直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

AI 在汽车行业的落地场景?

回答

AI 在汽车行业的落地场景有很多,以下是一些常见的例子:

  1. 自动驾驶技术:利用 AI 进行图像识别、传感器数据分析和决策制定,自动驾驶汽车能够自主导航和驾驶。
  2. 车辆安全系统:AI 被用于增强车辆的安全性能,如自动紧急制动、车道保持辅助和盲点检测系统。
  3. 个性化用户体验:AI 可以根据驾驶员的偏好和习惯来调整车辆设置,如座椅位置、音乐选择和导航系统。
  4. 预测性维护:通过分析车辆的实时数据,AI 可以预测潜在的故障和维护需求,从而减少停机时间和维修成本。
  5. 生产自动化:在汽车制造过程中,AI 被用于自动化生产线,提高生产效率和质量控制。
  6. 销售和市场分析:汽车公司使用 AI 来分析市场趋势、消费者行为和销售数据,以便更好地理解客户需求,制定营销策略和优化产品定价。
  7. 电动化和能源管理:AI 在电动汽车的电池管理和充电策略中发挥作用,通过优化电池使用和充电时间来提高能源效率和延长电池寿命。
  8. 共享出行服务:AI 支持的共享出行服务,如 Uber 和 Lyft,使用 AI 来优化路线规划、调度车辆和定价策略,提高服务效率和用户满意度。
  9. 语音助手和车载娱乐:AI 驱动的语音助手,如 Amazon Alexa Auto 和 Google Assistant,允许驾驶员通过语音命令控制车辆功能、获取信息和娱乐内容。
  10. 车辆远程监控和诊断:AI 系统可以远程监控车辆状态,提供实时诊断和支持,帮助车主及时了解车辆状况并采取相应措施。

总的来说,AI 在汽车行业的应用正在不断发展和扩大,它将为汽车行业带来更高效、安全和个性化的体验。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

问:人工智能在汽车行业的应用案例

人工智能(AI)在汽车行业的应用已经非常广泛,它正在改变汽车的设计、制造、销售和使用方式。以下是一些人工智能在汽车行业的应用案例:1.自动驾驶技术:利用AI进行图像识别、传感器数据分析和决策制定,自动驾驶汽车能够自主导航和驾驶。公司如特斯拉(Tesla)、Waymo和Cruise等都在开发和测试自动驾驶汽车。1.车辆安全系统:AI被用于增强车辆的安全性能,如自动紧急制动(AEB)、车道保持辅助(LKA)和盲点检测系统。这些系统通过分析来自摄像头和传感器的数据来预防事故。1.个性化用户体验:AI可以根据驾驶员的偏好和习惯来调整车辆设置,如座椅位置、音乐选择和导航系统。这提供了更加个性化和舒适的驾驶体验。1.预测性维护:通过分析车辆的实时数据,AI可以预测潜在的故障和维护需求,从而减少停机时间和维修成本。这有助于提高车辆的可靠性和效率。1.生产自动化:在汽车制造过程中,AI被用于自动化生产线,提高生产效率和质量控制。AI系统可以监测设备状态,优化生产流程,并减少人为错误。1.销售和市场分析:

问:人工智能在汽车行业的应用案例

汽车公司使用AI来分析市场趋势、消费者行为和销售数据,以便更好地理解客户需求,制定营销策略和优化产品定价。1.电动化和能源管理:AI在电动汽车(EV)的电池管理和充电策略中发挥作用,通过优化电池使用和充电时间来提高能源效率和延长电池寿命。1.共享出行服务:AI支持的共享出行服务,如Uber和Lyft,使用AI来优化路线规划、调度车辆和定价策略,提高服务效率和用户满意度。1.语音助手和车载娱乐:AI驱动的语音助手,如Amazon Alexa Auto和Google Assistant,允许驾驶员通过语音命令控制车辆功能、获取信息和娱乐内容。1.车辆远程监控和诊断:AI系统可以远程监控车辆状态,提供实时诊断和支持,帮助车主及时了解车辆状况并采取相应措施。内容由AI大模型生成,请仔细甄别。

七大行业的商业化应用

制造业/汽车:生产计划、供应链计划状态查询;产线预测性维保辅助;产品质量分析与溯源;自动驾驶全场景模拟训练及虚拟汽车助手;线上购车品牌、配置对比分析。生命科学:研发阶段靶点发现及产品成药性;医学文献内容检索,重点摘要提取,相关法规整理;医药代表培训及知识库建立;分诊导诊助理、诊疗助理、术后护理及复建辅助。不仅如此,ChatGPT大模型以及生成式AI技术还将在图片、视频、数字人等领域的各种复杂场景中落地,利用海量的数据资源和算法实现商业化应用与迭代更新。但是落地效果也有很多的落差,可以具体读读全文原文:PPT式大模型能做千行百业商业案例极少谈及

其他人在问
简述一下什么是AI
AI 是一门令人兴奋的科学,是某种模仿人类思维可以理解自然语言并输出自然语言的东西。 对于不具备理工科背景的人来说,可以把 AI 当成一个黑箱,只需要知道它能理解自然语言并输出自然语言即可。其生态位是一种似人而非人的存在。 最初,计算机是按照明确的程序和算法进行数字运算。但对于像“根据照片判断一个人的年龄”这类任务,无法明确编程步骤,而这正是 AI 感兴趣的。 对于三年级的孩子,可以简单理解为让计算机或机器能像人类一样思考和学习的技术。
2024-11-14
现在在生成思维导图方面做的最好的ai是哪个
以下是一些在生成思维导图方面表现出色的 AI 工具: 1. GitMind:免费的跨平台 AI 思维导图软件,支持多种模式,如提问、回答、自动生成等。 2. ProcessOn:国内思维导图与 AIGC 结合的工具,可利用 AI 生成思维导图。 3. AmyMind:轻量级在线 AI 思维导图工具,无需注册登录,支持自动生成节点。 4. Xmind Copilot:Xmind 推出的基于 GPT 的 AI 思维导图助手,能一键拓展思路,生成文章大纲。 5. TreeMind:“AI 人工智能”思维导图工具,输入需求即可由 AI 自动完成思维导图生成。 6. EdrawMind:提供一系列 AI 工具,包括 AI 驱动的头脑风暴功能,有助于提升生产力。 此外,还有以下相关产品: 1. Mymap:打磨出色,图表种类多,能根据问题自动选择和询问合适的图表类型,速度快且信息准确。 2. AmyMind:特色是可将创建的思维导图变成 PPT 并下载编辑。
2024-11-14
现在在学术论文文献查询方面做的最好的ai是哪个
在学术论文文献查询方面,以下是一些表现较好的 AI 工具: 1. 文献管理和搜索: Zotero:结合 AI 技术,能自动提取文献信息,便于管理和整理参考文献。 Semantic Scholar:由 AI 驱动的学术搜索引擎,可提供相关文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:通过 AI 技术进行文本校对、语法修正和写作风格建议,提升语言质量。 Quillbot:基于 AI 的重写和摘要工具,可精简和优化论文内容。 3. 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,利于数据分析和可视化。 Knitro:用于数学建模和优化的软件,有助于复杂的数据分析和模型构建。 4. 论文结构和格式: LaTeX:结合自动化和模板,高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,有丰富模板库和协作功能,简化论文编写。 5. 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:通过与已发表作品比较,检测潜在抄袭问题。 此外,还有一些专门的工具,如: 1. TXYZ: 帮助搜索、查询专业文献并进行对话,提供一站式服务。 是与预印本文库 arxiv.org 官方合作的 AI 工具,ArXiv 的每篇论文下有直达 TXYZ 的按钮。 支持用户上传 PDF 论文或链接,迅速找到所需答案和内容。 在对话中提供论文参考,给出可信背书。 2. 开搜 AI 搜索: 免费无广告,直达结果。 帮助在校学生快速搜集学术资料,智能总结关键信息,助力撰写论文和报告,且支持查看来源出处。 为教师群体获取教学资源、生成教案和课题研究报告提供帮助。 方便职场办公人群高效查找工作信息,简化文案撰写、PPT 制作和工作汇报准备。 为学术研究人员提供行业分析,整合和总结大量数据形成研究报告。 需要注意的是,使用这些工具时,应结合自身写作风格和需求,选择最合适的辅助工具。同时,内容由 AI 大模型生成,请仔细甄别。
2024-11-14
有什么可以ai去图片水印
以下是一些可以用于 AI 去图片水印的工具: 1. AVAide Watermark Remover:这是一个在线工具,使用 AI 技术去除图片水印。支持多种图片格式,如 JPG、JPEG、PNG、GIF 等。操作简单,上传图片、选择水印区域,保存并下载处理后的图片。还提供去除文本、对象、人物、日期和贴纸等功能。 2. Vmake:提供 AI 去除图片水印功能,可上传最多 10 张图片,AI 自动检测并移除水印,处理完成后可保存生成的文件,适合需快速去水印并在社交媒体分享图片的用户。 3. AI 改图神器:提供 AI 智能图片修复去水印功能,可一键去除图片中多余物体、人物或水印,不留痕迹。支持直接粘贴图像或上传手机图像,操作简便。 此外,还有以下辅助工具: 对于去除图片中特定物体(如右手的手串),除了 PS,还可以使用 PS 的 AI 版、SD 局部重绘,以及 Firefly、canva、Google photo 等的局部重绘功能,微软 Designer 也是免费的。 ProPainter 可一键移除视频内物体或水印,基于 E2FGVI 实现。 收费的去水印工具如 https://anieraser.media.io/app ,免费但效果一般的去水印工具如 https://onlinevideocutter.com/removelogo 。 这些工具各有特点,您可以根据具体需求选择最适合您的去水印工具。但还是建议购买正版去水印工具。内容由 AI 大模型生成,请仔细甄别。
2024-11-14
哪款AI能高效提取文章/文件的核心信息?
以下是一些能够高效提取文章或文件核心信息的 AI 工具: 1. 文献管理和搜索方面: Zotero:结合 AI 技术,可自动提取文献信息,助力管理和整理参考文献。 Semantic Scholar:由 AI 驱动的学术搜索引擎,能提供文献推荐和引用分析。 2. 内容生成和辅助写作方面: Grammarly:通过 AI 技术提供文本校对、语法修正和写作风格建议,提升语言质量。 Quillbot:基于 AI 的重写和摘要工具,可精简和优化内容。 3. 研究和数据分析方面: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,便于数据分析和可视化。 Knitro:用于数学建模和优化的软件,助力复杂数据分析和模型构建。 此外,在收集和整理资料方面,可利用以下工具和方法: 1. 收集资料: 如使用 Perplexity.AI 的强大搜索功能,还可启用 Pro 功能获取更专业深入的结果。也可使用微软的 Bing 搜索引擎等具备联网搜索功能的工具,快速搜集大量相关资料。 2. 整理资料: 可使用月之暗面开发的 Kimi 这个 AI 会话助手,分批次提供资料以克服其阅读能力限制,让其整理资讯内容。 需要注意的是,使用这些工具时,应结合自身写作风格和需求,选择最合适的辅助工具。同时,内容由 AI 大模型生成,请仔细甄别。
2024-11-14
AI 图像识别的发展历程
AI 图像识别的发展历程如下: 早期处理印刷体图片的方法是将图片变成黑白、调整为固定尺寸,与数据库对比得出结论,但这种方法存在多种字体、拍摄角度等例外情况,且本质上是通过不断添加规则来解决问题,不可行。 神经网络专门处理未知规则的情况,如手写体识别。其发展得益于生物学研究的支持,并在数学上提供了方向。 CNN(卷积神经网络)的结构基于大脑中两类细胞的级联模型,在计算上更高效、快速,在自然语言处理和图像识别等应用中表现出色。 ImageNet 数据集变得越来越有名,为年度 DL 竞赛提供了基准,在短短七年内使获胜算法对图像中物体分类的准确率从 72%提高到 98%,超过人类平均能力,引领了 DL 革命,并开创了新数据集的先例。 2012 年以来,在 Deep Learning 理论和数据集的支持下,深度神经网络算法大爆发,如卷积神经网络(CNN)、递归神经网络(RNN)和长短期记忆网络(LSTM)等,每种都有不同特性。例如,递归神经网络是较高层神经元直接连接到较低层神经元;福岛邦彦创建的人工神经网络模型基于人脑中视觉的运作方式,架构基于初级视觉皮层中的简单细胞和复杂细胞,简单细胞检测局部特征,复杂细胞汇总信息。
2024-11-14
汽车行业AI应用
以下是人工智能在汽车行业的一些应用: 1. 自动驾驶技术:利用 AI 进行图像识别、传感器数据分析和决策制定,如特斯拉、Waymo 和 Cruise 等公司都在开发和测试自动驾驶汽车,实现自主导航和驾驶。 2. 车辆安全系统:AI 用于增强车辆的安全性能,如自动紧急制动、车道保持辅助和盲点检测系统,通过分析摄像头和传感器数据预防事故。 3. 个性化用户体验:根据驾驶员的偏好和习惯调整车辆设置,包括座椅位置、音乐选择和导航系统,提供更个性化和舒适的驾驶体验。 4. 预测性维护:分析车辆实时数据预测潜在故障和维护需求,减少停机时间和维修成本,提高车辆可靠性和效率。 5. 生产自动化:在汽车制造中用于自动化生产线,提高生产效率和质量控制,监测设备状态并优化生产流程,减少人为错误。 6. 销售和市场分析:汽车公司用 AI 分析市场趋势、消费者行为和销售数据,以理解客户需求、制定营销策略和优化产品定价。 7. 电动化和能源管理:在电动汽车的电池管理和充电策略中发挥作用,优化电池使用和充电时间,提高能源效率和延长电池寿命。 8. 共享出行服务:如 Uber 和 Lyft 等共享出行平台使用 AI 优化路线规划、调度车辆和定价策略,提高服务效率和用户满意度。 9. 语音助手和车载娱乐:AI 驱动的语音助手允许驾驶员通过语音命令控制车辆功能、获取信息和娱乐内容。 10. 车辆远程监控和诊断:AI 系统远程监控车辆状态,提供实时诊断和支持,帮助车主及时了解车辆状况并采取措施。 此外,还有一些相关的 AI 应用案例,如汽车之家车商城利用 AI 分析用户购车需求和预算,为用户推荐合适的汽车品牌和车型,并提供购车优惠和金融服务。
2024-11-11
汽车行业大模型落地案例
以下是汽车行业大模型的落地案例: 生产计划、供应链计划状态查询。 产线预测性维保辅助。 产品质量分析与溯源。 自动驾驶全场景模拟训练及虚拟汽车助手。 线上购车品牌、配置对比分析。 汽车公司利用 AI 进行以下方面的应用: 分析市场趋势、消费者行为和销售数据,以更好地理解客户需求,制定营销策略和优化产品定价。 在电动化和能源管理方面,优化电池使用和充电时间来提高能源效率和延长电池寿命。 支持共享出行服务,如优化路线规划、调度车辆和定价策略,提高服务效率和用户满意度。 提供语音助手和车载娱乐,允许驾驶员通过语音命令控制车辆功能、获取信息和娱乐内容。 进行车辆远程监控和诊断,提供实时诊断和支持,帮助车主及时了解车辆状况并采取相应措施。 需要注意的是,部分内容由 AI 大模型生成,请仔细甄别。
2024-09-03
汽车行业AI需求
人工智能在汽车行业有以下广泛的应用: 1. 自动驾驶技术:利用 AI 进行图像识别、传感器数据分析和决策制定,如特斯拉、Waymo 和 Cruise 等公司都在开发和测试自动驾驶汽车。 2. 车辆安全系统:用于增强车辆的安全性能,如自动紧急制动、车道保持辅助和盲点检测系统,通过分析摄像头和传感器数据预防事故。 3. 个性化用户体验:根据驾驶员的偏好和习惯调整车辆设置,如座椅位置、音乐选择和导航系统,提供更个性化和舒适的驾驶体验。 4. 预测性维护:分析车辆实时数据预测潜在故障和维护需求,减少停机时间和维修成本,提高车辆可靠性和效率。 5. 生产自动化:在汽车制造中用于自动化生产线,提高生产效率和质量控制,监测设备状态,优化生产流程,减少人为错误。 6. 销售和市场分析:汽车公司使用 AI 分析市场趋势、消费者行为和销售数据,以便更好地理解客户需求,制定营销策略和优化产品定价。 7. 电动化和能源管理:在电动汽车的电池管理和充电策略中发挥作用,优化电池使用和充电时间,提高能源效率和延长电池寿命。 8. 共享出行服务:如 Uber 和 Lyft 等,使用 AI 优化路线规划、调度车辆和定价策略,提高服务效率和用户满意度。 9. 语音助手和车载娱乐:AI 驱动的语音助手,如 Amazon Alexa Auto 和 Google Assistant,允许驾驶员通过语音命令控制车辆功能、获取信息和娱乐内容。 10. 车辆远程监控和诊断:AI 系统可以远程监控车辆状态,提供实时诊断和支持,帮助车主及时了解车辆状况并采取相应措施。 从研发角度看,硅片上越来越多的部分转向 AI,CPU 部分也在不断增长,这与英特尔股价下降、英伟达股价上升的价值变化相一致。 三个识别技术的关键点: 1. 技术的发展,包括技术的指数上升脉络。 2. 对需求的理解,出行或物理世界的移动是刚需。 3. 重 AI 的应用,如车的实时性、危险性和高要求决定了必须在车上运行 AI。 三个由此得出的观点:(文中未提及具体观点内容)
2024-09-03
具身智能在新能源汽车行业中的应用场景有哪些
具身智能在新能源汽车行业中的应用场景丰富多样,主要包括以下几个方面: 1. 自动驾驶技术:具身智能可以通过集成先进的传感器、摄像头和人工智能算法,实现车辆的自动驾驶功能,提高行车安全性和效率。 2. 智能辅助系统:利用具身智能技术,可以开发出智能辅助系统,如自动泊车、自适应巡航控制等,这些系统能够辅助驾驶员进行更加精准和便捷的操作。 3. 车辆远程监控与维护:通过具身智能技术,可以实时监控新能源汽车的状态,预测潜在的故障和维护需求,从而提高车辆的可靠性和降低维护成本。 4. 智能交互系统:具身智能可以提供更加自然和直观的人车交互方式,例如通过语音识别、手势控制等实现对车辆各项功能的控制。 5. 能源管理优化:具身智能技术可以帮助优化新能源汽车的能源使用,通过智能预测和调度充电时间、电量使用等,提高能源利用效率。 6. 智能生产线:在新能源汽车的制造过程中,具身智能可以应用于自动化生产线,提高生产效率和质量控制水平。 7. 智能物流与仓储:新能源汽车行业可以利用具身智能技术进行智能物流和仓储管理,提高物料搬运和存储的自动化水平。 8. 服务机器人:在汽车展厅或服务中心,具身智能服务机器人可以提供咨询、导览和基础服务,提升客户体验。 随着技术的不断进步和应用场景的拓展,具身智能在新能源汽车行业的应用将越来越广泛,为行业带来深刻的变革。
2024-07-26
人工智能在汽车行业的应用案例
人工智能(AI)在汽车行业的应用已经非常广泛,它正在改变汽车的设计、制造、销售和使用方式。以下是一些人工智能在汽车行业的应用案例: 1. 自动驾驶技术: 利用AI进行图像识别、传感器数据分析和决策制定,自动驾驶汽车能够自主导航和驾驶。公司如特斯拉(Tesla)、Waymo和Cruise等都在开发和测试自动驾驶汽车。 2. 车辆安全系统: AI被用于增强车辆的安全性能,如自动紧急制动(AEB)、车道保持辅助(LKA)和盲点检测系统。这些系统通过分析来自摄像头和传感器的数据来预防事故。 3. 个性化用户体验: AI可以根据驾驶员的偏好和习惯来调整车辆设置,如座椅位置、音乐选择和导航系统。这提供了更加个性化和舒适的驾驶体验。 4. 预测性维护: 通过分析车辆的实时数据,AI可以预测潜在的故障和维护需求,从而减少停机时间和维修成本。这有助于提高车辆的可靠性和效率。 5. 生产自动化: 在汽车制造过程中,AI被用于自动化生产线,提高生产效率和质量控制。AI系统可以监测设备状态,优化生产流程,并减少人为错误。 6. 销售和市场分析: 汽车公司使用AI来分析市场趋势、消费者行为和销售数据,以便更好地理解客户需求,制定营销策略和优化产品定价。 7. 电动化和能源管理: AI在电动汽车(EV)的电池管理和充电策略中发挥作用,通过优化电池使用和充电时间来提高能源效率和延长电池寿命。 8. 共享出行服务: AI支持的共享出行服务,如Uber和Lyft,使用AI来优化路线规划、调度车辆和定价策略,提高服务效率和用户满意度。 9. 语音助手和车载娱乐: AI驱动的语音助手,如Amazon Alexa Auto和Google Assistant,允许驾驶员通过语音命令控制车辆功能、获取信息和娱乐内容。 10. 车辆远程监控和诊断: AI系统可以远程监控车辆状态,提供实时诊断和支持,帮助车主及时了解车辆状况并采取相应措施。
2024-04-16
AI 在教育行业的落地场景有哪些?
AI 在教育行业的落地场景主要包括以下方面: 1. 个性化学习:通过集成算法和大数据分析,如 Knewton 平台,实时跟踪学生学习进度,诊断学习难点,提供个性化学习建议和资源。 2. 自动评估:利用自然语言处理技术(NLP)自动批改学生的作文和开放性答案题,如 Pearson 的 Intelligent Essay Assessor,减轻教师批改负担,提高评估效率和一致性。 3. 智能辅助教学:例如 Google 的 AI 教育工具 AutoML 用于创建定制学习内容,通过有趣方式加深学生对学科概念的理解。 4. 虚拟现实(VR)和增强现实(AR):学生可通过 VR 头盔进入虚拟实验室进行实验操作并获得 AI 系统反馈,如 Labster 的虚拟实验室平台。 5. 协助评估学生学习情况,为职业规划提供建议。 6. 针对学生情况和兴趣定制学习内容。 7. 论文初稿搭建及论文审核。 8. 帮助低收入国家/家庭获得平等教育资源。
2024-11-12
讯飞星火主要用于什么场景
讯飞星火主要用于以下场景: 1. 在结构化 prompt 测试和反馈方面,对于某些输入能给出相对贴合实际的回答,经适当调解和提示可输出较完整的咨询文案。 2. 在律师答辩状 prompt 评测中,欢迎语直接,在输出内容上有优点,如提出不可抗力因素、财产独立抗辩、加入诉讼费等,也存在主体转换的瑕疵;在应诉方案输出方面,准备工作详细专业,增加了有用提示,答辩策略简洁明了,庭审准备细化到位。 3. 在开发方面,是基于人工智能的开放平台,提供多种 api 接口,可基于其 api 封装 LLM,实现文本翻译、摘要、分类等语言任务,需注册账号、创建应用获取必要参数,并安装 requests 库。
2024-11-05
请帮我总结AI AGENT的总体架构,帮助我更快学习相关的知识,尽快进行具体场景的商业落地
AI Agent 是一个融合了多学科精髓的综合实体,不仅有实体形态,还有丰富的概念形态,并具备许多人类特有的属性。其总体架构包括以下方面: 1. 大模型 LLM 扮演“大脑”。 2. 规划:包括子目标分解、反思与改进。子目标分解将大型任务分解为较小可管理的子目标以处理复杂任务;反思和改进可对过去的行动进行自我批评和反思,从错误中学习并改进未来步骤,提高最终结果质量。 3. 记忆。 此外,AI Agent 还具有以下特点和应用: 1. 能够自行规划任务执行的工作流路径,面向简单或线性流程的运行。 2. 可以实现多 Agent 协作,例如让大语言模型扮演不同角色,相互协作共同开发应用或复杂程序。
2024-11-04
AI办公场景的小工具有哪些?请用模板给我介绍 模板:产品名称、产品适用场景、产品卖点
以下是一些 AI 办公场景的小工具: |产品名称|产品适用场景|产品卖点| |||| |AI 智能写作助手|辅助创作与学习|帮助用户快速生成高质量文本| |AI 语言学习助手|辅助创作与学习|辅助用户学习语言,提供个性化学习方案| |爱奇艺智能推荐|推荐与规划|根据用户喜好推荐电影,发现优质影片| |WPS Office|优化与管理|提高办公效率,实现自动化办公流程| |销售:定制销售解决方案|销售|为企业定制销售方案| |客服:定制客服话术|客服|提供针对性的客服话术| |HR:团队绩效管理|人力资源|分析员工绩效并提供考评和改进建议| |HR:面试工具|人力资源|帮助求职者在面试中生成完美回答| |科学:研制采摘机器人|科学研究|借助 ChatGPT 设计并研制番茄收割机器人|
2024-11-01
AI办公场景的小工具有哪些?
以下是一些常见的 AI 办公场景小工具: 在企业运营方面,有用于日常办公文档材料撰写整理、营销对话机器人、市场分析、销售策略咨询、法律文书起草、案例分析、法律条文梳理、人力资源简历筛选、预招聘、员工培训的工具。 在教育领域,有协助评估学生学习情况、为职业规划提供建议、针对学生情况以及兴趣定制化学习内容、论文初稿搭建及论文审核、帮助低收入国家/家庭通过 GPT 获得平等教育资源的工具。 在游戏/媒体行业,有定制化游戏、动态生成 NPC 互动、自定义剧情、开放式结局、出海文案内容生成、语言翻译及辅助广告投放和运营、数字虚拟人直播、游戏平台代码重构、AI 自动生成副本的工具。 在零售/电商领域,有舆情、投诉、突发事件监测及分析、品牌营销内容撰写及投放、自动化库存管理、自动生成或完成 SKU 类别选择、数量和价格分配、客户购物趋势分析及洞察的工具。 在金融/保险行业,有个人金融理财顾问、贷款信息摘要及初始批复、识别并检测欺诈活动风险、客服中心分析及内容洞察、保险理赔处理及分析、投资者报的工具。 此外,还有以下具体的工具: Sameday 可以接电话并预约。 Truelark 可以处理短信、电子邮件和聊天。 Osome 可以管理后台办公室。 Durable 可以创建一个完整的专业网站。 通用内容创建工具如 Jasper、Copy 和 Writer 在小型和中型企业中已经获得了显著的用户基础。 针对特定类型企业的垂直化工具,如 Harvey 和 Spellbook 帮助法律团队自动化任务,Interior AI 使代理商能够虚拟布置房产,Zuma 帮助物业经理将潜在客户转化为预定的参观。 用于高效做 PPT 的工具,如先让 ChatGPT 用 Markdown 语法展示内容,再借用 MindShow 把 Markdown 内容转换为精美的 PPT。
2024-11-01
LangChain的技术方案和应用场景
LangChain 是一个为简化大模型应用开发而设计的开源框架。 其技术方案具有以下特点: 提供模块化的工具和库,便于开发者集成和操作多种大模型。 注重简化开发流程,让开发者能将更多精力投入到应用的核心价值创造上。 支持广泛的模型,具有良好的可扩展性,能适应业务需求的变化。 在应用方面: 作为得到社区广泛支持的开源项目,拥有活跃的贡献者和持续更新。 提供全面的文档和示例代码,有助于新用户快速掌握。 充分考虑应用的安全性和用户数据的隐私保护。 是多语言支持的灵活框架,适用于各种规模的项目和不同背景的开发者。 LangChain 官方手册:https://python.langchain.com/docs/get_started/introduction/
2024-11-01
我记得你有发布过google人工智能落地的案例
以下是为您整合的相关内容: Google 最近发布了 185 个全球企业生成式 AI 应用案例,涵盖客户服务、员工管理、代码开发、数据分析、安全管理和创意领域。案例展示了 AI 如何优化客户体验、提升员工效率、加速代码处理、改善数据分析、增强安全性及简化创意生产。详情可参考:《》 Coze 汽车售后服务知识库 Bot 旨在提升服务顾问和维修技师的专业水平和维修效率。该 Bot 通过提供标准化解决方案,辅助车辆故障分析和检查,弥补专业知识不足和技术支持文档标准化问题。主要目标是提升服务质量,减少对技师经验的依赖,为汽车售后服务提供智能化支持。详情可参考:《》
2024-11-06
具身智能在制造行业的落地方向有哪些?
具身智能在制造行业的落地方向主要包括以下几个方面: 1. 预测性维护:利用具身智能技术预测机器故障,帮助工厂避免停机,提高生产效率。 2. 质量控制:检测产品缺陷,提升产品质量。 3. 供应链管理:优化供应链,实现效率提升和成本降低。 4. 机器人自动化:控制工业机器人,进一步提高生产效率。 具身智能是人工智能领域的一个子领域,强调智能体通过与物理世界或虚拟环境的直接交互来发展和展现智能。它的核心在于智能体的“身体”或“形态”,这些身体可以是物理形态,也可以是虚拟形态。具身智能的研究涉及多个学科,包括机器人学、认知科学、神经科学和计算机视觉等。在机器人学中,关注如何设计能自主行动和适应环境的机器人;在认知科学和神经科学中,探索大脑处理与身体相关信息的机制及应用于人造智能系统;在计算机视觉中,致力于开发算法使智能体理解和解释视觉信息,进行有效的空间导航和物体识别。 作为一个系统性的工程,具身智能涉及算法层、不同技术流派、数据、模拟器、传感器、视觉方案、力学结构等多个维度,并整体向着更鲁棒性、各层级之间过渡更加平滑的方向发展。但也存在一些问题,比如力矩控制、电流控制做到哪一步才算端到端,机器人的 foundation model 或者 GPT 时刻会是什么样,触觉等感知信号以什么样的形式进入模型当中等。
2024-10-26
AI在办公提效方面的落地场景
以下是 AI 在办公提效方面的一些落地场景: 1. 辅助创作与学习: AI 智能写作助手帮助用户快速生成高质量文本。 AI 语言学习助手、诗歌创作助手、书法字体生成器、漫画生成器等为用户的学习和创作提供支持。 2. 推荐与规划: AI 图像识别商品推荐、美食推荐平台、旅游行程规划器、时尚穿搭建议平台、智能投资顾问等,根据用户的需求和偏好为其推荐合适的产品、服务或制定个性化的计划。 3. 监控与预警: AI 宠物健康监测设备、家居安全监控系统、天气预报预警系统、医疗诊断辅助系统等,实时监测各种情况并提供预警。 4. 优化与管理: 办公自动化工具,如 WPS Office 中的智能排版、语法检查等功能,利用 AI 技术帮助用户快速完成文档处理工作,提高办公效率。 物流路径优化工具、家居清洁机器人调度系统、金融风险评估工具等,提高工作效率和管理水平。 此外,还有一些具体的应用案例,如: 1. 豆果美食 APP:根据用户口味和现有食材生成个性化菜谱。 2. 沪江开心词场:通过 AI 分析用户的学习进度和薄弱环节,为用户推荐合适的单词和学习内容。 3. 爱奇艺智能推荐:利用 AI 算法分析用户的观看历史、评分等数据,为用户推荐符合其口味的电影。
2024-10-24
生成式AI商业落地白皮书
以下是关于生成式 AI 商业落地的相关信息: 2024 年 7 月 29 日,《》由火山引擎、RollingAI 和 InfoQ 研究中心联合发布,为 CXO 提供 AI 转型战术指南。该白皮书分析了生成式 AI 在各行业的应用现状和挑战,并提供了企业 AI 转型的趋势展望和最佳实践。书中通过 240 个应用场景地图,展示了 AI 在消费零售、金融、汽车等行业的落地案例,探讨了 AI 基础设施构建、项目落地准备和快速补齐能力差距等关键问题,并提出了八步实施大模型接入的方法论。 其它相关报告: 《》 《》 《》 《》 《》 2024 年 8 月 17 日,最近上传的一些报告: 爱分析发布的《》聚焦于 AI Agent 开发管理平台市场,特别评估了火山引擎的 HiAgent 平台。报告指出,AI Agent 作为大模型应用的主流形态,正重塑科技和商业领域。 《》白皮书由 Denodo Technologies 发布,强调了生成式人工智能(Gen AI)在商业和财务价值实现中的潜力。书中指出,Gen AI 应用的可靠性依赖于数据质量,而数据管理是实施 AI 的关键挑战。 《》 《》 此外,关于游戏中的生成式 AI 革命:生成式 AI 是一种机器学习类别,计算机可以根据用户的提示生成原始的新内容。目前,文本和图像是这项技术的最成熟应用,但几乎在每一个创意领域都有工作在进行,从动画、音效、音乐,甚至到创造具有完整性格的虚拟角色。AI 在游戏中并不是新鲜事,早期游戏中的虚拟敌人只是简单脚本程序,不能学习,能力取决于程序员。现在由于更快的微处理器和云技术,有了更多计算能力,可以构建大型神经网络,在高度复杂领域识别模式和表示。这篇博文分为两部分,第一部分包括对游戏领域生成式 AI 的观察和预测,第二部分是对该领域的市场地图,概述各个细分市场并确定每个市场的关键公司。
2024-10-23