Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

AI视觉算法

Answer

以下是关于 AI 视觉算法的相关内容:

GPT-4 Vision

GPT-4 Vision 是 OpenAI 高级模型 GPT-4 的创新功能,于 2023 年 9 月推出,能够解释视觉内容和文本,为用户提供更丰富、更直观的交互体验。

GPT-4V 模型使用带有预训练组件的视觉编码器进行视觉感知,将编码的视觉特征与语言模型对齐。它建立在复杂的深度学习算法之上,能有效处理复杂的视觉数据。

GPT-4V 允许用户上传图像作为输入并询问有关图像的问题,这种任务类型称为视觉问答(VQA)。

GPT-4V 的工作原理:

  • 利用先进的机器学习技术解释和分析视觉和文本信息。
  • 对庞大数据集进行训练,包括文本和各种视觉元素。
  • 训练过程结合强化学习,采用两阶段训练方法,先掌握视觉语言知识,再对更小、更高质量的数据集进行微调,以提高生成的可靠性和可用性。

计算机视觉

  • 图像分类和物体识别:将图片作为输入,输出图像的内容分类,应用于面部识别。
  • 物体识别:不仅分类或识别物体,还检测物体是否出现在图像中。
  • 图像分割算法:识别物体位置,并标记不同物体对应的像素点,如用于识别 X 光照射图片。
  • 视觉追踪:检测视频中的奔跑者,并追踪其轨迹和运动方向。

自然语言处理

  • 文本分类:识别邮箱或文本中的内容并归类,可用于情绪识别。
  • 信息检索:输入关键字,找出相关文档。
  • 名称实体识别:找出句子中的名称,自动提取电话、姓名、国籍等。
  • 机械翻译:进行语言翻译。
  • 解析与语音部分标注技术:标注句子词性,让 AI 系统找出需留意的词语。
  • 解析器:将单词组合成短语和句子,也是一种分类标签。
  • 语音识别:将麦克风记录的空气高速压力变化数据转化为文本。
  • 触发词检测:识别触发词。
  • 语音 ID 识别:通过倾听说话来识别身份。
Content generated by AI large model, please carefully verify (powered by aily)

References

问:怎么接入OpenAI 的视觉模型GPT4-V?

GPT-4 Vision,通常缩写为GPT-4V,是OpenAI高级模型GPT-4的一项创新功能。GPT-4V于2023年9月推出,使AI能够解释视觉内容和文本。GPT-4以其增强的视觉能力给人留下深刻印象,为用户提供更丰富、更直观的交互体验。GPT-4V模型使用带有预训练组件的视觉编码器进行视觉感知,将编码的视觉特征与语言模型对齐。GPT-4建立在复杂的深度学习算法之上,使其能够有效地处理复杂的视觉数据。有了这款具有视觉功能的GPT-4,您现在可以分析图像输入并开辟人工智能研发可能性的新世界。将图像功能整合到AI系统(尤其是大型语言模型)中,标志着AI的下一个前沿领域,为突破性应用解锁了新颖的界面和功能。这为与机器进行更直观、更类似人类的交互铺平了道路,标志着向全面理解文本和视觉数据迈出了一大步。简单来说,GPT-4V允许用户上传图像作为输入并询问有关图像的问题,这种任务类型称为视觉问答(VQA)。想象一下,与一个不仅会听你说什么,还会观察和分析你展示的图片的人交谈。这就是适合你的GPT-4V。

学习笔记:AI for everyone吴恩达

计算机视觉:图像分类和物体识别,是将图片作为输入,输出图像的内容分类。应用于面部识别。物体识别,不仅是分类或者识别物体,还有检测是否有物体出现在一个图像里。图像分割算法,不仅识别出对应的物体的位置,并将不同物体对应的像素点进行标记。识别X光照射图片则使用这种算法。计算机视觉还可以进行视觉追踪,如检测视频中的奔跑者,还可以追踪随时间产生的对应轨迹,确定其运动方向。自然语言处理:文本分类,识别邮箱或文本中的内容,进行归类。可以用于情绪识别信息检索,输入关键字,希望AI可以顺利找出文档。名称实体识别,可以找出句子里的名称。自动提取电话,姓名,国籍等。机械翻译,进行语言翻译解析与语音部分标注技术,将句子词性标注(part-of-speech tagging),最后通过识别名词,形容词,动词等,让AI系统找出哪一些词语可以留意。解析器,将单词组合成短语,最后组合成句子,同样是一种分类标签。语音识别,将麦克风记录的空气高速压力变化数据,转化为文本。触发词检测,识别触发词语音ID识别,倾听说话来识别身份

问:怎么接入OpenAI 的视觉模型GPT4-V?

GPT-4V利用先进的机器学习技术来解释和分析视觉和文本信息。它的实力在于它对庞大数据集的训练,其中不仅包括文本,还包括来自互联网各个角落的各种视觉元素。训练过程结合了强化学习,增强了GPT-4作为多模态模型的能力。但更有趣的是两阶段的训练方法。最初,该模型已准备好掌握视觉语言知识,确保它理解文本和视觉之间的复杂关系。在此之后,先进的人工智能系统对更小、更高质量的数据集进行微调。这一步对于提高其生成的可靠性和可用性至关重要,确保用户获得最准确和最相关的信息。

Others are asking
2025年AI研究报告
以下是为您提供的 2025 年 AI 研究报告相关信息: Gartner:《生成式 AI 时代下科技产品的重要发展机遇》(2024/10/16) 强调了生成式 AI 技术对对话式 AI 和科技产品创新的显著影响。 预计到 2025 年,生成式 AI 将嵌入 80%的对话式 AI 产品中,推动市场营收大幅增长。 建议技术供应商积极把握机遇,通过理解市场动态、技术成熟度和市场接受度来调整策略。 生成式 AI 的四大关键能力—对话式 AI、AI 代理、合成数据和个性化—能够提升产品价值和客户体验。 提出了将生成式 AI 功能添加到产品中的四个关键步骤,并强调了独立软件供应商在企业应用中嵌入生成式 AI 能力的趋势。 如需下载研究报告,。 甲子光年:2025 DeepSeek 开启 AI 算法变革元年(2025/02/05) DeepSeek 的出现标志着算力效率拐点显现,其通过优化算法架构,显著提升了算力利用效率,打破了算力至上的传统认知。 2025 年发布的大模型呈现低参数量特征,为本地化部署到 AI 终端运行提供了可能。 报告强调 2025 年是算法变革的元年,DeepSeek 的推理模型开启了算法变革,其训练过程聚焦于强化学习,提升了模型的推理能力。 非 Transformer 架构的算法模型成为新的发展方向,如 LFM 架构模型性能超越同等规模的 Transformer 模型。 如需下载研究报告,。 安永:数据+AI 开启经验规模化复制时代(2023/12/19) 人工智能正在经历新的发展浪潮。 某头部公司正在转向 AI Agents 支持平台,结合第 4 代人工智能模型与专业语料库以实现业务创新。 AI Agents 有望为商业领域注入新活力,展示人工智能的潜力和商业价值。 随着平台的发展,新的 AI Agents 涌现,提供专业化、高端化、个性化、规模化、持续化的服务。 人工智能的革新涵盖了生成内容(AIGC)和生成服务(AIGS)的领域。 保险行业面临挑战,AI 的突破为其带来新的应对方向。 知识星球下载: 弘则研究:2023 生成式 AI 驱动向量数据库加速发展(2023/12/18) 向量数据库潜在市场空间是传统结构化关系型数据库的数倍达到千亿美元。 据信通院统计数据,全球数据库市场规模在 2020 年为 671 亿美元,到 2025 年有望达到 798 亿美元,CAGR 3.5%估算关系型数据库全球龙头 Oracle 收入规模小几百亿美元。 仅考虑现有非结构化数据的向量化处理,估算需要的存储空间增量为之前的数倍。 未来随着生成式 AI 应用增量数据的爆发对于向量数据库的需求会更大。 报告下载地址:
2025-04-09
BAAI/bge呢
BGE(BAAI 通用嵌入)是由北京人工智能研究院开发的模型,代表了一些可用的最强大的开源嵌入模型。它擅长捕获跨多种语言和领域的语义关系。 在 Rankify 中,BGE 集成具有以下特点: 支持多种 BGE 模型大小。 具备跨语言检索能力。 为生产环境优化了推理。 在人岗匹配的相似性计算中,如邬嘉文的 AI 求职助手中,使用了 BGEM3 模型,通过 Python 代码实现,具体步骤包括读取相关文件、使用模型计算相似性,并将信息汇总保存。代码如下: ``` import pandas as pd from FlagEmbedding import BGEM3FlagModel 1. 读取 cv.txt 文件 with openas file: cv_content=file.read 2. 读取 JobDetails2.xlsx 文件所有字段 job_details=pd.read_excel 3. 使用 BGEM3 模型计算相似性 model=BGEM3FlagModel cv_embedding=model.encode 计算 cv 与每个 job_description 的相似性 similarities= for job_description in job_details: job_embedding=model.encode similarity=cv_embedding@job_embedding.T similarities.append 4. 将所有信息汇总保存为 123.xlsx job_details=similarities job_details.to_excel ```
2025-04-09
PPT制作AI工具推荐
以下是为您推荐的一些制作 PPT 的 AI 工具: 1. Gamma:在线 PPT 制作网站,可通过输入文本和想法提示快速生成幻灯片,支持嵌入多媒体格式,如 GIF 和视频,增强演示文稿吸引力。网址:https://gamma.app/ 2. 美图 AI PPT:由知名图像编辑软件“美图秀秀”的开发团队推出,通过输入简单文本描述生成专业 PPT 设计,包含丰富模板库和设计元素,适用于多种场合。网址:https://www.xdesign.com/ppt/ 3. Mindshow:AI 驱动的 PPT 辅助工具,提供自动布局、图像选择和文本优化等智能设计功能,还可能包括互动元素和动画效果。网址:https://www.mindshow.fun/ 4. 讯飞智文:由科大讯飞推出的 AI 辅助文档编辑工具,利用语音识别和自然语言处理技术优势,提供智能文本生成、语音输入、文档格式化等功能。网址:https://zhiwen.xfyun.cn/ 5. 爱设计 6. 闪击 7. Process ON 8. WPS AI 此外,您还可以参考以下两篇市场分析文章,获取更多关于 AI 生成 PPT 工具的信息: 1. 《》 2. 《》 需要注意的是,内容由 AI 大模型生成,请仔细甄别。
2025-04-09
亚马逊ai
以下是与亚马逊相关的美国 AI 投融资事件信息: Anthropic:是一家人工智能初创公司,致力于开发通用 AI 系统和语言模型,其显著创造是大语言模型 Claude。于 2024 年 3 月 28 日获得亚马逊 27.5 亿美元的战略融资。公司成立于 2021 年 1 月 1 日,网址为。 Figure AI:是一家人形机器人研发商,致力于打造通用类人机器人。于 2024 年 2 月 24 日获得包括亚马逊在内的投资方的 B 轮融资,金额为 6.75 亿美元。公司成立于 2022 年 1 月 1 日,网址为。
2025-04-09
有没有全自动AI剪辑工具,丢入素材后可以根据我的规则要求设置进行多素材混剪
目前有一些工具可以帮助您实现全自动 AI 剪辑,以下为您介绍一种多素材混剪的方法: 1. 声音克隆: 工具:Fish Audio 操作: 准备一段需要克隆的音频(可以是类似屈原的古风声音,或自行录制一段)。 打开网站:https://fish.audio/zhCN/train/newmodel/ 。 上传准备好的音频,按照指引完成声音克隆。 进入声音库选择需要使用的声音,将第一步生成的文案输入,使用克隆好的声音生成对应的音频文件。 下载生成的音频文件备用。 2. 视频合成: 工具:Viggle.ai 操作: 在网上下载“回答我”的原视频。 打开 Viggle.ai 网站,登录后进入视频合成功能:https://viggle.ai/createmix 。 上传“回答我”原视频和第二步生成的人物形象图,生成新版本的“回答我”视频。 预览效果,满意后下载合成好的新视频。 3. 视频剪辑: 工具:剪映 操作: 打开剪映软件(手机或电脑版均可)。 导入第二步合成好的新视频和第一步生成的音频文件。 将音频与视频时间轴对齐,确保声音和画面同步,添加字幕等。 如需叠加特殊背景,可以导入自己的背景图(如楚国风景)。 预览整个视频,检查效果,微调后导出最终视频(建议 MP4 格式)。
2025-04-09
我想了解AI的应用方式
AI 的应用方式广泛且多样,主要包括以下几个方面: 1. 医疗保健: 医学影像分析,辅助诊断疾病。 药物研发,加速研发过程。 个性化医疗,提供个性化治疗方案。 机器人辅助手术,提高手术精度和安全性。 2. 金融服务: 风控和反欺诈,降低金融机构风险。 信用评估,辅助贷款决策。 投资分析,帮助投资者做出明智决策。 客户服务,提供 24/7 服务并回答常见问题。 3. 零售和电子商务: 产品推荐,根据客户数据推荐感兴趣的产品。 搜索和个性化,改善搜索结果和提供个性化购物体验。 动态定价,根据市场需求调整产品价格。 聊天机器人,回答客户问题和解决问题。 4. 制造业: 预测性维护,预测机器故障避免停机。 质量控制,检测产品缺陷提高质量。 供应链管理,优化供应链提高效率和降低成本。 机器人自动化,控制工业机器人提高生产效率。 5. 交通运输: 自动驾驶,提高交通安全性和效率。 交通管理,优化交通信号灯和流量缓解拥堵。 物流和配送,优化路线和配送计划降低运输成本。 无人机送货,将货物快速送达偏远地区。 6. 其他应用场景: 教育,提供个性化学习体验。 农业,分析农田数据提高农作物产量和质量。 娱乐,开发虚拟现实和增强现实体验。 能源,优化能源使用提高能源效率。 此外,还有众多具体的 AI 应用产品,如辅助创作与学习方面的 AI 智能写作助手、语言学习助手等;推荐与规划方面的图像识别商品推荐、旅游行程规划器等;监控与预警方面的宠物健康监测设备、家居安全监控系统等;优化与管理方面的办公自动化工具、物流路径优化工具等;销售与交易方面的艺术作品生成器、汽车销售平台等。总之,AI 的应用场景还在不断扩展,未来将对我们的生活产生更加深远的影响。
2025-04-09
minimax的大模型算法热点
以下是关于 MiniMax 的大模型算法热点的相关内容: 1. MiniMax 有两个适合特定任务的大模型:MiniMaxText01 支持 400 万 token 的上下文,能应对超长文章;T2A v2(speech01turbo)拥有最好的声音复刻效果。可以通过其开放平台(https://platform.minimaxi.com/login )进行注册登录及实名认证。首次注册会赠送 15 元,API 消耗会消耗余额,生成一条 3 分钟的语音,文本模型消耗 1 分钱,语音模型消耗 5 毛钱,克隆音色有额外费用,现优惠 9.9 元。接着创建 API Key 并保存好,以及 groupid。还可以克隆声音,相关链接为 https://platform.minimaxi.com/examinationcenter/voiceexperiencecenter/voiceCloning ,有创建 voice id、上传复刻音频及音频 prompt、试听文本等操作,勾选用户协议点击“克隆”选项一段时间后完成克隆,使用填写的 voice id 生成声音。 2. MiniMax 推出了 MoE 架构的新模型,其“星野”是目前国内最成功的 AI 陪聊 APP。 3. MiniMax 近日发布新模型 MiniMax01,采用线性注意力机制和 MoE 架构,显著提升上下文处理能力,支持超长上下文(400 万 Token),在多项学术基准上表现优异,超越许多国际顶尖模型。其开源旨在促进长上下文研究和应用,加速 Agent 时代的到来,通过精细架构设计和训练策略,在处理长输入时实现接近线性的计算效率。
2025-03-28
我是一个没有技术背景且对AI感兴趣的互联网产品经理,目标是希望理解AI的实现原理并且能够跟开发算法工程师沟通交流,请给我举出AI模型或者机器学习的分类吧。
以下是 AI 模型和机器学习的分类: 1. AI(人工智能):是一个广泛的概念,旨在使计算机系统能够模拟人类智能。 2. 机器学习:是人工智能的一个子领域,让计算机通过数据学习来提高性能。包括以下几种类型: 监督学习:使用有标签的训练数据,算法学习输入和输出之间的映射关系,包括分类和回归任务。 无监督学习:学习的数据没有标签,算法自主发现规律,经典任务如聚类。 强化学习:从反馈中学习,以最大化奖励或最小化损失,类似训练小狗。 3. 深度学习:是机器学习的一个子领域,模拟人脑创建人工神经网络处理数据,包含多个处理层,在图像识别、语音识别和自然语言处理等任务中表现出色。 4. 大语言模型:是深度学习在自然语言处理领域的应用,目标是理解和生成人类语言,如 ChatGPT、文心一言等。同时具有生成式 AI 的特点,能够生成文本、图像、音频和视频等内容。 2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型,它基于自注意力机制处理序列数据,不依赖循环神经网络或卷积神经网络。生成式 AI 生成的内容称为 AIGC。
2025-03-26
人工智能算法的发展历程是怎么样的?
人工智能算法的发展历程大致如下: 早期的国际象棋对弈程序以搜索为基础,发展出了阿尔法贝塔剪枝搜索算法。在对局开始时搜索空间巨大,随后通过学习人类棋手对局采用了基于案例的推理。现代能战胜人类棋手的对弈程序基于神经网络和强化学习,能从自身错误中学习,且学习速度快于人类。 创建“会说话的程序”的方法也在变化,早期如 Eliza 基于简单语法规则,现代助手如 Cortana、Siri 或谷歌助手是混合系统,使用神经网络转换语音并识别意图,未来有望出现完整基于神经网络的模型处理对话,如 GPT 和 TuringNLG 系列神经网络取得了巨大成功。 在机器学习方面,算法通过分析数据和推断模型建立参数,或与环境互动学习,人类可注释数据,环境可为模拟或真实世界。 深度学习是一种机器学习算法,由 Geoffrey Hinton 开创,1986 年发表开创性论文引入反向传播概念,2012 年 Hinton 和学生表明深度神经网络在图像识别方面击败先进系统。为使深度学习按预期工作,需要数据,如李飞飞创建的 ImageNet。 AI 技术发展历程包括早期阶段的专家系统、博弈论、机器学习初步理论;知识驱动时期的专家系统、知识表示、自动推理;统计学习时期的机器学习算法;深度学习时期的深度神经网络、卷积神经网络、循环神经网络等。 当前 AI 前沿技术点有大模型(如 GPT、PaLM 等)、多模态 AI、自监督学习、小样本学习、可解释 AI、机器人学、量子 AI、AI 芯片和硬件加速等。
2025-03-26
ai算法该从哪里开始学习
学习 AI 算法可以从以下几个方面入手: 1. 神经网络和深度学习方面: 了解麦卡洛克皮兹模型,感知机的学习机制,如罗森布拉特受唐纳德·赫布基础性工作的启发想出的让人工神经元学习的办法,包括赫布法则。 熟悉感知机学习算法的具体步骤,如从随机权重和训练集开始,根据输出值与实例的差异调整权重,直到不再出错。 2. Python 与 AI 基础方面: 掌握 AI 背景知识,包括人工智能、机器学习、深度学习的定义及其关系,以及 AI 的发展历程和重要里程碑。 巩固数学基础,如统计学基础(熟悉均值、中位数、方差等统计概念)、线性代数(了解向量、矩阵等基本概念)、概率论(基础的概率论知识,如条件概率、贝叶斯定理)。 学习算法和模型,包括监督学习(如线性回归、决策树、支持向量机)、无监督学习(如聚类、降维)、强化学习的基本概念。 了解模型的评估和调优方法,如性能评估(包括交叉验证、精确度、召回率等)、模型调优(如使用网格搜索等技术优化模型参数)。 熟悉神经网络基础,如网络结构(包括前馈网络、卷积神经网络、循环神经网络)、激活函数(如 ReLU、Sigmoid、Tanh)。 3. 强化学习方面: 了解在人工智能发展中,利用新算法解决挑战性问题的思路,如在某些领域找到适合的模拟任务环境进行训练和学习,不依赖人类专家先验。 以 AlphaZero 为例,理解其模型公式,包括定义神经网络、网络权重、棋盘状态表示、网络输出等。
2025-03-15
java程序员怎么转型大模型算法工程师
以下是为 Java 程序员转型大模型算法工程师提供的一些建议: 1. 学习相关理论知识:了解大模型的基本原理,包括模型架构、预训练及微调、部署及推理等。 2. 掌握技术工具:熟悉 LLM 相关技术,如 Transformer、Prompt Tuning、RLHF、Langchain、Agent、MOE、RAG 等。 3. 提升编程能力:熟悉算法和数据结构,具备扎实的编程基础,尤其是 Python 开发。 4. 积累项目经验: 可以参考大圣的全网最适合小白的 Llama3 部署和微调教程,该教程手把手教您下载并部署 Llama3 模型,使用甄嬛数据集微调模型,并了解微调的意义和概念。但需注意,此教程不会讲解微调的技术性原理及文中用到的 Python 代码。 关注招聘信息,例如序智科技和中国移动设计院的招聘需求,了解大模型算法工程师的职责和要求,针对性地提升自己的能力。 5. 增强相关技能: 对至少 2 个框架具备源码级别的理解和优化能力,包括但不限于 Langchain、XAgent、ChatDev、DsPy、AutoGPT、BabyAGI、MetaGPT。 熟悉 GPT Function Calling 原理,熟练掌握 Prompt Engineering。 对预训练/微调(尤其是微调)熟练,熟练掌握 huggingface/deepspeed(或其他框架)。 对多模态大模型有一定了解,精通低代码平台会是加分项。 您可以根据自身情况,有针对性地进行学习和实践,逐步实现从 Java 程序员向大模型算法工程师的转型。
2025-03-12
所以我可以理解为CNN是一种图像分类识别的AI算法技术吗
卷积神经网络(CNN)是一种用于图像分类识别的 AI 算法技术。 ImageNet 成为深度神经网络革命的首选数据集,其中由 Hinton 领导的 AlexNet 就是基于卷积神经网络(CNN)。自 2012 年以来,在深度学习理论和数据集的支持下,深度神经网络算法大爆发,包括卷积神经网络(CNN)等。 连接主义的全面逆袭从 2012 年开始,欣顿教授和他的学生建立的 AlexNet 就是使用反向传播算法训练的卷积神经网络(CNN),其在图像识别方面击败了当时最先进的逻辑程序。 虽然 CNN 模型取得了显著成果并解决了许多问题,但也存在一些缺陷,如不能从整幅图像和部分图像识别出姿势、纹理和变化,池化操作导致模型不具备等变、丢失很多信息,需要更多训练数据来补偿损失,更适合像素扰动极大的图像分类,对某些不同视角的图像识别能力相对较差。因此,在 2011 年,Hinton 和他的同事们提出了胶囊网络(CapsNet)作为 CNN 模型的替代。
2025-03-07
哪些AI可以支持对镜头的视觉理解
以下 AI 可以支持对镜头的视觉理解: 1. 通义千问的 Qwen2.5VL 模型:具有以下优势: 视觉理解能力:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。 视频理解能力:支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。 万物识别:擅长识别常见物体及分析图像中的文本、图表、图标、图形和布局。 精准的视觉定位:采用矩形框和点的多样化方式对通用物体定位,支持层级化定位和规范的 JSON 格式输出。 全面的文字识别和理解:提升 OCR 识别能力,增强多场景、多语言和多方向的文本识别和文本定位能力。 Qwen 特色文档解析:设计了更全面的文档解析格式,称为 QwenVL HTML 格式,能够精准还原文档中的版面布局。 增强的视频理解:引入动态帧率(FPS)训练和绝对时间编码技术,支持小时级别的超长视频理解,具备秒级的事件定位能力。 开源平台: Huggingface:https://huggingface.co/collections/Qwen/qwen25vl6795ffac22b334a837c0f9a5 Modelscope:https://modelscope.cn/collections/Qwen25VL58fbb5d31f1d47 Qwen Chat:https://chat.qwenlm.ai 2. OpenAI 的 GPT4:在 12 月发布的更新中正式上架了“视频理解”功能,可以和用户就便签内容进行讨论。 3. 基于豆包视觉理解模型实现的具有视频通话功能的应用:能够对摄像头传输的实时画面进行分析,精准理解画面中的关键信息,包括图表论文人物表情、动作细节、场景环境等。同时支持高清流畅的视频通话,实现和大模型面对面的即时交流体验。
2025-04-09
如何用AI 驱动的产品营销创新,从内容创作到视觉呈现的全方位变革?
以下是关于如何用 AI 驱动产品营销创新,从内容创作到视觉呈现的全方位变革的一些方法和案例: 一、内容创作方面 1. 利用 AI 分析工具研究市场趋势、消费者行为和竞争对手情况,以获取关键信息,为营销内容创作提供方向。 2. 借助 AI 文案工具撰写有说服力的产品描述和营销文案,提高转化率。 二、视觉呈现方面 1. 通过 AI 生成图像或素材,再结合平面合成及修正,确保符合品牌形象,精准表达营销活动主题,如淘宝天猫大促视觉的案例。 2. 对于需要定制化真人模特实景素材的主题活动,利用 AI 将策划、搭建、拍摄、设计融为一个闭环流程,完成页面所有素材的生产和输出,例如七夕主题活动页面。 3. 在 UI 设计场景中,采用 AI 能力快速定制多种用户需要的视觉效果,如通过 SD 中 controlnet 的有效控制生成指定范围内的 ICON、界面皮肤等内容。 三、在阿里巴巴营销中的应用 1. 关键词优化:利用 AI 分析和推荐高流量、高转化的关键词,优化产品标题和描述,提高搜索排名和可见度。 2. 产品页面设计:借助 AI 设计工具根据市场趋势和用户偏好自动生成吸引人的产品页面布局。 3. 图像识别和优化:使用 AI 图像识别技术选择或生成高质量的产品图片,展示产品特点。 4. 价格策略:依靠 AI 分析不同价格点对销量的影响,制定有竞争力的价格策略。 5. 客户反馈分析:通过 AI 分析客户评价和反馈,优化产品和服务。 6. 个性化推荐:利用 AI 根据用户的购买历史和偏好提供个性化的产品推荐,增加销售额。 7. 聊天机器人:使用 AI 驱动的聊天机器人提供 24/7 的客户服务,解答疑问,提高客户满意度。 8. 营销活动分析:借助 AI 分析不同营销活动的效果,了解哪些活动更能吸引顾客并产生销售。 9. 库存管理:依靠 AI 帮助预测需求,优化库存管理,减少积压和缺货情况。 10. 支付和交易优化:利用 AI 分析不同的支付方式对交易成功率的影响,优化支付流程。 11. 社交媒体营销:通过 AI 在社交媒体上找到目标客户群体,进行精准营销提高品牌知名度。 12. 直播和视频营销:使用 AI 分析观众行为,优化直播和视频内容,提高观众参与度和转化率。 四、大型视觉模型 Sora 的机遇 1. 对于学术界,OpenAI 推出 Sora 标志着战略转变,鼓励更广泛的 AI 社区深入探索文本到视频模型,利用扩散和变换器技术。以原生大小训练 Sora 的创新方法为学术界提供了灵感,强调使用未修改数据集的好处,开辟了创建更高级生成模型的新路径。 2. 对于行业,Sora 目前的能力预示着视频模拟技术进步的道路,突出了在物理和数字领域内增强现实感的潜力。公司可以利用 Sora 生产适应市场变化的广告视频,并创建定制化的营销内容,降低成本,增强吸引力和效果,彻底改变品牌与受众互动的方式。
2025-03-24
视觉大模型的代表模型有哪些
以下是一些视觉大模型的代表模型: 1. Flamingo:一系列视觉语言(VL)模型,能处理交错的视觉数据和文本,并生成自由格式的文本输出。 2. BLIP2:引入资源效率更高的框架,包括用于弥补模态差距的轻量级 QFormer,能利用冻结的 LLM 进行零样本图像到文本的生成。 3. LLaVA:率先将 IT 技术应用到 MM 领域,引入新型开源 MM 指令跟踪数据集及基准 LLaVABench 以解决数据稀缺问题。 4. MiniGPT4:提出简化方法,仅训练一个线性层即可将预训练的视觉编码器与 LLM 对齐,复制 GPT4 的功能。 5. mPLUGOwl:提出新颖的 MMLLMs 模块化训练框架,结合视觉上下文,包含 OwlEval 教学评估数据集。 6. XLLM:扩展到包括音频在内的各种模式,具有强大的可扩展性,利用 QFormer 的语言可迁移性应用于汉藏语境。 7. VideoChat:开创高效的以聊天为中心的 MMLLM 用于视频理解对话,为该领域的未来研究制定标准。 8. Sora:符合视觉模型的规模化定律,是第一个展示确认新兴能力的视觉模型,包括遵循指令、视觉提示工程和视频理解等功能,能够根据人类指令生成长达一分钟的视频。 9. CLIP:开创性的视觉语言模型,将变压器架构与视觉元素结合,能在多模态生成框架中充当图像编码器。 10. Stable Diffusion:多才多艺的文本到图像 AI 模型,采用变压器架构和潜在扩散技术生成各种风格的图像。
2025-03-20
计算机视觉
计算机视觉是机器认知世界的基础,人类获取的信息约 83%来自视觉,而计算机视觉旨在让计算机看懂图像或视频里的内容,像人一样通过视觉观察和理解世界。 其三大基础任务包括分类、检测和分割: 图像分类:根据图像中的语义信息对不同类别的图像进行区分。 目标检测:找出图像或视频中的目标物体,同时检测出物体的位置和大小。 图像分割:又可划分为语义分割和实例分割。语义分割不区分同类目标,实例分割则需要区分同类目标中的不同个体。 此外,计算机视觉还包括目标跟踪,对图像序列中的运动目标进行检测、提取、识别和跟踪,实现对运动目标的行为理解。 参考资料: 在企业应用中,计算机视觉的应用包括: 图像分类和物体识别,将图片作为输入,输出图像的内容分类,应用于面部识别。 物体识别,不仅分类或识别物体,还检测物体是否出现在图像里。 图像分割算法,识别物体位置并标记不同物体对应的像素点,如用于识别 X 光照射图片。 视觉追踪,检测视频中的奔跑者并追踪其轨迹和运动方向。
2025-03-19
想在comfyui搭建一个音频节奏生成ai抽象粒子视觉效果的工作流,应该使用哪些模型节点?如何搭建?
在 ComfyUI 搭建音频节奏生成 AI 抽象粒子视觉效果的工作流,您可以参考以下内容: 1. 大模型节点: 您可以根据自己的风格选择不同的大模型,推荐使用: AWPainting,链接:https://civitai.com/models/84476/awpainting primemixanything,链接:https://civitai.com/models/75089/primemixanything xxmix9realistic v40,链接:https://civitai.com/models/47274/xxmix9realistic 2. 关键词节点: 可以使用工作流内的关键词,也可以输入自己的正负面关键词。 3. Lora 节点: 可根据自己风格搭配进行选择,如需多个 Lora 可进行串联。 4. ControlNet 节点: 选用 qrcode_monster V2 版本,相比于 V1 版本 V2 版本识别性更强。下载需要魔法,没有魔法的同学文末领取模型。下载链接:https://huggingface.co/monsterlabs/control_v1p_sd15_qrcode_monster/tree/main/v2 5. 采样器节点: 所有生图的老演员了,Step 要选择高步数,35 50 即可。采样器默认的 euler a /dpmpp 2m sde 基础节点介绍: 1. Checkpoint 基础模型(大模型/底模型)节点: 属于预调模型,决定了 AI 图片的主要风格。输出连接:Model 连接 KSampler 采样器的 Model;Clip 连接终止层数的 Clip;Vae 连接 VaeDecode 的 Vae。 2. Clip 终止层数(clip skip)节点: ComfyUI 的是负数的,webUI 的是正数。输出入点:Clip 连接 Checkpoint 基础模型的 Clip。输出节点:Clip 连接 Prompt 节点的 Clip。正向提示词和负面提示词各一个。 3. Prompt 节点: 输出入点:Clip 连接 Clip 终止层数节点的 Clip。输出节点:正向提示词和负面提示词各连接一个。 4. KSampler 采样器: 输出入点:Model 连接 Checkpoint 基础模型;Positive 连接正向提示词;negative 连接负面提示词;latent_imageL 连接 Empty Latent Image 潜空间图像的 Latent。输出节点:Latent 连接一个 VAE 的 Samples。 5. Empty Latent Image 潜空间图像: 设置出图尺寸,例如 10241024。输出入点:Latent 连接 KSampler 采样器的 Latent。 此外,还有一些根据插件整理的工作流,您可以先随便选择一个“文生图”中的“基础+自定 VAE”。选好之后,点击“替换节点树”。界面中就会出现已经连接好的工作流节点(如果没看到,就按一下 home 键),包括大模型、clip、vae、正反提示词、尺寸,采样器等所有在 webUI 中熟悉的参数,而且全都是中文面板。打开模型节点,可以看到 webUI 中的模型全部都在。这次先不更改参数,点击“运行节点树”,直接生成。此时会提醒您是否启用 ComfyUI,点击确定即可。等待一会,就能在最后一个节点预览图中看到生成的图片。点击这里就可以打开后台,看到出图时间。
2025-03-15
人类接收外界信息的感官中,视觉占比高达83%,听觉占11%,其余触觉、嗅觉、味觉合计仅占6%。如何采用用AI画出图示呢
以下为您提供采用 AI 画出关于人类接收外界信息感官占比图示的相关指导: 首先,您可以选择合适的 AI 绘图工具,如 Creately、Whimsical 或 Miro 等。 Creately 是一个在线绘图和协作平台,利用 AI 功能简化图表创建过程,适合绘制流程图、组织图、思维导图等。它具有智能绘图功能,能自动连接和排列图形,还有丰富的模板库和预定义形状,支持实时协作。官网:https://creately.com/ Whimsical 是一个专注于用户体验和快速绘图的工具,适合创建线框图、流程图、思维导图等。其具有直观的用户界面,易于上手,支持拖放操作,快速绘制和修改图表,提供多种协作功能。官网:https://whimsical.com/ Miro 是一个在线白板平台,结合 AI 功能,适用于团队协作和各种示意图绘制,如思维导图、用户流程图等。它支持无缝协作,支持远程团队实时编辑,有丰富的图表模板和工具,还支持与其他项目管理工具(如 Jira、Trello)集成。官网:https://miro.com/ 使用这些工具绘制图示的一般步骤如下: 1. 选择工具:根据您的具体需求选择合适的 AI 绘图工具。 2. 创建账户:注册并登录该平台。 3. 选择模板:利用平台提供的模板库,选择一个适合您需求的模板。 4. 添加内容:根据您的需求,添加并编辑图形和文字。利用 AI 自动布局功能优化图表布局。 5. 协作和分享:如果需要团队协作,可以邀请团队成员一起编辑。完成后导出并分享图表。
2025-02-28