直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

汽车行业大模型落地案例

回答

以下是汽车行业大模型的落地案例:

  • 生产计划、供应链计划状态查询。
  • 产线预测性维保辅助。
  • 产品质量分析与溯源。
  • 自动驾驶全场景模拟训练及虚拟汽车助手。
  • 线上购车品牌、配置对比分析。

汽车公司利用 AI 进行以下方面的应用:

  • 分析市场趋势、消费者行为和销售数据,以更好地理解客户需求,制定营销策略和优化产品定价。
  • 在电动化和能源管理方面,优化电池使用和充电时间来提高能源效率和延长电池寿命。
  • 支持共享出行服务,如优化路线规划、调度车辆和定价策略,提高服务效率和用户满意度。
  • 提供语音助手和车载娱乐,允许驾驶员通过语音命令控制车辆功能、获取信息和娱乐内容。
  • 进行车辆远程监控和诊断,提供实时诊断和支持,帮助车主及时了解车辆状况并采取相应措施。

需要注意的是,部分内容由 AI 大模型生成,请仔细甄别。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

七大行业的商业化应用

制造业/汽车:生产计划、供应链计划状态查询;产线预测性维保辅助;产品质量分析与溯源;自动驾驶全场景模拟训练及虚拟汽车助手;线上购车品牌、配置对比分析。生命科学:研发阶段靶点发现及产品成药性;医学文献内容检索,重点摘要提取,相关法规整理;医药代表培训及知识库建立;分诊导诊助理、诊疗助理、术后护理及复建辅助。不仅如此,ChatGPT大模型以及生成式AI技术还将在图片、视频、数字人等领域的各种复杂场景中落地,利用海量的数据资源和算法实现商业化应用与迭代更新。但是落地效果也有很多的落差,可以具体读读全文原文:PPT式大模型能做千行百业商业案例极少谈及

2023年度中文大模型基准测评报告.pdf

•百川智能发布Baichuan2—Turbo字节云雀大模型闭源通用大模型百川BaichuanYi-34B开源医疗汽车教育行业大模型MindGPT部分领域岐黄问道银河大模型..................序列猴子BlueLM AndesGPT孟子云天书玉言金融工业文化/零售/交通AInno-15B妙笔大模型[heading4]蚂蚁金融大模型[content]轩辕大模型COSMO-GPTSMore LrMo..................

问:人工智能在汽车行业的应用案例

汽车公司使用AI来分析市场趋势、消费者行为和销售数据,以便更好地理解客户需求,制定营销策略和优化产品定价。1.电动化和能源管理:AI在电动汽车(EV)的电池管理和充电策略中发挥作用,通过优化电池使用和充电时间来提高能源效率和延长电池寿命。1.共享出行服务:AI支持的共享出行服务,如Uber和Lyft,使用AI来优化路线规划、调度车辆和定价策略,提高服务效率和用户满意度。1.语音助手和车载娱乐:AI驱动的语音助手,如Amazon Alexa Auto和Google Assistant,允许驾驶员通过语音命令控制车辆功能、获取信息和娱乐内容。1.车辆远程监控和诊断:AI系统可以远程监控车辆状态,提供实时诊断和支持,帮助车主及时了解车辆状况并采取相应措施。内容由AI大模型生成,请仔细甄别。

其他人在问
汽车行业AI应用
以下是人工智能在汽车行业的一些应用: 1. 自动驾驶技术:利用 AI 进行图像识别、传感器数据分析和决策制定,如特斯拉、Waymo 和 Cruise 等公司都在开发和测试自动驾驶汽车,实现自主导航和驾驶。 2. 车辆安全系统:AI 用于增强车辆的安全性能,如自动紧急制动、车道保持辅助和盲点检测系统,通过分析摄像头和传感器数据预防事故。 3. 个性化用户体验:根据驾驶员的偏好和习惯调整车辆设置,包括座椅位置、音乐选择和导航系统,提供更个性化和舒适的驾驶体验。 4. 预测性维护:分析车辆实时数据预测潜在故障和维护需求,减少停机时间和维修成本,提高车辆可靠性和效率。 5. 生产自动化:在汽车制造中用于自动化生产线,提高生产效率和质量控制,监测设备状态并优化生产流程,减少人为错误。 6. 销售和市场分析:汽车公司用 AI 分析市场趋势、消费者行为和销售数据,以理解客户需求、制定营销策略和优化产品定价。 7. 电动化和能源管理:在电动汽车的电池管理和充电策略中发挥作用,优化电池使用和充电时间,提高能源效率和延长电池寿命。 8. 共享出行服务:如 Uber 和 Lyft 等共享出行平台使用 AI 优化路线规划、调度车辆和定价策略,提高服务效率和用户满意度。 9. 语音助手和车载娱乐:AI 驱动的语音助手允许驾驶员通过语音命令控制车辆功能、获取信息和娱乐内容。 10. 车辆远程监控和诊断:AI 系统远程监控车辆状态,提供实时诊断和支持,帮助车主及时了解车辆状况并采取措施。 此外,还有一些相关的 AI 应用案例,如汽车之家车商城利用 AI 分析用户购车需求和预算,为用户推荐合适的汽车品牌和车型,并提供购车优惠和金融服务。
2024-11-11
汽车行业AI需求
人工智能在汽车行业有以下广泛的应用: 1. 自动驾驶技术:利用 AI 进行图像识别、传感器数据分析和决策制定,如特斯拉、Waymo 和 Cruise 等公司都在开发和测试自动驾驶汽车。 2. 车辆安全系统:用于增强车辆的安全性能,如自动紧急制动、车道保持辅助和盲点检测系统,通过分析摄像头和传感器数据预防事故。 3. 个性化用户体验:根据驾驶员的偏好和习惯调整车辆设置,如座椅位置、音乐选择和导航系统,提供更个性化和舒适的驾驶体验。 4. 预测性维护:分析车辆实时数据预测潜在故障和维护需求,减少停机时间和维修成本,提高车辆可靠性和效率。 5. 生产自动化:在汽车制造中用于自动化生产线,提高生产效率和质量控制,监测设备状态,优化生产流程,减少人为错误。 6. 销售和市场分析:汽车公司使用 AI 分析市场趋势、消费者行为和销售数据,以便更好地理解客户需求,制定营销策略和优化产品定价。 7. 电动化和能源管理:在电动汽车的电池管理和充电策略中发挥作用,优化电池使用和充电时间,提高能源效率和延长电池寿命。 8. 共享出行服务:如 Uber 和 Lyft 等,使用 AI 优化路线规划、调度车辆和定价策略,提高服务效率和用户满意度。 9. 语音助手和车载娱乐:AI 驱动的语音助手,如 Amazon Alexa Auto 和 Google Assistant,允许驾驶员通过语音命令控制车辆功能、获取信息和娱乐内容。 10. 车辆远程监控和诊断:AI 系统可以远程监控车辆状态,提供实时诊断和支持,帮助车主及时了解车辆状况并采取相应措施。 从研发角度看,硅片上越来越多的部分转向 AI,CPU 部分也在不断增长,这与英特尔股价下降、英伟达股价上升的价值变化相一致。 三个识别技术的关键点: 1. 技术的发展,包括技术的指数上升脉络。 2. 对需求的理解,出行或物理世界的移动是刚需。 3. 重 AI 的应用,如车的实时性、危险性和高要求决定了必须在车上运行 AI。 三个由此得出的观点:(文中未提及具体观点内容)
2024-09-03
具身智能在新能源汽车行业中的应用场景有哪些
具身智能在新能源汽车行业中的应用场景丰富多样,主要包括以下几个方面: 1. 自动驾驶技术:具身智能可以通过集成先进的传感器、摄像头和人工智能算法,实现车辆的自动驾驶功能,提高行车安全性和效率。 2. 智能辅助系统:利用具身智能技术,可以开发出智能辅助系统,如自动泊车、自适应巡航控制等,这些系统能够辅助驾驶员进行更加精准和便捷的操作。 3. 车辆远程监控与维护:通过具身智能技术,可以实时监控新能源汽车的状态,预测潜在的故障和维护需求,从而提高车辆的可靠性和降低维护成本。 4. 智能交互系统:具身智能可以提供更加自然和直观的人车交互方式,例如通过语音识别、手势控制等实现对车辆各项功能的控制。 5. 能源管理优化:具身智能技术可以帮助优化新能源汽车的能源使用,通过智能预测和调度充电时间、电量使用等,提高能源利用效率。 6. 智能生产线:在新能源汽车的制造过程中,具身智能可以应用于自动化生产线,提高生产效率和质量控制水平。 7. 智能物流与仓储:新能源汽车行业可以利用具身智能技术进行智能物流和仓储管理,提高物料搬运和存储的自动化水平。 8. 服务机器人:在汽车展厅或服务中心,具身智能服务机器人可以提供咨询、导览和基础服务,提升客户体验。 随着技术的不断进步和应用场景的拓展,具身智能在新能源汽车行业的应用将越来越广泛,为行业带来深刻的变革。
2024-07-26
AI 在汽车行业的落地场景?
AI 在汽车行业的落地场景有很多,以下是一些常见的例子: 1. 自动驾驶技术:利用 AI 进行图像识别、传感器数据分析和决策制定,自动驾驶汽车能够自主导航和驾驶。 2. 车辆安全系统:AI 被用于增强车辆的安全性能,如自动紧急制动、车道保持辅助和盲点检测系统。 3. 个性化用户体验:AI 可以根据驾驶员的偏好和习惯来调整车辆设置,如座椅位置、音乐选择和导航系统。 4. 预测性维护:通过分析车辆的实时数据,AI 可以预测潜在的故障和维护需求,从而减少停机时间和维修成本。 5. 生产自动化:在汽车制造过程中,AI 被用于自动化生产线,提高生产效率和质量控制。 6. 销售和市场分析:汽车公司使用 AI 来分析市场趋势、消费者行为和销售数据,以便更好地理解客户需求,制定营销策略和优化产品定价。 7. 电动化和能源管理:AI 在电动汽车的电池管理和充电策略中发挥作用,通过优化电池使用和充电时间来提高能源效率和延长电池寿命。 8. 共享出行服务:AI 支持的共享出行服务,如 Uber 和 Lyft,使用 AI 来优化路线规划、调度车辆和定价策略,提高服务效率和用户满意度。 9. 语音助手和车载娱乐:AI 驱动的语音助手,如 Amazon Alexa Auto 和 Google Assistant,允许驾驶员通过语音命令控制车辆功能、获取信息和娱乐内容。 10. 车辆远程监控和诊断:AI 系统可以远程监控车辆状态,提供实时诊断和支持,帮助车主及时了解车辆状况并采取相应措施。 总的来说,AI 在汽车行业的应用正在不断发展和扩大,它将为汽车行业带来更高效、安全和个性化的体验。
2024-05-30
人工智能在汽车行业的应用案例
人工智能(AI)在汽车行业的应用已经非常广泛,它正在改变汽车的设计、制造、销售和使用方式。以下是一些人工智能在汽车行业的应用案例: 1. 自动驾驶技术: 利用AI进行图像识别、传感器数据分析和决策制定,自动驾驶汽车能够自主导航和驾驶。公司如特斯拉(Tesla)、Waymo和Cruise等都在开发和测试自动驾驶汽车。 2. 车辆安全系统: AI被用于增强车辆的安全性能,如自动紧急制动(AEB)、车道保持辅助(LKA)和盲点检测系统。这些系统通过分析来自摄像头和传感器的数据来预防事故。 3. 个性化用户体验: AI可以根据驾驶员的偏好和习惯来调整车辆设置,如座椅位置、音乐选择和导航系统。这提供了更加个性化和舒适的驾驶体验。 4. 预测性维护: 通过分析车辆的实时数据,AI可以预测潜在的故障和维护需求,从而减少停机时间和维修成本。这有助于提高车辆的可靠性和效率。 5. 生产自动化: 在汽车制造过程中,AI被用于自动化生产线,提高生产效率和质量控制。AI系统可以监测设备状态,优化生产流程,并减少人为错误。 6. 销售和市场分析: 汽车公司使用AI来分析市场趋势、消费者行为和销售数据,以便更好地理解客户需求,制定营销策略和优化产品定价。 7. 电动化和能源管理: AI在电动汽车(EV)的电池管理和充电策略中发挥作用,通过优化电池使用和充电时间来提高能源效率和延长电池寿命。 8. 共享出行服务: AI支持的共享出行服务,如Uber和Lyft,使用AI来优化路线规划、调度车辆和定价策略,提高服务效率和用户满意度。 9. 语音助手和车载娱乐: AI驱动的语音助手,如Amazon Alexa Auto和Google Assistant,允许驾驶员通过语音命令控制车辆功能、获取信息和娱乐内容。 10. 车辆远程监控和诊断: AI系统可以远程监控车辆状态,提供实时诊断和支持,帮助车主及时了解车辆状况并采取相应措施。
2024-04-16
ai诈骗案例
以下为您提供一些与 AI 相关的内容: 在法律领域,AI 可用于模拟不同辩护策略下的量刑结果,例如针对商业贿赂、网络诈骗等刑事案件,还能为商业合同纠纷等案件设计诉讼策略。 拜登签署的 AI 行政命令要求强大 AI 系统的开发者向美国政府分享安全测试结果等关键信息,制定确保 AI 系统安全可靠的标准、工具和测试,保护免受利用 AI 制造危险生物材料的风险,以及建立标准和最佳实践以防范 AI 导致的欺诈和欺骗。 在探讨 AI 幻觉方面,介绍了幻觉与错误的区别,包括性质、表现形式和原因等,并通过具体案例如翻译和推理问题进行说明。
2024-11-21
ai诈骗直接案例
以下为您提供一些与 AI 诈骗相关的案例: GPTCHA:这是一款由三位开发者共同搭建的由 GPT4 驱动的小工具,致力于解决电话诈骗问题。它能够拦截可疑电话,并用虚拟声音与呼叫方聊天,直到确认电话合法且安全。您可通过 http://gptcha.ai/ 了解更多。 此外,在周鸿祎免费课 AI 系列第一讲中提到,AIGC 可能被用于深度伪造,不仅涉及个人诈骗,还可能影响国家安全。比如利用 Stable Diffusion、Midjourney 等工具生成虚假图像进行诈骗。
2024-11-20
ai案例
以下是一些 AI 的应用案例: 在汽车行业: 自动驾驶技术:利用 AI 进行图像识别、传感器数据分析和决策制定,如特斯拉、Waymo 和 Cruise 等公司在开发和测试自动驾驶汽车。 车辆安全系统:用于增强车辆的安全性能,如自动紧急制动、车道保持辅助和盲点检测系统。 个性化用户体验:根据驾驶员的偏好和习惯调整车辆设置。 预测性维护:通过分析车辆实时数据预测潜在故障和维护需求。 生产自动化:在汽车制造中用于自动化生产线,提高效率和质量控制。 销售和市场分析:分析市场趋势、消费者行为和销售数据。 电动化和能源管理:在电动汽车的电池管理和充电策略中发挥作用。 共享出行服务:优化路线规划、调度车辆和定价策略。 语音助手和车载娱乐:如 Amazon Alexa Auto 和 Google Assistant 等语音助手。 车辆远程监控和诊断:远程监控车辆状态,提供实时诊断和支持。 在活动策划中: 活动主题及内容生成:根据活动目标、参与者背景等生成合适的主题和内容框架建议。 邀请函和宣传文案生成:基于活动信息生成吸引人的文案。 现场活动管理:利用计算机视觉、语音识别等辅助管理人流、秩序等。 虚拟助手:作为虚拟活动助手提供信息查询和问题咨询服务。 活动反馈分析:自动分析活动反馈,总结关键观点和改进建议。 活动营销优化:基于参与者行为数据优化营销策略。 在工作场景中: 企业运营:日常办公文档材料撰写整理,营销对话机器人,市场分析,销售策略咨询,法律文书起草、案例分析、法律条文梳理,人力资源简历筛选,预招聘,员工培训。 教育:协助评估学生学习情况,为职业规划提供建议,定制化学习内容,论文初稿搭建及审核,帮助低收入国家/家庭获得平等教育资源。 游戏/媒体:定制化游戏,动态生成 NPC 互动,自定义剧情,开放式结局,出海文案内容生成,语言翻译及辅助广告投放和运营,数字虚拟人直播,游戏平台代码重构,AI 自动生成副本。 零售/电商:舆情、投诉、突发事件监测及分析,品牌营销内容撰写及投放,自动化库存管理,自动生成或完成 SKU 类别选择、数量和价格分配,客户购物趋势分析及洞察。 金融/保险:个人金融理财顾问,贷款信息摘要及初始批复,识别并检测欺诈活动风险,客服中心分析及内容洞察。
2024-11-20
人工智能诈骗成功多个案例
以下是为您整合的相关内容: 拜登签署的 AI 行政命令要求最强大的 AI 系统开发者与美国政府分享安全测试结果等关键信息。依照《国防生产法》,开发对国家安全、经济安全、公共卫生和安全构成严重风险的基础模型的公司,在训练模型时必须通知联邦政府,并分享所有红队安全测试的结果。国家标准与技术研究所将制定严格的标准进行广泛的红队测试,国土安全部将把这些标准应用于关键基础设施部门并建立 AI 安全与保障委员会,能源部和国土安全部也将处理 AI 系统对关键基础设施以及化学、生物、放射性、核和网络安全风险的威胁。同时,商务部将制定内容认证和水印的指导,以明确标记 AI 生成的内容,联邦机构将使用这些工具让美国人容易知道从政府收到的通信是真实的,并为私营部门和世界各地的政府树立榜样。 关于 AI 带来的风险,包括:AI 生成和传播的虚假信息可能破坏获取可靠信息的途径以及对民主机构和进程的信任;AI 工具可能被用于自动化、加速和放大高度针对性的网络攻击,增加恶意行为者的威胁严重性。 大型语言模型等技术进步带来了变革性发展,在经济和社会领域有诸多应用,例如能自动化写代码、用于交通应用、支持基因医学等,但也存在隐私风险等问题。
2024-11-20
利用Ai诈骗的多个具体案例
以下是一些与利用 AI 诈骗相关的案例: 在网络诈骗案件中,犯罪分子可能利用 AI 模拟不同辩护策略下的量刑结果,包括认罪协商和无罪辩护的可能性,以此误导受害者。 有虚构的公司利用 AI 驱动的算法设置保险费价格,可能存在违反相关法律法规和最佳实践的风险,如数据保护、平等和一般消费者保护法等。 拜登签署的 AI 行政命令中提到要保护美国人免受利用 AI 进行的欺诈和欺骗,例如建立检测 AI 生成内容和验证官方内容的标准和最佳实践,商务部将为内容认证和水印制定指导方针,联邦机构将使用这些工具让美国人容易知道从政府收到的通信是真实的,并为私营部门和世界各地的政府树立榜样。
2024-11-20
利用Ai诈骗的具体案例
以下是一起利用 AI 诈骗的具体案例: 2019 年 3 月,某国际能源公司首席执行官接到一个未知来电,电话那头是其德国母公司的 CEO(通过“AI 换脸”技术伪装)。对方称公司出现运营危机,要求其向一个匈牙利银行账户紧急提供 220000 欧元或 243000 美元资金支援,并表示资金将在周转后报销。尽管指令不合规且涉及大额资金流转,但因声音与老板无异,被害人最终转账。资金从匈牙利流向墨西哥后分散,截至 2023 年 5 月仍未追回。
2024-11-20
AI在企业落地的场景或案例
以下是一些 AI 在企业落地的场景或案例: 企业运营方面:包括日常办公文档材料的撰写整理、营销对话机器人的应用、市场分析、销售策略咨询,以及法律文书起草、案例分析、法律条文梳理和人力资源的简历筛选、预招聘、员工培训等。 教育领域:协助评估学生学习情况,为职业规划提供建议,针对学生情况以及兴趣定制化学习内容,论文初稿搭建及论文审核,帮助低收入国家/家庭通过 GPT 获得平等的教育资源。 游戏/媒体行业:定制化游戏,动态生成 NPC 互动、自定义剧情、开放式结局,出海文案内容生成、语言翻译及辅助广告投放和运营,数字虚拟人直播,游戏平台代码重构,AI 自动生成副本。 零售/电商领域:舆情、投诉、突发事件监测及分析,品牌营销内容撰写及投放,自动化库存管理,自动生成或完成 SKU 类别选择、数量和价格分配,客户购物趋势分析及洞察。 金融/保险行业:个人金融理财顾问,贷款信息摘要及初始批复,识别并检测欺诈活动风险,客服中心分析及内容洞察。 在企业中建构人工智能的案例研究包括: 智能扬声器:需要探测触发词或唤醒词、进行语音识别、意图识别,并执行相关程序。但智能音箱公司因需对每个用户需求单独编写程序而花费大量资金教育客户,这是其面临的困境。 自动驾驶汽车:包括汽车检测(使用监督学习,需多个方位的摄像头或传感器)、行人检测(使用相似技术)、运动规划(输出驾驶路径和速度)。 人工智能团队的角色示例有: 软件工程师:负责软件编程工作,在团队中占比 50%以上。 机器学习工程师:创建映射或算法,搜集和处理数据以训练神经网络或深度学习算法。 机器学习研究员:开发机器学习前沿技术,可能发表论文或专注研究。 应用机器学习科学家:从学术文献或研究文献中寻找前沿技术来解决问题。 数据科学家:检测和分析数据背后的意义,并向团队展示结论。 数据工程师:整理数据,确保数据安全、易保存和读取。 AI 产品经理:决定用 AI 做什么,判断其可行性和价值。
2024-11-20
ai 语音,ai语音,ai 文转语音,有哪些成功的商业化落地项目吗
以下是一些成功的 AI 语音商业化落地项目: 语音合成(TTS)方面: :为所有人提供开放的语音技术。 :基于 AI 的语音引擎能够模仿人类语音的情感和韵律。 :基于 NLP 的最先进文本和音频编辑平台,内置数百种 AI 声音。 :使用突触技术和脑机接口将想象的声音转化为合成 MIDI 乐器的脑控仪器。 :为出版商和创作者开发最具吸引力的 AI 语音软件。 :使用户能够使用文本转语音技术生成播客。 :基于生成机器学习模型构建内容创作的未来。 :从网页仪表板或 VST 插件生成录音室质量的 AI 声音并训练 AI 语音模型。 :演员优先、数字双重声音由最新的 AI 技术驱动,确保高效、真实和符合伦理。 :将书面内容转化为引人入胜的音频,并实现无缝分发。 :专业音频、语音、声音和音乐的扩展服务。 (被 Spotify 收购):提供完全表达的 AI 生成语音,带来引人入胜的逼真表演。 :利用合成媒体生成和检测,带来无限可能。 :一键使您的内容多语言化,触及更多人群。 :生成听起来真实的 AI 声音。 :为游戏、电影和元宇宙提供 AI 语音演员。 :为内容创作者提供语音克隆服务。 :超逼真的文本转语音引擎。 :使用单一 AI 驱动的 API 进行音频转录和理解。 :听起来像真人的新声音。 :从真实人的声音创建逼真的合成语音的文本转语音技术。 :生成听起来完全像你的音频内容。 语音转录方面: :为聋人和重听者提供专业和基于 AI 的字幕(转录和说话人识别)。 :专业的基于 AI 的转录和字幕。 :混合团队高效协作会议所需的一切。 :音频转录软件 从语音到文本到魔法。 :99%准确的字幕、转录和字幕服务。 :为语音不标准的人群提供的应用程序。 :通过 AI 语音识别实现更快速、更准确的语音应用。 :会议的 AI 助手。 :让孩子们的声音被听见的语音技术。 :使用语音识别自动将音频和视频转换为文本和字幕的 SaaS 解决方案。 :实时字幕记录面对面小组会议中的发言内容。 :理解每个声音的自主语音识别技术。 :支持 35 多种语言的自动转录。 :端到端的边缘语音 AI,设备上的语音识别。
2024-11-19
AI 在早期创业需求验证和市场调研的落地应用有哪些
以下是 AI 在早期创业需求验证和市场调研的落地应用: 1. 辅助创作与学习:如 AI 智能写作助手帮助用户快速生成高质量文本;AI 语言学习助手、诗歌创作助手、书法字体生成器、漫画生成器等为用户的学习和创作提供支持。 2. 推荐与规划:包括 AI 图像识别商品推荐、美食推荐平台、旅游行程规划器、时尚穿搭建议平台、智能投资顾问等,根据用户的需求和偏好为其推荐合适的产品、服务或制定个性化的计划。 3. 监控与预警:如 AI 宠物健康监测设备、家居安全监控系统、天气预报预警系统、医疗诊断辅助系统等,实时监测各种情况并提供预警。 4. 优化与管理:涉及办公自动化工具、物流路径优化工具、家居清洁机器人调度系统、金融风险评估工具等,提高工作效率和管理水平。 5. 销售与交易:有 AI 艺术作品生成器、书法作品销售平台、摄影作品销售平台、汽车销售平台、房地产交易平台等,为各类产品和服务提供销售渠道。 对于中小企业利用人工智能(AI)进行转型中的创新产品和服务,特别是 AI 驱动的产品/服务开发,包括以下方面: 首先,探索基于 AI 的新产品或服务。通过开发基于 AI 的新产品或服务,创造新的市场机会和客户价值。调查和分析市场需求,探索 AI 技术在不同领域的应用潜力。鼓励团队进行创新思维,探索如何将 AI 技术融入新产品或服务中。开发 AI 驱动产品或服务的原型,并进行测试以验证其可行性和市场吸引力。例如,开发智能分析工具,帮助企业自动分析市场趋势;或创建 AI 辅助应用程序,如个性化健康指导应用。 其次,利用 AI 技术提升现有产品的智能化程度。通过集成 AI 功能,提升现有产品或服务的智能化水平和竞争力。识别现有产品或服务中可以通过 AI 技术优化的部分,如添加智能推荐、自动化流程等。利用 AI 改善用户界面和交互体验,使产品更加直观和易用。基于客户反馈和市场变化,不断迭代和更新 AI 集成的功能。例如,对于在线零售平台,可以通过集成 AI 来优化产品搜索和推荐算法,提供更精准的购物建议。 总之,这些 AI 应用为创业者提供了丰富的选择和广阔的发展前景,创业者可以根据自己的兴趣、技能和市场需求,选择适合自己的项目进行创业。同时,对 AI 产品经理要求懂得技术框架,不一定要了解技术细节,而是对技术边界有认知,最好能知道一些优化手段和新技术的发展。产品经理要关注的还是场景、痛点、价值。
2024-11-19
AI 在营销获客的落地应用有哪些
以下是 AI 在营销获客方面的落地应用: 1. 医疗行业: 疾病的诊断与预测。 药物研发。 个性化医疗。例如麻省理工学院利用 AI 发现新型广谱抗生素 Halicin。 2. 广告营销行业: 从初期的市场分析、中期的客户转化到后期的客户复购均可参与,为消费者提供更个性化、智能化和互动性强的营销体验。 对于广告图案的生成,可通过 AI+设计相关的 SOP 来提高效率。 降低内容制作成本并加速创意的实现过程。 具体案例: 亨氏使用番茄酱瓶的图像和类似标签来论证“这就是人工智能眼中‘番茄酱’的样子”。 雀巢使用维米尔画作的人工智能增强版来帮助销售其酸奶品牌。 Stitch Fix 服装公司使用 DALLE 2 根据客户对颜色、面料和款式的偏好创建服装可视化。 美泰使用该技术生成用于玩具设计和营销的图像。 3. 汽车行业: AI 辅助“市场营销”和“新媒体运营”,包括汽车+热点营销、用户画像预测、营销内容创作、内容审核、用户评论回复,以及“一键生图”符合营销要求。 AI 提升“销售体验”,引导“留资或下单”,如智能“试驾”促进“转化”、“金牌销售”智能导购、“互动游戏”智能导购。 AI 提升“销售能力”(专业知识/销售话术),基于汽车销售的各个场景和环节自动出题,用户答题后进行得分评估和给出建议。还可复制到其他学习类场景,增加“对话”或者“情景模拟”的形式开展,如 AI 扮演客户进行销售对练。
2024-11-18
AI 在股票交易行业的落地场景有哪些
AI 在股票交易行业的落地场景主要包括以下方面: 1. 市场分析与预测:利用大数据和机器学习算法,对市场趋势、宏观经济数据、公司财务数据等进行分析和预测,为投资决策提供参考。 2. 风险评估与管理:通过模型评估投资组合的风险水平,及时发现潜在风险并采取相应的风险管理措施。 3. 交易策略优化:基于历史交易数据和市场情况,优化交易策略,提高交易效率和盈利能力。 4. 智能投顾:为投资者提供个性化的投资建议和资产配置方案。 5. 欺诈检测:识别和防范股票交易中的欺诈行为,保障交易的安全性和公正性。
2024-11-18
ai的落地场景应用
以下是 AI 的一些落地场景应用: 1. 医疗保健: 医学影像分析:用于分析医学图像辅助诊断疾病。 药物研发:加速药物研发,识别潜在药物候选物和设计新治疗方法。 个性化医疗:分析患者数据提供个性化治疗方案。 机器人辅助手术:控制手术机器人提高手术精度和安全性。 2. 金融服务: 风控和反欺诈:识别和阻止欺诈行为,降低金融机构风险。 信用评估:评估借款人信用风险,帮助做出贷款决策。 投资分析:分析市场数据辅助投资决策。 客户服务:提供 24/7 服务并回答常见问题。 3. 零售和电子商务: 产品推荐:分析客户数据推荐可能感兴趣的产品。 搜索和个性化:改善搜索结果和提供个性化购物体验。 动态定价:根据市场需求调整产品价格。 聊天机器人:回答客户问题并解决问题。 4. 制造业: 预测性维护:预测机器故障避免停机。 质量控制:检测产品缺陷提高质量。 供应链管理:优化供应链提高效率和降低成本。 机器人自动化:控制工业机器人提高生产效率。 5. 交通运输:暂未提及具体应用场景。 此外,还有以下一些具体的应用: 1. 辅助创作与学习:如 AI 智能写作助手、语言学习助手、诗歌创作助手、书法字体生成器、漫画生成器等。 2. 推荐与规划:包括 AI 图像识别商品推荐、美食推荐平台、旅游行程规划器、时尚穿搭建议平台、智能投资顾问等。 3. 监控与预警:如 AI 宠物健康监测设备、家居安全监控系统、天气预报预警系统、医疗诊断辅助系统等。 4. 优化与管理:涉及办公自动化工具、物流路径优化工具、家居清洁机器人调度系统、金融风险评估工具等。 5. 销售与交易:有 AI 艺术作品生成器、书法作品销售平台、摄影作品销售平台、汽车销售平台、房地产交易平台等。 在“AI + 汽车”领域: AI 营销赛道: AI 辅助“市场营销”和“新媒体运营”,包括汽车热点营销、用户画像预测、营销内容创作、内容审核、用户评论回复,以及“一键生图”。 AI 提升“销售体验”,引导“留资或下单”,如智能“试驾”、“金牌销售”智能导购、“互动游戏”智能导购。 AI 提升“销售能力”,基于汽车销售场景自动出题,可采用多种形式,如选择题、对话或情景模拟。
2024-11-18
学习大模型的路径
学习大模型的路径主要包括以下几个步骤: 1. 收集海量数据:就像教孩子成为博学多才的人需要让其阅读大量书籍、观看纪录片、与人交谈一样,对于大模型,要收集互联网上的文章、书籍、维基百科条目、社交媒体帖子等各种文本数据。 2. 预处理数据:如同为孩子整理学习资料,AI 研究人员需要清理和组织收集到的数据,包括删除垃圾信息、纠正拼写错误、将文本分割成易于处理的片段。 3. 设计模型架构:如同为孩子设计学习计划,研究人员要设计大模型的“大脑”结构,通常是一个复杂的神经网络,例如 Transformer 架构,这种架构擅长处理序列数据如文本。 4. 训练模型:如同孩子开始阅读和学习,大模型开始“阅读”提供的数据,通过反复尝试预测句子中的下一个词,不断重复这个过程,逐渐学会理解和生成人类语言。 此外,关于大模型的底层原理,计算机科学家/工程师以大脑神经元细胞结构为灵感,在计算机上利用概览模型实现对人脑结构的模仿,不过计算机的神经元节点更为简单,本质上只是进行一些加法和乘法运算而后输出。大模型内部如同人类大脑是一个混沌系统,即使是 OpenAI 的科学家也无法解释其微观细节。
2024-11-22
现在哪几家的大模型支持通过手机视频多模态实时交流?
以下几家的大模型支持通过手机视频多模态实时交流: 1. PandaGPT:能够理解不同模式的指令并根据指令采取行动,包括文本、图像/视频、音频、热、深度和惯性测量单位。 2. VideoLLaMA:引入了多分支跨模式 PT 框架,使语言模型能够在与人类对话的同时处理给定视频的视觉和音频内容。 3. 视频聊天 GPT:专门为视频对话设计,能够通过集成时空视觉表示来生成有关视频的讨论。 4. NExTGPT:端到端、通用的 anytoany 多模态语言模型,支持图像、视频、音频、文本的自由输入输出。
2024-11-22
siri是不是使用大模型技术
Siri 目前并非使用大模型技术。苹果公司的 Siri 概念虽好,但由于技术限制,其表现未达到人工智能的水平,常被称为“人工智障”。不过,随着技术发展,未来可能会用大模型重新改造 Siri,将手机上的所有功能控制起来,使其成为真正的智能助理。例如,苹果公司在手机算力的芯片发展到能够支撑大模型上手机的情况下,可能会推出大模型的小数据量、专业的版本来替代 Siri。同时,苹果公司若 All in 手机,其大模型可能会是本地化的,以重视个人数据保护和隐私。
2024-11-21
sairi是不是使用大模型技术
Sora 是使用大模型技术的。周鸿祎认为 Open AI 训练这个模型会阅读大量视频,大模型加上 Diffusion 技术需要对世界进一步了解,学习样本以视频和摄像头捕捉到的画面为主。Sora 在训练数据上采用在原始尺寸上进行训练的策略,避免了传统 AI 对人为抽象的依赖。此外,Sora 还采用了一些数据预处理技术,如将视觉图块压缩成低维潜在表示,并将其排列成序列,注入噪声后输入扩散变换器的输入层,同时采用时空分块化来降低后续对时间信息建模的复杂性。这种对原始视频和图像特征的细腻处理标志着生成模型领域的重大进步。
2024-11-21
模型微调怎么解决多轮对话容易受到上轮对话的影响问题
在解决模型微调中多轮对话容易受到上轮对话影响的问题时: 对于多轮对话,现实中常伴随指代问题,如使用“它”“他们”“我们”等代词。若仅依据原始提问检索知识片段,可能导致结果不精确或无法检索到信息。同时,对模型回复内容的限制可能影响多轮对话流畅性甚至中断。 为提升对话系统性能和用户体验,需开发提示词解决多轮对话中的指代消解问题,确保模型能在连续交流中提供准确连贯回答。但由于“指代消解”需多轮对话完成,单次交互无法达成,所以要转换测试形式,先解决“指代消解”问题再进行下一轮答复。 首先准备指代消解所需提示词,这里使用的“指代消解”提示词是用 CoT 写出的思维链,列举不同推理情景,让模型适应并推理出需消解的代词,再根据结果重新组织问题。 接着复现指代消解步骤,如进行第一轮对话,提出问题“尼罗河是什么?”,系统召回相关知识片段并回复,然后开始指代消解。 另外,聊天模型通过一串聊天对话输入并返回生成消息输出。聊天格式虽为多轮对话设计,但对单轮任务也有用。会话通过 messages 参数输入,包含不同角色和内容的消息对象数组。通常会话先有系统消息设定助手行为,再交替使用用户和助手消息。当指令涉及之前消息时,包含聊天历史记录有帮助,若超出模型限制需缩减会话。
2024-11-21
企业做自己的小模型,需要用到的工具及工具背后的公司都有哪些?
企业做自己的小模型,可能会用到以下工具及背后的公司: 1. 在编排(Orchestration)方面,涉及的公司如 DUST、FIAVIE、LangChain 等,其提供的工具可帮助管理和协调各部分及任务,确保系统流畅运行。 2. 部署、可扩展性和预训练(Deployment, Scalability, & PreTraining)类别中,像 UWA mosaicm、NMAREL、anyscale 等公司提供的工具,有助于部署模型、保证可扩展性及进行预训练。 3. 处理上下文和嵌入(Context & Embeddings)的工具,相关公司有 TRUDO、Llamalndex、BerriAI 等,能帮助模型处理和理解语言上下文,并将词语和句子转化为计算机可理解的形式。 4. 质量保证和可观察性(QA & Observability)方面,例如 Pinecone、drant、Vald 等公司提供的工具,可确保模型表现并监控其性能和状态。 此外,还有以下工具和相关公司: 1. 图片生成 3D 建模工具,如 Tripo AI(由 VAST 发布)、Meshy、CSM AI(Common Sense Machines)、Sudo AI、VoxCraft(由生数科技推出)等。 企业还可能涉及具身智能、3D 眼镜、AI 绘本、AI 图书、学习机、飞书的多维表格、蚂蚁的智能体、Coze 的智能体、Zeabur 等云平台、0 编码平台、大模型(通义、智谱、kimi、deepseek 等)、编程辅助、文生图(可灵、即梦等)等方面,可能需要相应资质。
2024-11-20