Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

汽车行业大模型落地案例

Answer

以下是汽车行业大模型的落地案例:

  • 生产计划、供应链计划状态查询。
  • 产线预测性维保辅助。
  • 产品质量分析与溯源。
  • 自动驾驶全场景模拟训练及虚拟汽车助手。
  • 线上购车品牌、配置对比分析。

汽车公司利用 AI 进行以下方面的应用:

  • 分析市场趋势、消费者行为和销售数据,以更好地理解客户需求,制定营销策略和优化产品定价。
  • 在电动化和能源管理方面,优化电池使用和充电时间来提高能源效率和延长电池寿命。
  • 支持共享出行服务,如优化路线规划、调度车辆和定价策略,提高服务效率和用户满意度。
  • 提供语音助手和车载娱乐,允许驾驶员通过语音命令控制车辆功能、获取信息和娱乐内容。
  • 进行车辆远程监控和诊断,提供实时诊断和支持,帮助车主及时了解车辆状况并采取相应措施。

需要注意的是,部分内容由 AI 大模型生成,请仔细甄别。

Content generated by AI large model, please carefully verify (powered by aily)

References

七大行业的商业化应用

制造业/汽车:生产计划、供应链计划状态查询;产线预测性维保辅助;产品质量分析与溯源;自动驾驶全场景模拟训练及虚拟汽车助手;线上购车品牌、配置对比分析。生命科学:研发阶段靶点发现及产品成药性;医学文献内容检索,重点摘要提取,相关法规整理;医药代表培训及知识库建立;分诊导诊助理、诊疗助理、术后护理及复建辅助。不仅如此,ChatGPT大模型以及生成式AI技术还将在图片、视频、数字人等领域的各种复杂场景中落地,利用海量的数据资源和算法实现商业化应用与迭代更新。但是落地效果也有很多的落差,可以具体读读全文原文:PPT式大模型能做千行百业商业案例极少谈及

2023年度中文大模型基准测评报告.pdf

•百川智能发布Baichuan2—Turbo字节云雀大模型闭源通用大模型百川BaichuanYi-34B开源医疗汽车教育行业大模型MindGPT部分领域岐黄问道银河大模型..................序列猴子BlueLM AndesGPT孟子云天书玉言金融工业文化/零售/交通AInno-15B妙笔大模型[heading4]蚂蚁金融大模型[content]轩辕大模型COSMO-GPTSMore LrMo..................

问:人工智能在汽车行业的应用案例

汽车公司使用AI来分析市场趋势、消费者行为和销售数据,以便更好地理解客户需求,制定营销策略和优化产品定价。1.电动化和能源管理:AI在电动汽车(EV)的电池管理和充电策略中发挥作用,通过优化电池使用和充电时间来提高能源效率和延长电池寿命。1.共享出行服务:AI支持的共享出行服务,如Uber和Lyft,使用AI来优化路线规划、调度车辆和定价策略,提高服务效率和用户满意度。1.语音助手和车载娱乐:AI驱动的语音助手,如Amazon Alexa Auto和Google Assistant,允许驾驶员通过语音命令控制车辆功能、获取信息和娱乐内容。1.车辆远程监控和诊断:AI系统可以远程监控车辆状态,提供实时诊断和支持,帮助车主及时了解车辆状况并采取相应措施。内容由AI大模型生成,请仔细甄别。

Others are asking
汽车行业AI应用
以下是人工智能在汽车行业的一些应用: 1. 自动驾驶技术:利用 AI 进行图像识别、传感器数据分析和决策制定,如特斯拉、Waymo 和 Cruise 等公司都在开发和测试自动驾驶汽车,实现自主导航和驾驶。 2. 车辆安全系统:AI 用于增强车辆的安全性能,如自动紧急制动、车道保持辅助和盲点检测系统,通过分析摄像头和传感器数据预防事故。 3. 个性化用户体验:根据驾驶员的偏好和习惯调整车辆设置,包括座椅位置、音乐选择和导航系统,提供更个性化和舒适的驾驶体验。 4. 预测性维护:分析车辆实时数据预测潜在故障和维护需求,减少停机时间和维修成本,提高车辆可靠性和效率。 5. 生产自动化:在汽车制造中用于自动化生产线,提高生产效率和质量控制,监测设备状态并优化生产流程,减少人为错误。 6. 销售和市场分析:汽车公司用 AI 分析市场趋势、消费者行为和销售数据,以理解客户需求、制定营销策略和优化产品定价。 7. 电动化和能源管理:在电动汽车的电池管理和充电策略中发挥作用,优化电池使用和充电时间,提高能源效率和延长电池寿命。 8. 共享出行服务:如 Uber 和 Lyft 等共享出行平台使用 AI 优化路线规划、调度车辆和定价策略,提高服务效率和用户满意度。 9. 语音助手和车载娱乐:AI 驱动的语音助手允许驾驶员通过语音命令控制车辆功能、获取信息和娱乐内容。 10. 车辆远程监控和诊断:AI 系统远程监控车辆状态,提供实时诊断和支持,帮助车主及时了解车辆状况并采取措施。 此外,还有一些相关的 AI 应用案例,如汽车之家车商城利用 AI 分析用户购车需求和预算,为用户推荐合适的汽车品牌和车型,并提供购车优惠和金融服务。
2024-11-11
汽车行业AI需求
人工智能在汽车行业有以下广泛的应用: 1. 自动驾驶技术:利用 AI 进行图像识别、传感器数据分析和决策制定,如特斯拉、Waymo 和 Cruise 等公司都在开发和测试自动驾驶汽车。 2. 车辆安全系统:用于增强车辆的安全性能,如自动紧急制动、车道保持辅助和盲点检测系统,通过分析摄像头和传感器数据预防事故。 3. 个性化用户体验:根据驾驶员的偏好和习惯调整车辆设置,如座椅位置、音乐选择和导航系统,提供更个性化和舒适的驾驶体验。 4. 预测性维护:分析车辆实时数据预测潜在故障和维护需求,减少停机时间和维修成本,提高车辆可靠性和效率。 5. 生产自动化:在汽车制造中用于自动化生产线,提高生产效率和质量控制,监测设备状态,优化生产流程,减少人为错误。 6. 销售和市场分析:汽车公司使用 AI 分析市场趋势、消费者行为和销售数据,以便更好地理解客户需求,制定营销策略和优化产品定价。 7. 电动化和能源管理:在电动汽车的电池管理和充电策略中发挥作用,优化电池使用和充电时间,提高能源效率和延长电池寿命。 8. 共享出行服务:如 Uber 和 Lyft 等,使用 AI 优化路线规划、调度车辆和定价策略,提高服务效率和用户满意度。 9. 语音助手和车载娱乐:AI 驱动的语音助手,如 Amazon Alexa Auto 和 Google Assistant,允许驾驶员通过语音命令控制车辆功能、获取信息和娱乐内容。 10. 车辆远程监控和诊断:AI 系统可以远程监控车辆状态,提供实时诊断和支持,帮助车主及时了解车辆状况并采取相应措施。 从研发角度看,硅片上越来越多的部分转向 AI,CPU 部分也在不断增长,这与英特尔股价下降、英伟达股价上升的价值变化相一致。 三个识别技术的关键点: 1. 技术的发展,包括技术的指数上升脉络。 2. 对需求的理解,出行或物理世界的移动是刚需。 3. 重 AI 的应用,如车的实时性、危险性和高要求决定了必须在车上运行 AI。 三个由此得出的观点:(文中未提及具体观点内容)
2024-09-03
具身智能在新能源汽车行业中的应用场景有哪些
具身智能在新能源汽车行业中的应用场景丰富多样,主要包括以下几个方面: 1. 自动驾驶技术:具身智能可以通过集成先进的传感器、摄像头和人工智能算法,实现车辆的自动驾驶功能,提高行车安全性和效率。 2. 智能辅助系统:利用具身智能技术,可以开发出智能辅助系统,如自动泊车、自适应巡航控制等,这些系统能够辅助驾驶员进行更加精准和便捷的操作。 3. 车辆远程监控与维护:通过具身智能技术,可以实时监控新能源汽车的状态,预测潜在的故障和维护需求,从而提高车辆的可靠性和降低维护成本。 4. 智能交互系统:具身智能可以提供更加自然和直观的人车交互方式,例如通过语音识别、手势控制等实现对车辆各项功能的控制。 5. 能源管理优化:具身智能技术可以帮助优化新能源汽车的能源使用,通过智能预测和调度充电时间、电量使用等,提高能源利用效率。 6. 智能生产线:在新能源汽车的制造过程中,具身智能可以应用于自动化生产线,提高生产效率和质量控制水平。 7. 智能物流与仓储:新能源汽车行业可以利用具身智能技术进行智能物流和仓储管理,提高物料搬运和存储的自动化水平。 8. 服务机器人:在汽车展厅或服务中心,具身智能服务机器人可以提供咨询、导览和基础服务,提升客户体验。 随着技术的不断进步和应用场景的拓展,具身智能在新能源汽车行业的应用将越来越广泛,为行业带来深刻的变革。
2024-07-26
AI 在汽车行业的落地场景?
AI 在汽车行业的落地场景有很多,以下是一些常见的例子: 1. 自动驾驶技术:利用 AI 进行图像识别、传感器数据分析和决策制定,自动驾驶汽车能够自主导航和驾驶。 2. 车辆安全系统:AI 被用于增强车辆的安全性能,如自动紧急制动、车道保持辅助和盲点检测系统。 3. 个性化用户体验:AI 可以根据驾驶员的偏好和习惯来调整车辆设置,如座椅位置、音乐选择和导航系统。 4. 预测性维护:通过分析车辆的实时数据,AI 可以预测潜在的故障和维护需求,从而减少停机时间和维修成本。 5. 生产自动化:在汽车制造过程中,AI 被用于自动化生产线,提高生产效率和质量控制。 6. 销售和市场分析:汽车公司使用 AI 来分析市场趋势、消费者行为和销售数据,以便更好地理解客户需求,制定营销策略和优化产品定价。 7. 电动化和能源管理:AI 在电动汽车的电池管理和充电策略中发挥作用,通过优化电池使用和充电时间来提高能源效率和延长电池寿命。 8. 共享出行服务:AI 支持的共享出行服务,如 Uber 和 Lyft,使用 AI 来优化路线规划、调度车辆和定价策略,提高服务效率和用户满意度。 9. 语音助手和车载娱乐:AI 驱动的语音助手,如 Amazon Alexa Auto 和 Google Assistant,允许驾驶员通过语音命令控制车辆功能、获取信息和娱乐内容。 10. 车辆远程监控和诊断:AI 系统可以远程监控车辆状态,提供实时诊断和支持,帮助车主及时了解车辆状况并采取相应措施。 总的来说,AI 在汽车行业的应用正在不断发展和扩大,它将为汽车行业带来更高效、安全和个性化的体验。
2024-05-30
人工智能在汽车行业的应用案例
人工智能(AI)在汽车行业的应用已经非常广泛,它正在改变汽车的设计、制造、销售和使用方式。以下是一些人工智能在汽车行业的应用案例: 1. 自动驾驶技术: 利用AI进行图像识别、传感器数据分析和决策制定,自动驾驶汽车能够自主导航和驾驶。公司如特斯拉(Tesla)、Waymo和Cruise等都在开发和测试自动驾驶汽车。 2. 车辆安全系统: AI被用于增强车辆的安全性能,如自动紧急制动(AEB)、车道保持辅助(LKA)和盲点检测系统。这些系统通过分析来自摄像头和传感器的数据来预防事故。 3. 个性化用户体验: AI可以根据驾驶员的偏好和习惯来调整车辆设置,如座椅位置、音乐选择和导航系统。这提供了更加个性化和舒适的驾驶体验。 4. 预测性维护: 通过分析车辆的实时数据,AI可以预测潜在的故障和维护需求,从而减少停机时间和维修成本。这有助于提高车辆的可靠性和效率。 5. 生产自动化: 在汽车制造过程中,AI被用于自动化生产线,提高生产效率和质量控制。AI系统可以监测设备状态,优化生产流程,并减少人为错误。 6. 销售和市场分析: 汽车公司使用AI来分析市场趋势、消费者行为和销售数据,以便更好地理解客户需求,制定营销策略和优化产品定价。 7. 电动化和能源管理: AI在电动汽车(EV)的电池管理和充电策略中发挥作用,通过优化电池使用和充电时间来提高能源效率和延长电池寿命。 8. 共享出行服务: AI支持的共享出行服务,如Uber和Lyft,使用AI来优化路线规划、调度车辆和定价策略,提高服务效率和用户满意度。 9. 语音助手和车载娱乐: AI驱动的语音助手,如Amazon Alexa Auto和Google Assistant,允许驾驶员通过语音命令控制车辆功能、获取信息和娱乐内容。 10. 车辆远程监控和诊断: AI系统可以远程监控车辆状态,提供实时诊断和支持,帮助车主及时了解车辆状况并采取相应措施。
2024-04-16
有没有具体的案例供参考呢?
以下为您提供一些 AI 应用的具体案例供参考: 即梦的智能参考功能: 模特图方面,可实现变装、换发型、换脸、换发色和调整人物姿势等,例如将模特衣服换成婚纱、将图片背景换成橙色等。 产品图方面,能改变产品材质和调整画面背景,比如将沙发材质换成布或毛绒等。 电商海报方面,支持随意更改背景、元素以适应不同营销主题,例如把图片背景改成居家风格。 基础操作包括打开即梦官网 https://jimeng.jianying.com/ ,选择图片生成,然后选择导入参考图并点击智能参考。 原文链接:https://mp.weixin.qq.com/s/sD0RFMqnFZ6Bj9ZcyFuZNA AIGC 落地应用案例推荐: 部分案例取自以下来源:AIGC 交流群工具沉淀.by 向阳、通往 AGI 之路、No.1 关于 AI 的 107 个人,61 个工具和 28 个通讯.by 赛博禅心、Chat GPT Plugins 全面测评.by 捡到一束光、https://www.futurepedia.io/aitools/funtools 等。 周三【workshop】一起写 Prompts 成果展示: 小组 1 中,一个 prompt 主要用于输入主题为老师生成 PPT,使用者为教师(生成)和学生(阅读)。目前的最好解决方案包括提炼教学内容核心概念确定主题、增加提纲、对提纲进行关键词描述、根据关键词书写提纲下的摘要,并让用户确认生成的课件提纲和内容是否需要修改。成熟的案例参考:step 1(根据 PPT 大纲助手 GPTs 生成 PPT 大纲):https://chat.openai.com/g/gOKorMBxxUpptdagangzhushou ;step 2(根据输入文本生成 PPT 内容 GPTs 生成 PPT 内容):https://chat.openai.com/g/gYJs9jxVBHshuruwenbenshengchengpptneirong ;step 3(将生成的内容复制到 Marp Web 渲染简洁的 PPT):https://web.marp.app/
2025-02-28
土木建筑类AI案例
以下是一些能够帮助建筑设计师审核规划平面图的 AI 工具: 1. HDAidMaster:这是一款云端工具,建筑师能在平台上使用主流的 AIGC 功能进行有趣的集卡式方案创作,在建筑、室内和景观设计领域表现出色,平台搭载自主训练的建筑大模型 ArchiMaster,软件 UI 和设计成果颜值在线。 2. Maket.ai:主要面向住宅行业,在户型和室内软装设计方面有 AI 技术探索,设计师输入房间面积需求和土地约束,软件能自动生成户型图并查看详细设计结果。 3. ARCHITEChTURES:AI 驱动的三维建筑设计软件,提供全新设计模式,在住宅设计早期可引入标准和规范约束 AI 生成的设计结果,保证合规性。 4. Fast AI 人工智能审图平台:形成全自动智能审图流程,从住宅设计图构件开始,集自动导入、区域划分、构件识别、强条审查和自动导出结果于一体,为建筑信息自动建模打下基础,实现建筑全寿命周期内信息集成和数据汇总管理。 每个工具都有特定应用场景和功能,建议根据具体需求选择合适的工具。但需注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-02-28
AI 项目企业落地方向和案例。
以下是关于 AI 项目企业落地方向和案例的相关内容: AI 企业落地应用方面,有文章能带你快速搞懂本轮 AI 大模型革命的核心知识信息,从历史到今天,从原理到应用,从产业到趋势,以通俗易懂但不失专业严谨的方式带你走入 AI 的世界。 Anthropic 在 AI Engineer Summit 2025 上分享了企业应用 AI 的最佳实践,并总结了常见错误。核心挑战包括如何入手、如何评估效果、技术选择困惑(如是否需要微调)。关键经验是评估先行,明确“智能度、成本、延迟”之间的平衡,避免过早微调,先进行基础优化。案例方面,Intercom 通过评估优化 AI Agent Fin,使其处理 86%的客服请求,其中 51%无需人工介入。相关链接: 此外,还有用飞书+DeepSeek R1 搭建自动化 AI 工作流的相关内容。流程包括 URL 内容抓取➝DeepSeek R1 翻译➝自动改写➝生成文章。飞书提供快速启动模板,支持翻译、OCR 等任务。工作流链接: 。 宝玉 Q&A 中提到处理大规模代码,可使用 XML 包裹,超大代码可上传 GitHub 供 AI 分析,AI 还可生成代码并搜索相关库。查看内容: 。ChatGPT 免费用户可使用 GPT4o mini 语音版,免费用户可体验自然对话节奏,Plus/Pro 用户享特权。
2025-02-27
AI介入设计的相关案例
以下是大淘宝设计部 2023 年度 AI 设计实践的相关案例: 1. 在工作流方面: 主要工具为 Midjourney 和 Stabel Diffusion,辅助工具有 RUNWAY 和 PS beta 等。 在营销设计中,AI 设计使整体项目设计时间大约减少 18%左右,其中在创意阶段丰富性提升 150%左右、时间节省 60%左右。 创意多样,项目中不同创意概念的提出数量增加了 150%。 执行加速,设计师在创意生成阶段的时间缩短了平均 60%。 整体提效,从创意发散到落地执行品效都有显著提升。 2. 具体应用场景案例: 大促营销:通过 AI 生成图像或素材,再结合平面合成及修正,确保符合品牌形象,更精准表达营销活动主题,如淘宝天猫大促视觉、双 11 大促横向会场版头模板化应用、天猫小黑盒新品联名等。 AI 布景:对于定制化真人模特实景素材的主题活动,通过 AI 完成页面所有素材的生产和输出,如七夕主题活动页面、超级品类日传播拍摄创意等。 产品营销视觉:在 UI 设计场景中,采用 AI 能力快速定制多种用户需要的视觉效果,如 88VIPAI 定制皮肤。 品牌超级符号映射:根据品牌符号的模型训练和结构控制,用户输入丰富关键词即可快速完成准确的超级符号主视觉,如双 11AI 创作赢红包、双 11 联合传播猫头海报&花车大巡游、超级品类日品牌符号系列海报等。 品牌 IP 形象 AI 生成:训练特定的天猫/淘宝/营销 IP 公仔模型,稳定输出定制化 IP 形象,如天猫 AI 玩行动品牌联合海报、天猫双 11出游主题喵卡、淘宝天猫一起冲亚、天猫 U 先公仔三视图生成及应用等。 传播&投放:如双 11 超级发布品牌联合海报、媒介投放开屏海报。
2025-02-26
model endpoint ID是什么东西?请用文字、数据、案例、比喻等形式进行教学
很抱歉,目前没有关于“model endpoint ID”的相关内容。但一般来说,“model endpoint ID”可以理解为模型服务端点的标识符。 打个比方,就像每个房间都有一个独特的门牌号,“model endpoint ID”就是模型服务这个“房间”的门牌号,通过它可以准确地找到和调用特定的模型服务。 在实际的数据处理中,它可能类似于一个唯一的编码,比如“MEID12345”,用于区分不同的模型服务端点,以便系统能够准确地将请求路由到对应的模型服务进行处理。 希望这样的解释能对您有所帮助,如果您还有其他疑问,请随时向我提问。
2025-02-26
TPM 限制是什么意思?请用文字、数据、案例、比喻等形式进行教学
TPM 限制指的是每分钟处理的事务数(Transactions Per Minute)的限制。 以字节火山引擎为例,它默认提供了高达 500 万 TPM 的初始限流。这对于像一次工作流测试就消耗 3000 多万 tokens 的用户来说,限流的设置具有重要意义。 打个比喻,TPM 限制就好像是一条道路上设置的通行车辆数量限制,如果超过这个限制,就可能导致交通拥堵或者无法正常通行。在 AI 领域,超过 TPM 限制可能会影响服务的性能和稳定性。 比如,当有大量的请求同时发送到系统,如果没有 TPM 限制,可能会导致系统响应变慢甚至崩溃;而有了合理的 TPM 限制,就能保证系统有序地处理请求,为用户提供稳定可靠的服务。
2025-02-26
我想时刻关注Deepseek目前在电商行业应用落地的场景的信息及对应的应用APP、小程序等,可以通过什么渠道第一时间获取
目前关于 Deepseek 在电商行业应用落地的场景信息以及对应的应用 APP、小程序等,您可以通过以下渠道第一时间获取: 1. 关注 Deepseek 官方网站的动态发布和通知。 2. 订阅 Deepseek 官方的社交媒体账号,如微信公众号、微博等,获取最新消息。 3. 加入相关的电商行业论坛或社区,与其他从业者交流,获取相关信息。 4. 关注电商行业的权威媒体和资讯平台,可能会有相关报道。
2025-02-26
Deepseek目前已在电商行业应用落地的场景有哪些?
DeepSeek 在电商行业已应用落地的场景包括: 电商商品策划:如“电商商品策划 DeepSeek 大师版|一键领取同款多维表格模板”。 商品链接分析:如“商品链接分析工具”。 电商产品上架规划:如“电商产品上架规划”。 您可以通过以下链接获取更详细的信息:
2025-02-26
Deepseek目前已在电商行业应用落地的场景有哪些?
DeepSeek 目前已在电商行业应用落地的场景包括: 电商商品策划:如 。 商品链接分析:如 。 电商产品上架规划:如 。
2025-02-26
金融行业落地大模型的路径
以下是金融行业落地大模型的相关路径: 1. 从整体行业情况来看: 2024 年被称为国内大模型落地元年,国内大模型项目增长迅速,中标项目数量和金额大幅增长。 大模型中标项目数前五的行业包括金融。 厂商方面,百度在金融行业的中标数量和金额排名领先。 2. 具体应用案例: 彭博发布了金融领域的大模型 BloombergGPT,并应用于其所在的垂直领域。 3. 行业人士观点: 通用模型适用不同产业,垂直模型类似于单领域专家,垂直大模型的发展有助于提升各领域模型性能。 商汤科技联合创始人杨帆认为,当模型足够大时,可能加速商业化落地,带来更好的技术能力,缩短产业应用周期。 360 公司创始人周鸿祎表示,大模型是工业革命级的生产力工具,能赋能百行千业。 4. 相关赛事推动: 举办「2024 金融行业·大模型挑战赛」,整合公开金融数据,打造多轮问答评测赛题,提供基础数据表,参赛选手可采用 GLM4 系列模型 API 并运用多种技术手段完成赛题,有多个单位提供支持。
2025-02-24
deepseek 落地案例
以下是关于 DeepSeek 的落地案例: 1. 华尔街分析师认为 DeepSeek 以小成本实现媲美领先 AI 产品的性能,并在全球主要市场 App Store 登顶。高盛认为其或改变科技格局,降低 AI 行业的进入门槛。详情:https://www.xiaohu.ai/c/xiaohuai/deepseek 2. DeepSeek 在中文场景表现优秀,日常写作和表达习惯贴近人类,但专业论文总结略弱。数学能力不错,编程能力逊于 GPT。采用 GRPO 算法替代传统 PPO,提升语言评价灵活性与训练速度。更多信息:https://x.com/imxiaohu/status/1883843200756170873 ,GRPO 详情:https://www.xiaohu.ai/c/ai/grpodeepseekr18c6cff0cdeb84937a4197066af987e43 3. 举办了全国 23 城近 4000 人玩转 DeepSeek 的活动,如郑州场展示搭建的无敌工作流,深圳场分享 DeepSeek+出海的落地方案,北京场玩起 AR+机械汪,广州场探讨如何使用 DeepSeek 辅助速通吃“霸王餐”,福州场有最年轻的分享者展示玩转 DS 的示例。同时,活动展示了飞书多维表格和 DeepSeek 的结合的强大之处,且 DeepSeek R1 大模型全面融入飞书多维表格、飞书智能伙伴创建平台等多款产品。详情:https://waytoagi.feishu.cn/wiki/KRtwwVqKKiB7PKkgzu3chsX6nzF 4. 在芯片行业,如存储芯片负责人考虑与 DeepSeek 谈 HBM4 定制合作,台积电研发中心因对方技术调整产能,ASML 总部针对对方算法调整策略,中芯国际因 DeepSeek 证明的技术提高产线利用率并获得追加投资。
2025-02-24
ai大模型有哪些常用参数
以下是关于 AI 大模型常用参数的相关内容: 1. 架构方面: Encoderonly:适用于自然语言理解任务,如分类和情感分析,代表模型是 BERT。 Encoderdecoder:结合 Transformer 架构的 encoder 和 decoder 来理解和生成内容,用例包括翻译和摘要,代表是谷歌的 T5。 Decoderonly:更擅长自然语言生成任务,众多 AI 助手采用此结构,如 ChatGPT。 2. 规模方面: 预训练数据量大,往往来自互联网上的论文、代码、公开网页等,一般用 TB 级别数据进行预训练。 参数众多,如 Open 在 2020 年发布的 GPT3 就已达到 170B 的参数。参数指的是神经网络的输入权重和输出阈值的总和。假定一个神经元有 9 个输入权重和 1 个输出阈值,就有 10 个参数。当有 100 亿个这样的神经元时,就形成千亿级参数的大模型。 3. 模型部署方面: 在 LLM 中,Token 是输入的基本单元。由于大模型参数多,如 GPT2 有 1.5B 参数,每个参数用 float32 表示需 6GB 内存,更先进的模型如 LLAMA 有 65B 参数则需 260G 内存(还不考虑词汇表)。因此实际部署时会进行模型压缩。 在训练 LLM 中,CPU 与内存之间的传输速度往往是系统瓶颈,核心数反而不是大问题,减小内存使用是首要优化点。使用内存占用更小的数据类型是直接方式,如 16 位浮点数可将内存使用减倍。目前有几种相互竞争的 16 位标准,英伟达在其最新一代硬件中引入了对 bfloat16 的支持。
2025-03-03
大模型中的权重与偏置是什么
在大模型中,权重(weight)和偏置(bias)是非常重要的概念。 大模型的“大”主要体现在用于表达 token 之间关系的参数众多,其中就包括权重和偏置。例如 GPT3 拥有 1750 亿参数,其中权重数量达到了这一量级,而词汇表 token 数只有 5 万左右。 以 Transform 为代表的大模型采用自注意力(Selfattention)机制来学习不同 token 之间的依赖关系,生成高质量 embedding。 在感知机学习算法中,感知机的输出和人类标记的正确答案进行比较,如果答案错误,权重和阈值会发生变化。每个权重的变化量取决于与其相关的输入值。对于每个权重 wj:wj←wj+ηxj,其中 t 表示正确的输出(1 或 0);对于给定的输入,y 是感知机的实际输出;xj 是与权重 wj 有关的输入;η是由程序员给出的学习速率。阈值通过创建一个附加的输入 x0 合并得到,x0 为常数 1,其相对应的权重 w0=threshold(阈值)。只有在输入与权重的乘积,即输入向量与权重向量之间的点积大于或等于 0 时,感知机才会被触发。 在某些案例中,比如判断数字大小的问题中,不同概念的权重不同,会影响模型的判断结果。例如 9.11 作为日期“概念”的权重可能比它是个数字“概念”的权重大。
2025-03-03
大模型中的参数是什么
大模型中的参数主要指模型中的权重(weight)与偏置(bias)。例如,GPT3 拥有 1750 亿参数,其中权重数量达到了这一量级,而词汇表 token 数只有 5 万左右。在 LLM 中,由于模型参数非常多,如 GPT2 有 1.5B 参数,每个参数用 float32 表示,所需内存大小为 4 bytes1,500,000,000 = 6GB,更先进的模型如 LLAMA 有 65B 参数,所需内存就需要 260G(这还是在不考虑词汇表的情况下)。因此在进行模型实际部署时,会进行模型的压缩。
2025-03-03
推理行大模型对于RAG的准确性提升,带来哪些改变
推理行大模型对 RAG 准确性提升带来了以下改变: 1. 当辅以能有效提取文档中结构化信息并整合为提示词的 PDF 解析器时,大语言模型能作出更准确的响应,提高了提供给模型的数据质量和相关性,从而提升模型输出质量。 2. 大模型应用领域常用的 RAG 方法,能让模型用自定义数据生成结果,处理无尽私有数据,将模型当成高效推理机器。但 RAG 存在一些常见误区: 随意输入任何文档不一定能得到准确回答,RAG 流程中的多个环节都会影响最终质量。 RAG 虽能减少幻觉,但不能完全消除,只要有大模型参与就可能产生幻觉。 RAG 仍消耗大模型的 Token,最终需大模型处理检索结果生成通顺回答。 未来,将研究分享更多基于深度学习的文档解析方法,以更全面理解 RAG 质量和文档解析质量的关系。同时,前沿模型研发团队力争做到吞吐量、速度和准确度的最佳平衡。
2025-03-03
怎么利用大模型训练自己的机器人
利用大模型训练自己的机器人可以参考以下内容: OpenAI 通用人工智能(AGI)的计划显示,在互联网上所有的图像和视频数据上训练一个与人类大脑大小相当的 AI 模型,将足以处理复杂的机器人学任务。常识推理隐藏在视频和文本数据中,专注于文本的 GPT4 在常识推理上表现出色。Google 最近的例子展示了机器人学能力可从大型视觉/语言模型中学习,在语言和视觉训练基础上,只需最少的机器人学数据,视觉和文本任务的知识就能转移到机器人学任务上。特斯拉训练的“Optimus”通过人类示范学习抓取物体,若人类示范是先进机器人学性能所需的一切,在互联网上所有视频上训练的大模型肯定能实现惊人的机器人学性能。 梦飞提供了在自己的电脑上部署 COW 微信机器人项目的教程,程序在本地运行,若关掉窗口进程结束,想持续使用需保持窗口打开和运行。以 Windows10 系统为例,注册大模型可参考百炼首页:https://bailian.console.aliyun.com/ ,需更改"model"和添加"dashscope_api_key",获取 key 可参考视频教程。 张梦飞提供了从 LLM 大语言模型、知识库到微信机器人的全本地部署教程,部署大语言模型包括下载并安装 Ollama,根据电脑系统下载:https://ollama.com/download ,安装完成后将下方地址复制进浏览器中确认安装完成:http://127.0.0.1:11434/ 。下载 qwen2:0.5b 模型,Windows 电脑按 win+R 输入 cmd 回车,Mac 电脑通过 Command(⌘)+Space 键打开 Spotlight 搜索输入“Terminal”或“终端”,复制命令行粘贴回车等待下载完成。
2025-03-03
帮我找出现在成熟的人工智能大模型,列举他们的功能,附上打开链接
以下是一些成熟的人工智能大模型及其功能和链接: 百度(文心一言):https://wenxin.baidu.com 。 抖音(云雀大模型):https://www.doubao.com 。 智谱 AI(GLM 大模型):https://chatglm.cn 。 中科院(紫东太初大模型):https://xihe.mindspore.cn 。 百川智能(百川大模型):https://www.baichuanai.com/ 。 商汤(日日新大模型):https://www.sensetime.com/ 。 MiniMax(ABAB 大模型):https://api.minimax.chat 。 上海人工智能实验室(书生通用大模型):https://internai.org.cn 。 在这些大模型中: 能生成 Markdown 格式的:智谱清言、商量 Sensechat、MiniMax 。 目前不能进行自然语言交流的:昇思、书生 。 受限制使用:MiniMax(无法对生成的文本进行复制输出,且只有 15 元的预充值额度进行体验,完成企业认证后可以进行充值) 。 特色功能:昇思——生图,MiniMax——语音合成 。 此外,还有其他一些大模型: OpenAI 系统:包括 3.5 和 4.0 版本,一个新的变种使用插件连接到互联网和其他应用程序。Code Interpreter 是一个非常强大的 ChatGPT 版本,可以运行 Python 程序。如果未为 OpenAI 付费,只能使用 3.5 。除了插件变种和一个暂时停用的带有浏览功能的 GPT4 版本之外,这些模型都没有连接到互联网。微软的 Bing 使用 4 和 3.5 的混合,通常是 GPT4 家族中首个推出新功能的模型,例如可以创建和查看图像,且可以在网页浏览器中阅读文档,并连接到互联网。 谷歌:一直在测试自己的人工智能 Bard,由各种基础模型驱动,最近是一个名叫 PaLM 2 的模型。 Anthropic:发布了 Claude 2,其最值得注意的是有一个非常大的上下文窗口,本质上是 LLM 的记忆。Claude 几乎可以保存一整本书或许多 PDF,与其他大型语言模型相比,它不太可能恶意行事。
2025-03-03