Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

如何训练AI智能体

Answer

以下是关于训练 AI 智能体的一些信息:

  1. 可以将一些创新的 prompt 融入工作流中,以更高效地训练智能体。这种方法不仅能改进现有的大语言模型,还能探索新的应用领域,实现低成本、高效能和模型效益最大化,突破单纯依赖算法的方式。
  2. 采用流式训练方式提升训练速度和质量,例如将孔明灯换成泡泡,基于 Transformer 模型进行流匹配,这种方式优于扩大模型。
  3. 利用多种 AI 生成工具,如输入简单提示词就能创作音乐的 so no 音频生成工具,能创建个人 AI 智能体的豆包,输入文本可生成播客的 Notebook LN。
  4. 了解 AI 工程平台,如 define 等,涉及数据清洗管道、数据存储和检索、编辑生成平台、构建 prompt 技巧、智能体概念、插件调用、运维平台、模型层和缓存机制等,还能接入多家大模型。以 coach 平台为例,新版本有很多模板,有众多插件工具,包括必应搜索、链接读取、代码执行器等,还有工作流,可创建应用 APP,有新手教程和文档,可创建智能体,通过工作流节点调用和 prompt 构建提示词,还能调用插件、图像流、知识库等,商城中有各种智能体和插件模板,知识库可添加多种格式内容。
  5. 了解一些为大模型提供数据、企业模型和算力服务的平台,如魔搭社区等,有按任务划分的模型库、数据集和在线应用供体验。
Content generated by AI large model, please carefully verify (powered by aily)

References

麒鸣: 使AI更像人:省略,不严格逻辑能力,比喻

写在最后:把这些prompt融入工作流中,我们就可以更高效的训练智能体。通过这种创新的方法,我们不仅可以改进现有的大语言模型,还可以探索出更多新的应用领域,从而将我们的人工智能系统推向一个新的高度。更能突破以往那种单纯relying算法的方式,实现低成本,高效能,使得模型效益最大化。

02-基础通识课

[heading2]总结AI技术的发展与应用流式训练方式提升训练速度和质量:将孔明灯换成泡泡,通过流式训练方式提高了整体训练的过程速度和质量,基于Transformer模型进行流匹配,这种方式优于扩大模型。多种AI生成工具:如输入简单提示词就能创作音乐的so no音频生成工具,能创建个人AI智能体的豆包,输入文本可生成播客的Notebook LN。端侧大模型的特点:端侧大模型能部署在手机端等设备,参数量小,可利用手机自带芯片或处理器运算,主要通过压缩来解决存储和性能问题,如减少模型参数量和计算复杂度,知识蒸馏模型有教师模型和学生模型。AI工程平台:AI工程平台对模型和应用有要求,像define是典型的工程平台,涉及数据清洗管道、数据存储和检索、编辑生成平台、构建prompt技巧、智能体概念、插件调用、运维平台、模型层和缓存机制等,还能接入多家大模型。AI工程平台coach的应用:coach平台新版本有很多模板,如名画照相馆,有众多插件工具,包括必应搜索、链接读取、代码执行器等,还有工作流,可创建应用APP。AI相关工具与平台的介绍及应用coach平台的使用:介绍了coach平台的新手教程和文档,可创建智能体,通过工作流节点调用和prompt构建提示词,还能调用插件、图像流、知识库等,商城中有各种智能体和插件模板,知识库可添加多种格式内容。模型社区介绍:提到魔搭社区等几个为大模型提供数据、企业模型和算力服务的平台,有按任务划分的模型库、数据集和在线应用供体验。AI建站预告:为后续AI建站做预告,需要在今明两天安装vs code等基础软件,以简单步骤帮助文科生和无基础人员完成建站,获得正反馈。

拜登签署的AI行政命令_2023.10.30

AI can help government deliver better results for the American people.It can expand agencies’capacity to regulate,govern,and disburse benefits,and it can cut costs and enhance the security of government systems.However,use of AI can pose risks,such as discrimination and unsafe decisions.To ensure the responsible government deployment of AI and modernize federal AI infrastructure,the President directs the following actions:Issue guidance for agencies’use of AI,including clear standards to protect rights and safety,improve AI procurement,and strengthen AI deployment.Help agencies acquire specified AI products and services faster,more cheaply,and more effectively through more rapid and efficient contracting.Accelerate the rapid hiring of AI professionals as part of a government-wide AI talent surge led by the Office of Personnel Management,U.S.Digital Service,U.S.Digital Corps,and Presidential Innovation Fellowship.Agencies will provide AI training for employees at all levels in relevant fields.

Others are asking
目前的AI设计软件,能直接生成课程海报吗
目前的 AI 设计软件能够直接生成课程海报。例如 Claude 这款工具,其 Artifact 功能强大,无需专业设计技能和代码编写,也无需使用 PS 等软件,仅通过输入提示词和对话交流,就能生成课程海报,还能根据需求进行修改,如合并课程、添加日历、调整色彩等。 此外,还有一些其他的 AI 海报生成工具: 1. Canva(可画):https://www.canva.cn/ ,提供大量模板和设计元素,AI 功能可协助选择颜色搭配和字体样式。 2. 稿定设计:https://www.gaoding.com/ ,智能设计工具采用先进人工智能技术,自动分析和生成设计方案。 3. VistaCreate:https://create.vista.com/ ,提供大量设计模板和元素,用户可使用 AI 工具创建个性化海报,智能建议功能可帮助快速找到合适设计元素。 4. Microsoft Designer:https://designer.microsoft.com/ ,通过简单拖放界面创建演示文稿、社交媒体帖子等视觉内容,集成丰富模板库和自动图像编辑功能。 另外,还有一个海报设计的案例分享——东阿阿胶。其步骤包括得到需求、提取元素、绘制线稿、用 controlnet 转绘上色、ps 优化、定稿。具体为:确定需求并提取元素,如风格要潮流插画、有唐代元素和国潮等;绘制线稿,根据需求调整元素,如将驴子换成琵琶等;拆分元素线稿,绘制单个元素使其更精致,方便后期替换;利用拼接好的线稿跑图抽卡,选出合适的进行 ps 优化;最后根据客户需求进行元素替换得到定稿。上色运用的大模型为 GhostMix 鬼混_V2.0,lora 模型为“盒子系列——平面国潮插画_v1.0:182ba9e2f576”,controlnet 模型为“Module:lineart_coarse,Model:contr”。
2025-03-26
不懂得提问ai,得出的答案总是不满意,又得费很多时间自己改
以下是一些关于如何向 AI 提问以获得满意答案的建议: 1. 避免追问 AI,因为这可能导致回答越来越离谱。可以使用 ChatGPT 的 temporary chat 功能,保证 AI 在没有任何记忆的情况下生成最新鲜的回答。 2. 当 AI 回答不理想时,可以告诉它退一步,重新审视整个结构,设想从零开始如何设计,以获得更简洁、直观的解决方案。 3. 如果 AI 自己猜测并修改问题,可让它依据日志判断问题所在。 4. 对于刚开始接触 AI 的用户,很多时候答案不符合预期并非 AI 能力问题,而是用户没有把问题和要求描述清楚。在提问时要把背景描述完整,把要求解释清楚,包括细节。 5. 推荐使用 5W1H 方法充分说明信息,即说清楚为什么(Why)、做什么(What)、啥时候(When)、涉及谁(Who)、在哪里(Where)、怎么做(How)。 6. 可以使用引号、分隔符号以及“首先、其次、最后”等连接词来组织 Prompt,赋予 AI 明确的角色,如专注于民商事法律领域的律师等。 7. 按照【设定角色+任务目标+上下文和背景信息+(正面要求)详细需求和细节性信息+(负面要求)限制和不需要的内容+回答的语言风格和形式】的格式进行提问。 8. 讲清楚背景和目的,例如律师在处理交通事故案件时,清晰描述案件事实、法规等。 9. 学会提出好问题,使用清晰、具体的语言,避免模糊表述,了解 AI 的工作原理和限制,以提高回答准确性。 10. 在应用 AI 之前,对工作流程进行细致拆解,将复杂任务分解成更小、更具体的环节,以便 AI 更精确执行。
2025-03-26
最近的AI新闻
以下是近期的 AI 新闻汇总: 3 月 12 日: 【AI 3D】 BlenderMCP:与 Claude AI 沟通,在 Blender 实现快速 3D 建模。 MIDI:单幅图像到 3D 场景生成。 Move AI:更新动作捕捉能力,提出 Gen 2 Spatial Motion。 【AI 写作】 MMStoryAgent:AI 多模态故事生成系统。 【AI 视频】 VACE:阿里推出一体化视频创作和编辑技术。 VideoPainter:腾讯开源视频编辑技术。 Wonder Dynamics:推出摄像机轨道(Camera Track)和清洁板(Clean Plate)功能。 【其他】 OpenAI:为开发者推出一套 AI Agent 开发套件。 R1Omni:阿里情感识别模型,通过视频识别情感。 Luma AI:发布一种新的预训练范式 IMM,旨在突破算法瓶颈,提高生成预训练算法的性能。 Manus:宣布与阿里通义千问团队达成战略合作。 3 月 14 日: 【AI 模型及其他】 谷歌:Gemini 应用能力升级,包含升级推理模型 gemini 2.0 Flash Thinking Experimental 等多个功能提升。 OpenAI:4 项更新。 Bolt:一键将 Figma 设计转换为可运行的 Web 应用。 阿里:推出 AI 旗舰应用“新夸克”。 360 智脑团队:开源推理模型 LightR114BDS,复现 Deepseek 的强化学习效果。 【AI 视频】 Pika:更新 Pikaffects,新增多款变身特效。 Freepik 与 Fal 平台:引入 Topaz AI 的提升“FPS 和视频分辨率”能力。 Krea:上线 Veo 2 模型,支持图生视频功能,但生成成本较高。 【AI 绘图】 LBM:用于快速图像到图像转换的潜在桥匹配方法,支持可控图像重新照明、角色去除和图像修复。 【AI 语音】 Sesame:开源 TTS 语音模型 CSM1B。 3 月 26 日: 【AI 模型及应用】 OpenAI:推出 GPT4o 图像生成能力。 谷歌:发布 Gemini 2.5 Pro Experimental 模型。 Trea:已内置 DeepSeekV30324。 【AI 音乐】 昆仑万维:发布全球首款音乐推理大模型 Mureka O1。 【AI 视频】 混元 Portrait:音频视频驱动图片肖像形成动画。 PPVCtrl:新可控制视频生成模型。 【AI 3D】 Vibe Draw: 草图进行 3D 建模。 PhysTwin:通过视频创建交互式物理数字孪生。 GroomLight:用于重打光的人体头发外观建模的混合逆向渲染。
2025-03-26
ai能写科技论文吗?
AI 能够写科技论文。在论文写作领域,AI 技术的应用正在迅速发展,能提供从文献搜索、内容生成、语言润色到数据分析等多方面的辅助。 一些常用的论文写作相关 AI 工具和平台包括: 1. 文献管理和搜索:Zotero 能结合 AI 技术自动提取文献信息,Semantic Scholar 是由 AI 驱动的学术搜索引擎,可提供文献推荐和引用分析。 2. 内容生成和辅助写作:Grammarly 可通过 AI 技术提供文本校对、语法修正和写作风格建议,Quillbot 是基于 AI 的重写和摘要工具,能帮助精简和优化论文内容。 3. 研究和数据分析:Google Colab 提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,便于进行数据分析和可视化,Knitro 用于数学建模和优化,可帮助进行复杂的数据分析和模型构建。 4. 论文结构和格式:LaTeX 结合了自动化和模板,可高效处理论文格式和数学公式,Overleaf 是在线 LaTeX 编辑器,提供丰富模板库和协作功能,简化论文编写过程。 5. 研究伦理和抄袭检测:Turnitin 是广泛使用的抄袭检测工具,Crossref Similarity Check 通过与已发表作品比较,检测潜在抄袭问题。 但需要注意的是,虽然 AI 工具是好东西,但目前大多数人还停留在零碎使用的阶段,未系统应用到工作场景中。比如有人像小明那样,在挑选和切换工具时浪费不少时间,导致效率降低。问题不在于 AI,而在于没有形成适合自己的 AI 工作方法论和流程。未来,科技精英可能更多扮演“与 AI 协作”的角色,引导 AI 工作并保持审慎监督。使用这些 AI 工具时,要结合自己的写作风格和需求,选择最合适的辅助工具。
2025-03-26
ai编程
以下是关于 AI 编程的相关信息: Trae 国内版 是国内首个 AI IDE,自带豆包 1.5pro 和满血版 DeepSeek R1、V3 模型。 具有国内用户友好、使用完全免费、内置预览插件等特性。 网址:Trae.com.cn 或点击文末【阅读原文】直接访问。 借助 AI 学习编程的关键 打通学习与反馈循环,包括验证环境、建立信心、理解基本概念,实现“理解→实践→问题解决→加深理解”的循环。 使用流行语言和框架,先运行再优化,小步迭代,借助 AI 生成代码后请求注释或解释,遇到问题三步走:复现、精确描述、回滚。 用好 AI 编程工具(如 Cursor)的关键技能 准确描述需求,清晰表达目标和问题。 具备架构能力,将复杂系统拆解为松耦合的模块。 拥有专业编程能力,能够判断 AI 生成代码的优劣。 具备调试能力,快速定位问题并解决,可独立或借助 AI 完成调试。
2025-03-26
ai编程
以下是关于 AI 编程的相关信息: Trae 国内版 是国内首个 AI IDE,自带豆包 1.5pro 和满血版 DeepSeek R1、V3 模型。 具有以下特性: 对国内用户友好,有中国官网、中文界面、国内模型,稳定且快速。 使用完全免费,无需折腾会员,下载后可直接使用。 内置预览插件,写完代码一键运行,所见即所得。 网址:Trae.com.cn 或点击文末【阅读原文】直接访问。 借助 AI 学习编程的关键 打通学习与反馈循环,包括验证环境、建立信心、理解基本概念,实现“理解→实践→问题解决→加深理解”的循环。 建议使用流行语言和框架(如 React、Next.js、TailwindCSS),先运行再优化,小步迭代,一次解决一个小功能,借助 AI 生成代码后请求注释或解释以帮助理解代码,遇到问题时采取复现、精确描述、回滚的步骤。 用好 AI 编程工具(如 Cursor)的关键技能 准确描述需求,清晰表达目标和问题。 具备架构能力,将复杂系统拆解为松耦合的模块,便于 AI 高效处理。 拥有专业编程能力,能够判断 AI 生成代码的优劣。 具备调试能力,快速定位问题并解决,可独立或借助 AI 完成调试。
2025-03-26
我是一位程序开发小白,不会用代码开发程序。我现在有一台安装Window 11操作系统的笔记本电脑,配置为14代i7CPU、32G内存、1TB硬盘、1张RTX4070显卡。我想部署一套本地的大模型+智能体+知识库。我要怎么样才能实现无代码部署,请列出详细的安装步骤。
以下是为您提供的无代码部署本地大模型、智能体和知识库的详细安装步骤: 1. 硬件评估:您的笔记本电脑配置为 14 代 i7 CPU、32G 内存、1TB 硬盘、1 张 RTX4070 显卡,基本满足部署要求。但需要注意,运行内存最低 32GB,越高越好,最低配可能会经常爆显存。建议将软件和模型部署在 SSD(固态硬盘)上,以提高加载模型的速度。 2. 选择合适的部署工具:ComfyUI 是一个相对配置要求较低、系统资源占用少、出图速度快的工具。它最低可在小于 3G 的 GPU 上运行,甚至没有 GPU 光用 CPU 也可以,但速度极慢。SDXL 出来后提高了运行配置,最低需要 8GB 显存+32GB 运行内存,12GB 流畅运行,推荐 16GB 以上。 3. 安装准备:如果您的电脑能顺畅清晰地玩 3A 游戏,那么运行相关部署工具一般也没问题。 4. 预算和需求:根据您的需求和预算来选择合适的配置。例如,如果有做 AIGC 视频、建模渲染和炼丹(lora)的需求,可能需要更高的配置。 请注意,以上步骤仅为参考,实际部署过程可能会因具体情况而有所不同。
2025-03-26
关于中医的智能体
以下是关于智能体的相关信息: AI 智能体是拥有各项能力来帮助我们做特定事情的“打工人”。目前有不少大厂推出了自己的 AI 智能体平台,如字节的扣子、阿里的魔搭社区等。 扣子(Coze)是字节跳动旗下的新一代一站式 AI Bot 开发平台,无论用户是否具备编程基础,都能在该平台上迅速构建基于 AI 模型的各类问答 Bot,并可将其发布到各种社交平台和通讯软件上。 创建智能体通常包括起一个名称、写一段简单介绍和使用 AI 创建一个头像等简单步骤。 在一些应用场景中,如生物医药领域,智能体可以由工作流和多个数据库实现。例如,生物医药小助手智能体由 1 个工作流和 6 个数据库组成,工作流相对简单,而数据库的收集和校对需要一定专业知识。在医疗领域,为保证回答的准确性,提示词约定回答只能来自于知识库。 在商业化场景方面,智能体在医药企业研发立项、科研机构临床转化评估、投资机构评估标的公司等方面都能发挥作用,回答相关问题。 决策智能体是智能体的一类,例如 Anterior 公司开发的临床决策引擎,用于自动化理赔提交审核,其将一定的控制逻辑交给大语言模型,在复杂推理流程中导航并做出业务决策。
2025-03-26
人工智能是什么,有什么用
人工智能(AI)是一种能够模拟人类智能的技术。它已经在众多领域发挥着重要作用,为社会带来了广泛的益处。 以下是一些主要的应用场景: 1. 医疗保健: 医学影像分析:辅助诊断疾病。 药物研发:加速研发过程,识别潜在药物候选物和设计新疗法。 个性化医疗:根据患者数据提供个性化治疗方案。 机器人辅助手术:提高手术精度和安全性。 2. 金融服务: 风控和反欺诈:降低金融机构风险。 信用评估:帮助做出更好的贷款决策。 投资分析:辅助投资者做出明智决策。 客户服务:提供 24/7 服务,回答常见问题。 3. 零售和电子商务: 产品推荐:根据客户数据推荐可能感兴趣的产品。 搜索和个性化:改善搜索结果,提供个性化购物体验。 动态定价:根据市场需求调整产品价格。 聊天机器人:回答客户问题并解决问题。 4. 制造业: 预测性维护:预测机器故障,避免停机。 质量控制:检测产品缺陷,提高质量。 供应链管理:优化供应链,提高效率和降低成本。 机器人自动化:控制工业机器人,提高生产效率。 5. 交通运输:(相关具体应用未在提供的内容中明确提及) 在法律法规方面,各国和地区都在制定相关规则,以规范人工智能的发展和应用,确保其在带来益处的同时,降低可能产生的风险。
2025-03-26
生成式人工智能原理是什么
生成式人工智能的原理主要包括以下几个方面: 1. 基于深度学习技术和机器学习算法:通过大规模的数据集训练深度神经网络模型,学习各种数据的规律和特征,从而实现对输入数据的分析、理解和生成。 2. 监督学习:例如在生成文本时使用大语言模型,通过监督学习不断预测下一个词语,经过大量的数据训练,从而生成新的文本内容。这通常需要千亿甚至万亿级别的单词数据库。 3. 从大量现有内容中学习:包括文本、音频和视频等多模式的内容,这个学习过程称为训练,其结果是创造“基础模型”,如为聊天机器人提供支持的大型语言模型(LLM)。基础模型可用于生成内容并解决一般问题,也可以使用特定领域的新数据集进一步训练以解决特定问题。
2025-03-26
人工智能算法的发展历程是怎么样的?
人工智能算法的发展历程大致如下: 早期的国际象棋对弈程序以搜索为基础,发展出了阿尔法贝塔剪枝搜索算法。在对局开始时搜索空间巨大,随后通过学习人类棋手对局采用了基于案例的推理。现代能战胜人类棋手的对弈程序基于神经网络和强化学习,能从自身错误中学习,且学习速度快于人类。 创建“会说话的程序”的方法也在变化,早期如 Eliza 基于简单语法规则,现代助手如 Cortana、Siri 或谷歌助手是混合系统,使用神经网络转换语音并识别意图,未来有望出现完整基于神经网络的模型处理对话,如 GPT 和 TuringNLG 系列神经网络取得了巨大成功。 在机器学习方面,算法通过分析数据和推断模型建立参数,或与环境互动学习,人类可注释数据,环境可为模拟或真实世界。 深度学习是一种机器学习算法,由 Geoffrey Hinton 开创,1986 年发表开创性论文引入反向传播概念,2012 年 Hinton 和学生表明深度神经网络在图像识别方面击败先进系统。为使深度学习按预期工作,需要数据,如李飞飞创建的 ImageNet。 AI 技术发展历程包括早期阶段的专家系统、博弈论、机器学习初步理论;知识驱动时期的专家系统、知识表示、自动推理;统计学习时期的机器学习算法;深度学习时期的深度神经网络、卷积神经网络、循环神经网络等。 当前 AI 前沿技术点有大模型(如 GPT、PaLM 等)、多模态 AI、自监督学习、小样本学习、可解释 AI、机器人学、量子 AI、AI 芯片和硬件加速等。
2025-03-26
国内最好的ToB智能体有哪些?分别是什么公司提供的。
目前国内在 ToB 智能体领域,没有明确公认的“最好”的定义,不同的智能体在不同的业务场景和行业中各有优势。一些在该领域较为知名的公司包括阿里巴巴、腾讯、百度等,但具体的优秀 ToB 智能体产品会因行业需求和应用场景的差异而有所不同。
2025-03-25
Gemini是用什么训练的
Gemini 是在 Google 的 TPU AI 加速器上训练的,似乎没有使用英伟达的 GPU。Google 还推出了全新的 Cloud TPU v5p 和 AI Hypercomputer 超级计算机,将加速 Gemini 的开发,使 AI 模型的训练更快。 Cloud TPU v5p 是目前 Google 最强大、可扩展和灵活的 AI 加速器。它在 TPU v4 的基础上提供了超过 2 倍的 FLOPS(浮点运算次数/秒)和 3 倍的高带宽内存(HBM)。TPU v5p 可以比前一代 TPU v4 更快地训练大型语言模型(LLM),对于嵌入密集型模型,其训练速度比 TPU v42 快 1.9 倍。TPU v5p 的可扩展性是 TPU v4 的 4 倍。 AI Hypercomputer 是一个突破性的超级计算机架构,它采用了集成的系统,包括性能优化的硬件、开放软件、领先的机器学习框架,以及灵活的消费模型。通过系统级协同设计来提高 AI 训练、调优和服务的效率和生产力。具有性能优化的计算、存储和网络硬件,建立在超大规模数据中心基础设施之上,利用高密度占地面积、液体冷却和 Jupiter 数据中心网络技术。通过开放软件使开发者能够调整、管理和动态编排 AI 训练和推理工作负载。提供了一系列灵活和动态的消费选择,包括传统的承诺使用折扣(CUD)、按需定价和现货定价,以及为 AI 工作负载量身定制的消费模型。 Gemini 模型是在一个既包含多模态又包含多语言的数据集上进行训练的。预训练数据集使用来自网络文档、书籍和代码的数据,并包括图像、音频和视频数据。使用 SentencePiece 分词器,发现在整个训练语料库的大样本上训练分词器可以改善推断的词汇,并进而提高模型性能。对所有数据集进行过滤,使用启发式规则和基于模型的分类器,还进行安全过滤以删除有害内容。从训练语料库中筛选出评估集。在训练过程中进行分阶段训练,通过增加领域相关数据的权重来改变混合组合,直到训练结束。
2025-03-26
AI模型训练师要学习那些知识?
AI 模型训练师需要学习以下知识: 1. 数据收集:了解如何从互联网上收集各种文本数据,如文章、书籍、维基百科条目、社交媒体帖子等。 2. 数据预处理:掌握清理和组织数据的方法,包括删除垃圾信息、纠正拼写错误、将文本分割成易于处理的片段等。 3. 模型架构设计:熟悉如 Transformer 等适合处理序列数据(如文本)的神经网络架构,虽然复杂但需有一定了解。 4. 训练原理:明白模型通过反复阅读数据、尝试预测句子中的下一个词来逐渐学会理解和生成人类语言。 5. 领域专业知识:以医疗保健领域为例,AI 模型训练师应了解该领域的专业知识,如生物学、化学等基础学科,以及如何培养处理涉及细微差别决策的直觉。 6. 了解大模型的底层原理:以 GPT3 为例,要知道其预训练阶段所学习的内容和数据量,以及 Transformer 模型的相关概念。
2025-03-24
我想学习有关ai的知识,但是并不是单单的系统性的学,而是想利用现有的模型比如说deep seekr1模型来训练一个自己的模型这样的,来实现某些功能
以下是关于 DeepSeek R1 模型的相关知识: 1. DeepSeek R1 引入了纯强化学习(RL),不依赖大量人类标注数据,而是通过自我探索和试错来学习。在“冷启动”阶段,仅通过少量人工精选的思维链数据进行初步引导,建立符合人类阅读习惯的推理表达范式,随后主要依靠强化学习,在奖励系统的反馈下(只对结果准确率与回答格式进行奖励),自主探索推理策略,不断提升回答的准确性,实现自我进化。准确率奖励用于评估最终答案是否正确,格式奖励强制结构化输出,让模型把思考过程置于<think></think>标签之间。 2. 与其他模型相比,Alpha Zero 只训练了三天,就以 100 比 0 的战绩完胜 Alpha Go Lee,Alpha Go(老)采用监督学习+强化学习,学习人类棋谱,更接近人类职业棋手风格,继承了人类的局限,Alpha Zero(新)完全摒弃人类数据的纯强化学习,从零开始自我博弈,不受限于人类经验,具有创造性的下棋风格。DeepSeek R1 在训练中更注重学习推理的底层策略,培养通用推理能力,使其能够实现跨领域的知识迁移运用和推理解答。 3. 使用 DeepSeek R1 给老外起中文名的操作指引: 点击邀请,复制邀请链接或下载邀请海报分享给好友。 打开火山引擎的模型页面(https://zjsms.com/iP5QRuGW/),使用习惯的方式登录。 登录后点击左侧列表里的“在线推理”,再点击“快速入门”。 获取 API Key,点击“创建 API Key”,可修改名字后创建,创建完成后点击“查看并选择”,将“已复制”的提示内容找个地方存一下。 复制 R1 的调用示例代码,选择模型为“DeepSeek R1”,修改示例代码中的相关内容,然后点击右侧的复制按钮,将代码找个地方存起来。 上述接入方法是快速入门方式,平台会自动创建在线推理接入点,并提供 50 万 Token 的免费额度,用完才需充值。如需充值,点击页面右上角的“费用”》“充值汇款”,根据账单适当充值。 4. DeepSeek R1 不同于先前的普通模型,它与 OpenAI 现在最先进的模型 o1、o3 同属于基于强化学习 RL 的推理模型。在回答用户问题前,R1 会先进行“自问自答”式的推理思考,提升最终回答的质量,这种“自问自答”是在模拟人类的深度思考,其“聪明”源于独特的“教育方式”,在其他模型还在接受“填鸭式教育”时,它已率先进入“自学成才”新阶段。
2025-03-22
大模型是怎么训练的
大模型的训练过程可以类比为“上学参加工作”: 1. 找学校:训练大模型需要大量的计算资源,如 GPU,只有具备强大计算能力的机构才有条件训练自己的大模型。 2. 确定教材:大模型需要大量的数据,通常几千亿序列(Token)的输入是基本要求。 3. 找老师:即选择合适的算法来讲解“书本”中的内容,让大模型更好地理解 Token 之间的关系。 4. 就业指导:学完知识后,为了让大模型更好地胜任某一行业,需要进行微调(fine tuning)指导。 5. 搬砖:就业指导完成后,正式干活,比如进行翻译、问答等,在大模型里称之为推导(infer)。 在 LLM 中,Token 被视为模型处理和生成的文本单位,可以代表单个字符、单词、子单词,甚至更大的语言单位,具体取决于所使用的分词方法(Tokenization)。在将输入进行分词时,会对其进行数字化,形成一个词汇表(Vocabulary)。 此外,训练大模型的基础步骤如下: 1. 创建数据集:进入厚德云模型训练数据集(https://portal.houdeyun.cn/sd/dataset),在数据集一栏中点击右上角创建数据集,输入数据集名称。可以上传包含图片和标签的 zip 文件,也可单独上传照片,但建议提前将图片和标签打包成 zip 上传,且图片名与对应的达标文件应匹配。上传后等待一段时间,确认创建数据集,返回上一个页面等待上传成功,可点击详情检查,能预览到数据集的图片以及对应的标签。 2. Lora 训练:点击 Flux,基础模型会默认是 FLUX 1.0D 版本。选择数据集,触发词可有可无,取决于数据集是否有触发词,模型效果预览提示词可随机抽取数据集中的一个标签填入。训练参数可调节重复次数与训练轮数,若不知如何设置,可默认 20 重复次数和 10 轮训练轮数。可按需求选择是否加速,点击开始训练,会显示所需要消耗的算力,然后等待训练,会显示预览时间和进度条。训练完成会显示每一轮的预览图,鼠标悬浮到想要的轮次模型,中间会有生图,点击可自动跳转到使用此 lora 生图的界面,点击下方的下载按钮可自动下载到本地。 从原理层面,用数学来理解 Prompt:传统的机器学习是 p,但这个模型未经人工标注,我们给出的 Prompt 就是 x,让大模型基于此知道概率最大的 y,避免人工标注,但依赖 x 给入的信息更大概率找到合适的 y。例如给一张照片,输入“这是一个动物,这是什么”,大模型根据输入提取特征和提示,最终返回结果。
2025-03-22
MoE模型训练为什么会比dense模型要更困难?
MoE 模型训练比 dense 模型更困难的原因主要包括以下几点: 1. 内存需求:MoE 模型需要将所有专家加载到内存中,这导致其需要大量的 VRAM。 2. 微调挑战:微调 MoE 模型存在困难,历史上在微调过程中较难泛化。 3. 训练设置:将密集模型转换为 MoE 模型时,虽然训练超参数和训练设置相同,但 MoE 模型的特殊结构仍带来了训练上的复杂性。 4. 计算效率与泛化平衡:MoE 模型在训练时更具计算效率,但在微调时难以实现良好的泛化效果。
2025-03-17
什么样的数据集适合训练大语言模型?
以下是一些适合训练大语言模型的数据集: 1. Guanaco:这是一个使用 SelfInstruct 的主要包含中日英德的多语言指令微调数据集,地址为:。 2. chatgptcorpus:开源了由 ChatGPT3.5 生成的 300 万自问自答数据,包括多个领域,可用于训练大模型,地址为:。 3. SmileConv:数据集通过 ChatGPT 改写真实的心理互助 QA 为多轮的心理健康支持多轮对话,含有 56k 个多轮对话,其对话主题、词汇和篇章语义更加丰富多样,更加符合在长程多轮对话的应用场景,地址为:。 虽然许多早期的大型语言模型主要使用英语语言数据进行训练,但该领域正在迅速发展。越来越多的新模型在多语言数据集上进行训练,并且越来越关注开发专门针对世界语言的模型。然而,在确保不同语言的公平代表性和性能方面仍然存在挑战,特别是那些可用数据和计算资源较少的语言。 大模型的预训练数据通常非常大,往往来自于互联网上,包括论文、代码以及可进行爬取的公开网页等等,一般来说,现在最先进的大模型一般都是用 TB 级别的数据进行预训练。
2025-03-17