需求可评论留言,作者可帮忙写定制的,也可自己用这种结构化的方式写。 使用方法:开一个 new chat,点代码块右上角的复制,发送到 chat 聊天框即可,里面的描述可按自己需求修改。 思路来源:云中江树的框架: 方法论总结: 建议用文心一言/讯飞星火等国内大模型试试,有这些 prompt 的加持,效果不错。
2024-12-17
将活动主题拆解为大量结构化提示词,用于文生视频
以下是将活动主题拆解为大量结构化提示词用于文生视频的相关内容: 技巧 1:提示词的结构 当提示词有清晰的结构时,提示效果最有效。可使用简单公式:。 例如:无结构提示词“小男孩喝咖啡”,有结构的提示词“摄影机平移(镜头移动),一个小男孩坐在公园的长椅上(主体描述),手里拿着一杯热气腾腾的咖啡(主体动作)。他穿着一件蓝色的衬衫,看起来很愉快(主体细节描述),背景是绿树成荫的公园,阳光透过树叶洒在男孩身上(所处环境描述)”。 技巧 2:提示词的优化 有三个原则: 1. 强调关键信息:在提示的不同部分重复或强化关键词有助于提高输出的一致性。 2. 聚焦出现内容:尽量让提示集中在场景中应该出现的内容上。 3. 规避负面效果:在提示词中写明不需要的效果。 写提示词时,首先要明确场景中的人物和冲突,其次是对场景进行详细描述,包括地点、人物形象、任务动作等细节,使用生动的动词营造动态和戏剧化氛围,第三要加强镜头语言,如推、拉、摇、移、升、降等,每种镜头运动都有其特定作用和效果。 PixelDance V1.4 提示词指南 图生视频的基础提示词结构为:主体+运动。当主体有突出特征时可加上,需基于输入图片内容写,明确写出主体及想做的动作或运镜,提示词不要与图片内容/基础参数存在事实矛盾。
2024-12-09
结构仿真分析中AI应用
在结构仿真分析中,AI 有着多方面的应用。 在绘制逻辑视图、功能视图、部署视图方面,以下是一些可用的 AI 工具和传统工具: 1. Lucidchart:流行的在线绘图工具,支持多种图表创建,包括上述视图,用户可通过拖放界面轻松创建架构图。 2. Visual Paradigm:全面的 UML 工具,提供创建各种架构视图的功能,如逻辑视图(类图、组件图)、功能视图(用例图)和部署视图(部署图)。 3. ArchiMate:开源建模语言,专门用于企业架构,支持逻辑视图创建,可与 Archi 工具配合使用,该工具提供图形化界面创建模型。 4. Enterprise Architect:强大的建模、设计和生成代码工具,支持创建多种架构视图。 5. Microsoft Visio:广泛使用的图表和矢量图形应用程序,提供丰富模板用于创建相关视图。 6. draw.io(现称 diagrams.net):免费在线图表软件,允许创建各种类型图表,包括逻辑视图和部署视图等。 7. PlantUML:文本到 UML 转换工具,通过编写描述性文本自动生成序列图、用例图、类图等,帮助创建逻辑视图。 8. Gliffy:基于云的绘图工具,提供创建各种架构图的功能。 9. Archi:免费开源工具,用于创建 ArchiMate 和 TOGAF 模型,支持逻辑视图创建。 10. Rational Rose:IBM 的 UML 工具,支持创建多种视图,包括逻辑视图和部署视图。 在 2024 年,AI 在生物医学、气象预测等领域也有重要突破与应用: 1. 诺贝尔物理学奖和化学奖先后颁给 AI,推动了机器学习的理论创新,揭示了蛋白质折叠问题,标志着人工智能真正成为一门科学学科和加速科学的工具。 2. 基于深度学习和 Transformer 架构的蛋白质结构预测模型——AlphaFold 3,能够高精度地预测包括蛋白质、DNA、RNA、配体等生物分子的结构和相互作用,为细胞功能解析、药物设计和生物科学的发展提供有力支持。 3. DeepMind 展示新的实验生物学能力——AlphaProteo,能够设计出具有三到三百倍亲和力的亚纳米摩尔蛋白结合剂的生成模型。 4. 生物学前沿模型的扩展:进化规模 ESM3,是一种前沿多模态生成模型,在蛋白质序列、结构和功能上进行训练,能够学习预测任何模态组合的完成情况。 5. 学习设计人类基因组编辑器的语言模型——CRISPRCas 图谱。
2024-11-22
常用的结构化提示词框架有哪些?
以下是一些常用的结构化提示词框架: 1. 基础的结构化编写 Prompt 框架: Role: Profile: author:作者 version:版本 language:中文 description: Goals: 1. 2. Constrains: Skills: Workflows: 1. 2. 2. CRISPE 框架(Capacity and Role,Insight,Statement,Personality,Experiment) 3. BROKE 框架(Background,Role,Objectives,Key Results,Evolve) 4. ICIO 框架: Instruction(指令):明确定义 AI 需要执行的任务,遵循简洁明了、具体详细、行动导向、单一任务等原则。 Context(背景信息):提供任务的相关背景,包括任务目的、目标受众、相关背景、限制条件、角色扮演等。 Input Data(输入数据):为 AI 提供执行任务所需的具体信息或数据。 Output Indicator(输出引导):指导 AI 如何构建和呈现输出结果,包括格式要求、语气和风格、长度限制、结构指引、特殊要求、评估标准等。
2024-11-14
结构化提示词
结构化提示词是一种像写文章一样编写提示词的方法。其思想较为普遍,日常写作的文章和书籍都常使用标题、子标题、段落、句子等语法结构。 在文生图方面,调整好参数生成图片后,若质感欠佳,可添加标准化提示词,如“,绘图,画笔”等,让画面更趋近于固定标准。 对于新手,有一套极简基础的结构化编写 Prompt 框架,例如: Role: Profile: author:作者 version:版本 language:中文 description: Goals: 1. 2. Constrains: Skills: Workflows: 1. 2. 在提高模型响应精确度方面,改进提示词格式很重要。如在问答和文本分类中,提示词可以通过指令、上下文、输入和输出指示来改进响应结果。越明确的指示,响应越好。包含相关语境和其他要素,提供更多信息和具体指令,能使响应更符合需求。
2024-11-11
Claude提示词结构 如何应用
以下是关于 Claude 提示词结构及应用的相关内容: 标注提示词的不同部分:可以使用多种语法结构分隔文本与提示,分隔符既可以是复杂的 html 结构、纯文本,也可以自定义语言标记和格式,甚至 emoji 都可以成为分隔符。常用的语法结构有 Markdown、XML、HTML、JSON 等编程语言。 分解任务:这是做总结性输出或处理长文档时的有效方法,例如从原文中提取相关引文。 提示词链:分解并跨提示词使用。 使用 XML 标签:缺乏“结构”的提示词对 Claude 较难理解,而 XML 标签类似于“章节标题”,Claude 已针对其进行专门训练。
2024-11-08
帮我找一个搜索企业联系方式的AI
目前暂时没有专门用于搜索企业联系方式的 AI 工具。但您可以利用一些常见的搜索引擎,并结合相关的企业信息查询网站来获取企业联系方式。例如,天眼查、企查查等网站可以提供一定的企业信息,包括联系方式。
2024-12-18
Ai短视频比赛主题“什么样的时刻会首先出现在你的脑海中”,请以此主题提出几条优质的创作灵感建议,Ai生成视频要求不长于10秒,请用简单易懂的方式讲一下
以下是关于“什么样的时刻会首先出现在你的脑海中”这一 AI 短视频比赛主题的创作灵感建议: 1. 可以是烟花绽放的那一刻,绚丽多彩照亮夜空。 2. 是宠物与主人重逢相拥的那一刻,充满温馨与感动。 3. 是运动员冲过终点线的那一刻,展现胜利的喜悦。 4. 是孩子第一次学会走路的那一刻,充满成长的惊喜。 5. 是情侣在雨中亲吻的那一刻,浪漫而甜蜜。 比赛相关要求: 1. 主题:以“The Moment”为主题进行创作。 2. 数量限制:每人不限视频数量。 3. 提交时间:12 月 31 日 21:00 前。 4. 参赛文件:16:9 格式,不长于 10 秒,30FPS 以上,不含剪辑。 5. 作业方式:不限。 6. 工具要求:使用可灵 AI(https://kling.kuaishou.com/)。 7. 视频要求:带可灵水印。 8. 参与方式:在指定时间发布作品,可通过通往 AGI 之路首页表格、在野菩萨小红薯群或支持社区提交。 9. 奖项设置:金奖 5000 元+5800 灵感值;银奖 3000 元+2700(2200+500)灵感值;铜奖 2000 元+1000 灵感值;入围 500 元×40;人气奖 2500 元×4 以及其他意外散落的灵感值。 10. 注意事项:不建议出现鲜血、武器、鬼怪骷髅、知名人物、18X 等不符合国家政策的内容,可能导致参赛失败。不在规定时间内提交的自动失去参赛资格。评审由专业评审决定,提交次周发布结果。参与该挑战视作同意将作品的使用权授予本号及第三方用于社群运营、展览、展示、传播、营销等用途,主办方拥有最终解释权。在下面的投稿链接中上传作品。
2024-12-10
人工智能技术的诈骗方式一般采用哪些人工智能技术
人工智能的诈骗方式可能会运用以下技术: 1. 操纵技术:通过诱导人们做出决定来加以欺骗,例如采用潜意识成分,如人们无法感知的音频、图像、视频刺激,或者其他操纵或欺骗技术,以人们无法意识到的方式颠覆或损害人的自主、决策或自由选择。脑机界面或虚拟现实等也可能促进这种情况发生。 2. 利用个人或特定群体的弱点:例如针对年龄、残疾或特定的社会或经济状况,如生活在极端贫困中的人、少数民族或宗教少数群体,实质性地扭曲个人的行为,并对其或其他个人或群体造成重大危害。 此外,拜登签署的 AI 行政命令中提到,要保护美国人免受人工智能导致的欺诈和欺骗,建立检测人工智能生成内容和验证官方内容的标准和最佳实践。商务部将为内容认证和水印开发指导,以明确标记人工智能生成的内容。联邦机构将使用这些工具让美国人容易知道他们从政府收到的通信是真实的,并为私营部门和世界各地的政府树立榜样。
2024-12-08
Prompt提示词没那么玄乎也就是个沟通方式
Prompt 提示词并非那么神秘,本质上就是一种沟通方式。 现阶段,其本质就是沟通: 1. 先上价值: 你无聊,它也无聊。比如刚开通 GPT 时的一些折腾内容,若心中无明确目的,交流就会变得无趣。 要沟通就好好沟通。我们在和系统对话,希望从中获得价值,就如同与同事、朋友交流,若不会提问,就无法获得深度答案。 所有其实我们希望它干啥呢?比如在一个简单场景中,沟通可能存在信息损失,需要通过各种反馈来测试、校准。我们不能期望系统能理解所有背景知识和潜台词,应把重点放在希望它完成的任务和输出的价值上。 开始折腾,各个角色都来一下,以 CRISPE 框架——Matt Nigh 为例: 框架包括能力和角色、见解、声明、个性、实验。如 ChatGPT 应扮演的角色、提供请求背后的见解和背景、要求做的事、希望的回应风格、请求回复多个示例等。 完整示例包括 Prompt、Claude、ChatGPT3.5 结果。 我的理解是这个框架适合需要 ChatGPT 扮演特定角色等情况,不适合的场景也很明显。
2024-12-06
请帮我推荐几个适合大学生线上用ai的赚钱方式,可以赚个零花钱
目前适合大学生线上利用 AI 赚取零花钱的方式有以下几种: 1. 利用 AI 进行内容创作,比如为一些网站或自媒体撰写文章、创作故事等,并通过稿费获取收入。 2. 借助 AI 辅助设计,为有需求的客户制作海报、宣传单页等设计作品。 3. 运用 AI 参与数据标注工作,帮助企业或机构对大量数据进行分类和标注。 4. 利用 AI 开发简单的应用程序或小程序,通过提供服务获取收益。 需要注意的是,在利用 AI 赚钱的过程中,要遵守法律法规和道德规范,确保所从事的活动合法合规。
2024-12-03
请帮我推荐几个适合线上用ai的创业方式
以下为您推荐一些适合线上用 AI 的创业方式: 1. 辅助创作与学习方面: AI 智能写作助手,帮助用户快速生成高质量文本。 AI 语言学习助手、诗歌创作助手、书法字体生成器、漫画生成器等,为用户的学习和创作提供支持。 2. 推荐与规划方面: AI 图像识别商品推荐、美食推荐平台、旅游行程规划器、时尚穿搭建议平台、智能投资顾问等,根据用户的需求和偏好为其推荐合适的产品、服务或制定个性化的计划。 3. 监控与预警方面: AI 宠物健康监测设备、家居安全监控系统、天气预报预警系统、医疗诊断辅助系统等,实时监测各种情况并提供预警。 4. 优化与管理方面: 办公自动化工具、物流路径优化工具、家居清洁机器人调度系统、金融风险评估工具等,提高工作效率和管理水平。 5. 销售与交易方面: AI 艺术作品生成器、书法作品销售平台、摄影作品销售平台、汽车销售平台、房地产交易平台等,为各类产品和服务提供销售渠道。 在游戏领域,基于生成式 AI 革命,有以下建议: 1. 现在就开始探索生成性 AI,完全利用即将到来的生成性 AI 革命的力量需要一段时间,现在开始的公司将来会具有优势。 2. 寻找市场地图(Market Map)的机会,某些部分已经非常拥挤,比如动画或语音与对话,但其他区域仍然空旷,鼓励创业者将努力集中在尚未探索的区域,比如“游戏的 Runway”。
2024-12-03