Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

大模型中的参数是什么

Answer

大模型中的参数主要指模型中的权重(weight)与偏置(bias)。例如,GPT-3 拥有 1750 亿参数,其中权重数量达到了这一量级,而词汇表 token 数只有 5 万左右。在 LLM 中,由于模型参数非常多,如 GPT-2 有 1.5B 参数,每个参数用 float32 表示,所需内存大小为 4 bytes*1,500,000,000 = 6GB,更先进的模型如 LLAMA 有 65B 参数,所需内存就需要 260G(这还是在不考虑词汇表的情况下)。因此在进行模型实际部署时,会进行模型的压缩。

Content generated by AI large model, please carefully verify (powered by aily)

References

大模型入门指南

数字化的好处是便于计算机处理。但为了让计算机理解Token之间的联系,还需要把Token表示成稠密矩阵向量,这个过程称之为embedding([3]),常见的算法有:基于统计Word2Vec,通过上下文统计信息学习词向量GloVe,基于词共现统计信息学习词向量基于深度网络CNN,使用卷积网络获得图像或文本向量RNN/LSTM,利用序列模型获得文本向量基于神经网络BERT,基于Transformer和掩码语言建模(Masked LM)进行词向量预训练Doc2Vec,使用神经网络获得文本序列的向量以Transform为代表的大模型采用自注意力(Self-attention)机制来学习不同token之间的依赖关系,生成高质量embedding。大模型的“大”,指的是用于表达token之间关系的参数多,主要是指模型中的权重(weight)与偏置(bias),例如GPT-3拥有1750亿参数,其中权重数量达到了这一量级,而词汇表token数只有5万左右。参考:[How does an LLM"parameter"relate to a"weight"in a neural network?](https://datascience.stackexchange.com/questions/120764/how-does-an-llm-parameter-relate-to-a-weight-in-a-neural-network"How does an LLM"parameter"relate to a"weight"in a neural network?")

大模型入门指南

在LLM中,Token是输入的基本单元由于在大模型的参数非常多,比如在GPT-2中,有1.5B参数,每个参数用float32表示,那么需要的内存大小为4 bytes*1,500,000,000=6GB,更先进的模型如LLAMA有65B参数,那么需要的内存就需要260G,这还是在不考虑词汇表的情况下。因此在进行模型实际部署时,会进行模型的压缩。而且,在训练LLM中,CPU与内存之间的传输速度往往是系统的瓶颈,核心数反而不是大问题,因此减小内存使用是首要优化点。使用内存占用更小的数据类型是一种直接的方式,比如16位的浮点数就可以直接将内存使用减倍。目前有几种相互竞争的16位标准,但英伟达在其最新一代硬件中引入了对bfloat16的支持,|Format|Significand|Exponent||-|-|-||bfloat16|8 bits|8 bits||float16|11 bits|5 bits||float32|24 bits|8 bits|

从 0 到 1 了解大模型安全,看这篇就够了

encoder-only:这些模型通常适用于可以自然语言理解任务,例如分类和情感分析.最知名的代表模型是BERTencoder-decoder:此类模型同时结合了Transformer架构的encoder和decoder来理解和生成内容。该架构的一些用例包括翻译和摘要。encoder-decoder的代表是google的T5decoder-only:此类模型更擅长自然语言生成任务。典型使用包括故事写作和博客生成。这也是我们现在所熟知的众多AI助手的结构我们目前耳熟能详的AI助手基本都来自左侧的灰色分支,当然也包括ChatGPT。这些架构都是根据谷歌2017年发布的论文“attention is all you need”中提出的transformer衍生而来的,在transformer中,包括Encoder,Decoder两个结构目前的大型语言模型就是右侧只使用Decoder的Decoder-only架构的模型大模型又大在哪呢?第一,大模型的预训练数据非常大,这些数据往往来自于互联网上,包括论文,代码,以及可进行爬取的公开网页等等,一般来说,现在最先进的大模型一般都是用TB级别的数据进行预训练。第二,参数非常多,Open在2020年发布的GPT-3就已经达到170B的参数在GPT3中,模型可以根据用户输入的任务描述,或给出详细的例子,完成任务但这与我们熟知的ChatGPT仍然有着很大的差距,使用ChatGPT只需要像和人类一样对话,就可以完成任务。除了形式上的不同之外,还有一个更加重要的差距,那就是安全性上的差别。

Others are asking
ai大模型有哪些常用参数
以下是关于 AI 大模型常用参数的相关内容: 1. 架构方面: Encoderonly:适用于自然语言理解任务,如分类和情感分析,代表模型是 BERT。 Encoderdecoder:结合 Transformer 架构的 encoder 和 decoder 来理解和生成内容,用例包括翻译和摘要,代表是谷歌的 T5。 Decoderonly:更擅长自然语言生成任务,众多 AI 助手采用此结构,如 ChatGPT。 2. 规模方面: 预训练数据量大,往往来自互联网上的论文、代码、公开网页等,一般用 TB 级别数据进行预训练。 参数众多,如 Open 在 2020 年发布的 GPT3 就已达到 170B 的参数。参数指的是神经网络的输入权重和输出阈值的总和。假定一个神经元有 9 个输入权重和 1 个输出阈值,就有 10 个参数。当有 100 亿个这样的神经元时,就形成千亿级参数的大模型。 3. 模型部署方面: 在 LLM 中,Token 是输入的基本单元。由于大模型参数多,如 GPT2 有 1.5B 参数,每个参数用 float32 表示需 6GB 内存,更先进的模型如 LLAMA 有 65B 参数则需 260G 内存(还不考虑词汇表)。因此实际部署时会进行模型压缩。 在训练 LLM 中,CPU 与内存之间的传输速度往往是系统瓶颈,核心数反而不是大问题,减小内存使用是首要优化点。使用内存占用更小的数据类型是直接方式,如 16 位浮点数可将内存使用减倍。目前有几种相互竞争的 16 位标准,英伟达在其最新一代硬件中引入了对 bfloat16 的支持。
2025-03-03
炼丹需要了解的参数
炼丹需要了解的参数主要包括以下方面: 1. 学习步数:指 AI 对每张图片的学习次数。二次元图片的 repeat 一般在 10 15,写实人物图片的 repeat 一般在 30 50,真实世界的景观场景可能要达到 100。repeat 值越高,AI 对图片的理解越好,但图片精细度越高,学习步数也要越高。 2. 循环次数:AI 将所有图片按照学习步数学习一轮即为一次循环,循环次数指将这个过程重复的遍数。一般数值在 10 20 之间,次数并非越多越好,过多可能导致过拟合,即训练结果过于僵化。 3. 训练总步数:通过图片张数×学习步数×循环次数计算得出。例如 5 张图片,学习步数 50,循环次数 10,训练总步数为 2500 步。
2025-02-21
大模型相关术语中,参数和Token分别指什么?
在大模型相关术语中: 参数:主要指模型中的权重(weight)与偏置(bias),大模型的“大”通常体现在用于表达 token 之间关系的参数数量众多,例如 GPT3 拥有 1750 亿参数,其中权重数量达到了这一量级。 Token:大模型有着自己的语言体系,Token 是其语言体系中的最小单元。人类语言发送给大模型时,会先被转换为大模型的语言,这种转换的基本单位就是 Token。不同厂商的大模型对 Token 的定义可能不同,以中文为例,通常 1 Token 约等于 1 2 个汉字。大模型的收费计算方法以及对输入输出长度的限制,通常都是以 Token 为单位计量的。Token 可以代表单个字符、单词、子单词,甚至更大的语言单位,具体取决于所使用的分词方法(Tokenization),在将输入进行分词时,会对其进行数字化,形成一个词汇表。
2025-02-13
我的工作需要根据元数据表在本地查询大量数据,并把匹配的数据参数复制到元数据表,有没有智能体可以做这个工作
智能体可以帮助您完成根据元数据表在本地查询大量数据,并把匹配的数据参数复制到元数据表的工作。 智能体可以根据其复杂性和功能分为以下几种类型: 1. 简单反应型智能体:根据当前的感知输入直接采取行动,不维护内部状态,也不考虑历史信息。例如温控器,它根据温度传感器的输入直接打开或关闭加热器。 2. 基于模型的智能体:维护内部状态,对当前和历史感知输入进行建模,能够推理未来的状态变化,并根据推理结果采取行动。比如自动驾驶汽车,它不仅感知当前环境,还维护和更新周围环境的模型。 3. 目标导向型智能体:除了感知和行动外,还具有明确的目标,能够根据目标评估不同的行动方案,并选择最优的行动。例如机器人导航系统,它有明确的目的地,并计划路线以避免障碍。 4. 效用型智能体:不仅有目标,还能量化不同状态的效用值,选择效用最大化的行动,评估行动的优劣,权衡利弊。比如金融交易智能体,根据不同市场条件选择最优的交易策略。 5. 学习型智能体:能够通过与环境的交互不断改进其性能,学习模型、行为策略以及目标函数。例如强化学习智能体,通过与环境互动不断学习最优策略。 在实际应用中,多智能体 AI 搜索引擎的方案如下: 1. 第一步,快速搜索补充参考信息:根据用户的任务,使用搜索工具补充更多的信息,例如使用工具 API WebSearchPro。 2. 第二步,用模型规划和分解子任务:使用大模型把用户问题拆分成若干子搜索任务,并转换为 JSON 格式。 3. 第三步,用搜索智能体完成子任务:AI 搜索智能体具备联网搜索的能力,还能够自主分析并进行多轮搜索任务。 4. 第四步,总结子任务生成思维导图:智能体能调用各种插件,如思维导图、流程图、PPT 工具等。 此外,生物医药小助手智能体是由 1 个工作流和 6 个数据库实现的。工作流相对简单,而数据库包括公众号文章、执业药师教材、执业医师讲义、药监局新药审评报告、中国医药企业融资动态、药物对外授权动态、全球药物销售额等。在医疗领域,为保证回答的准确性,提示词约定回答只能来自于知识库。其商业化场景包括医药企业研发立项、科研机构临床转化评估、投资机构评估标的公司等。
2025-02-07
如果让提示词变成模板, 每次输入需要的参数就好。
要将提示词变成模板,每次输入需要的参数即可。以下是一些相关的方法和要点: 在 Stable Diffusion 中,下次作图时先选择模板,点击倒数第二个按钮可快速输入标准提示词。描述逻辑通常包括人物及主体特征(如服饰、发型发色、五官、表情、动作)、场景特征(室内室外、大场景、小细节)、环境光照(白天黑夜、特定时段、光、天空)、画幅视角(距离、人物比例、观察视角、镜头类型)、画质(高画质、高分辨率)、画风(插画、二次元、写实)等,通过这些详细提示词能更精确控制绘图。新手可借助功能型辅助网站书写提示词,如 http://www.atoolbox.net/ (通过选项卡快速填写关键词信息)、https://ai.dawnmark.cn/ (每种参数有缩略图参考),还可去 C 站(https://civitai.com/)抄作业,复制每张图的详细参数粘贴到正向提示词栏,注意图像作者使用的大模型和 LORA,也可选取部分好的描述词使用。 简单的提示词模板最终目标是把需求说清楚,如 GPTs 提示词模板:Act like a 输入最终结果),并给出了示例。 提示词母体系列(2)中,在掌握人物设计整体框架后编写提示词,可借鉴替换方式替换模板。模板构成包括:先看约束部分,规则放顶部加强约束,底部也有相应约束,整个约束包裹具体提示词以提示模型专注性;模板结构有基本信息(姓名、性别、年龄、职业)、外貌特征、背景和经历、性格和价值观、爱好特长和语言风格、人际关系和社交活动、未来规划和目标。
2025-01-28
Roo Code 的API Provider 参数哪里设置
要设置 Roo Code 的 API Provider 参数,您可以按照以下步骤进行操作: 1. 首先,进入 deepseek 的官网(https://www.deepseek.com/)。 2. 进入右上角的 API 开放平台。早期 deepseek 是有赠送额度,如果没有赠送的余额,可以选择去充值,支持美元和人民币两种结算方式,以及各种个性化的充值方式,并创建一个 API key。注意,API key 只会出现一次,请及时保存下来。 3. 接下来,以 cursor 作为代码编辑器为例,下载安装 cursor(https://www.cursor.com/),在插件页面搜索并安装 Roocline。安装完后,打开三角箭头,就可以看到 RooCline,选中 RooCline,并点击齿轮,进入设置。 4. 依次设置配置基本参数: API Provider:选择 DeepSeek。 API Key:填入已创建的 key。 模型:选择 DeepSeekreasoner。 5. 进行语言偏好设置。 6. 小贴士:记得把 HighRisk 选项都打开,这样 AI 才能帮您自动生成文件。最后做完所有不要忘记点击 Done 保存修改。在聊天框输入产品需求,输入需求后点击这个 blingbling 的星星,优化提示词。最终,在 deepseekr1 的加持下基本上是一遍过,各种特效效果交互逻辑也都正确。画面也算优雅,交互效果也不错,是您想要的。
2025-01-26
大模型中的权重与偏置是什么
在大模型中,权重(weight)和偏置(bias)是非常重要的概念。 大模型的“大”主要体现在用于表达 token 之间关系的参数众多,其中就包括权重和偏置。例如 GPT3 拥有 1750 亿参数,其中权重数量达到了这一量级,而词汇表 token 数只有 5 万左右。 以 Transform 为代表的大模型采用自注意力(Selfattention)机制来学习不同 token 之间的依赖关系,生成高质量 embedding。 在感知机学习算法中,感知机的输出和人类标记的正确答案进行比较,如果答案错误,权重和阈值会发生变化。每个权重的变化量取决于与其相关的输入值。对于每个权重 wj:wj←wj+ηxj,其中 t 表示正确的输出(1 或 0);对于给定的输入,y 是感知机的实际输出;xj 是与权重 wj 有关的输入;η是由程序员给出的学习速率。阈值通过创建一个附加的输入 x0 合并得到,x0 为常数 1,其相对应的权重 w0=threshold(阈值)。只有在输入与权重的乘积,即输入向量与权重向量之间的点积大于或等于 0 时,感知机才会被触发。 在某些案例中,比如判断数字大小的问题中,不同概念的权重不同,会影响模型的判断结果。例如 9.11 作为日期“概念”的权重可能比它是个数字“概念”的权重大。
2025-03-03
推理行大模型对于RAG的准确性提升,带来哪些改变
推理行大模型对 RAG 准确性提升带来了以下改变: 1. 当辅以能有效提取文档中结构化信息并整合为提示词的 PDF 解析器时,大语言模型能作出更准确的响应,提高了提供给模型的数据质量和相关性,从而提升模型输出质量。 2. 大模型应用领域常用的 RAG 方法,能让模型用自定义数据生成结果,处理无尽私有数据,将模型当成高效推理机器。但 RAG 存在一些常见误区: 随意输入任何文档不一定能得到准确回答,RAG 流程中的多个环节都会影响最终质量。 RAG 虽能减少幻觉,但不能完全消除,只要有大模型参与就可能产生幻觉。 RAG 仍消耗大模型的 Token,最终需大模型处理检索结果生成通顺回答。 未来,将研究分享更多基于深度学习的文档解析方法,以更全面理解 RAG 质量和文档解析质量的关系。同时,前沿模型研发团队力争做到吞吐量、速度和准确度的最佳平衡。
2025-03-03
怎么利用大模型训练自己的机器人
利用大模型训练自己的机器人可以参考以下内容: OpenAI 通用人工智能(AGI)的计划显示,在互联网上所有的图像和视频数据上训练一个与人类大脑大小相当的 AI 模型,将足以处理复杂的机器人学任务。常识推理隐藏在视频和文本数据中,专注于文本的 GPT4 在常识推理上表现出色。Google 最近的例子展示了机器人学能力可从大型视觉/语言模型中学习,在语言和视觉训练基础上,只需最少的机器人学数据,视觉和文本任务的知识就能转移到机器人学任务上。特斯拉训练的“Optimus”通过人类示范学习抓取物体,若人类示范是先进机器人学性能所需的一切,在互联网上所有视频上训练的大模型肯定能实现惊人的机器人学性能。 梦飞提供了在自己的电脑上部署 COW 微信机器人项目的教程,程序在本地运行,若关掉窗口进程结束,想持续使用需保持窗口打开和运行。以 Windows10 系统为例,注册大模型可参考百炼首页:https://bailian.console.aliyun.com/ ,需更改"model"和添加"dashscope_api_key",获取 key 可参考视频教程。 张梦飞提供了从 LLM 大语言模型、知识库到微信机器人的全本地部署教程,部署大语言模型包括下载并安装 Ollama,根据电脑系统下载:https://ollama.com/download ,安装完成后将下方地址复制进浏览器中确认安装完成:http://127.0.0.1:11434/ 。下载 qwen2:0.5b 模型,Windows 电脑按 win+R 输入 cmd 回车,Mac 电脑通过 Command(⌘)+Space 键打开 Spotlight 搜索输入“Terminal”或“终端”,复制命令行粘贴回车等待下载完成。
2025-03-03
帮我找出现在成熟的人工智能大模型,列举他们的功能,附上打开链接
以下是一些成熟的人工智能大模型及其功能和链接: 百度(文心一言):https://wenxin.baidu.com 。 抖音(云雀大模型):https://www.doubao.com 。 智谱 AI(GLM 大模型):https://chatglm.cn 。 中科院(紫东太初大模型):https://xihe.mindspore.cn 。 百川智能(百川大模型):https://www.baichuanai.com/ 。 商汤(日日新大模型):https://www.sensetime.com/ 。 MiniMax(ABAB 大模型):https://api.minimax.chat 。 上海人工智能实验室(书生通用大模型):https://internai.org.cn 。 在这些大模型中: 能生成 Markdown 格式的:智谱清言、商量 Sensechat、MiniMax 。 目前不能进行自然语言交流的:昇思、书生 。 受限制使用:MiniMax(无法对生成的文本进行复制输出,且只有 15 元的预充值额度进行体验,完成企业认证后可以进行充值) 。 特色功能:昇思——生图,MiniMax——语音合成 。 此外,还有其他一些大模型: OpenAI 系统:包括 3.5 和 4.0 版本,一个新的变种使用插件连接到互联网和其他应用程序。Code Interpreter 是一个非常强大的 ChatGPT 版本,可以运行 Python 程序。如果未为 OpenAI 付费,只能使用 3.5 。除了插件变种和一个暂时停用的带有浏览功能的 GPT4 版本之外,这些模型都没有连接到互联网。微软的 Bing 使用 4 和 3.5 的混合,通常是 GPT4 家族中首个推出新功能的模型,例如可以创建和查看图像,且可以在网页浏览器中阅读文档,并连接到互联网。 谷歌:一直在测试自己的人工智能 Bard,由各种基础模型驱动,最近是一个名叫 PaLM 2 的模型。 Anthropic:发布了 Claude 2,其最值得注意的是有一个非常大的上下文窗口,本质上是 LLM 的记忆。Claude 几乎可以保存一整本书或许多 PDF,与其他大型语言模型相比,它不太可能恶意行事。
2025-03-03
flux模型放在那个文件夹
FLUX 模型的放置位置如下: FLUX.1等版本的模型应放在 ComfyUI/models/unet/文件夹中。如果爆显存了,“UNET 加载器”节点中的 weight_dtype 可以控制模型中权重使用的数据类型,设置为 fp8 可降低显存使用量,但可能会稍降质量,默认的 weight_type 显存使用较大。 t5xxl_fp16.safetensors 和 clip_l.safetensors 应放在 ComfyUI/models/clip/文件夹里面。可以使用 t5xxl_fp8_e4m3fn.safetensors 来降低内存使用率,若有超过 32GB 内存,建议使用 fp16。 下载的 Vae 模型应放入 ComfyUI/models/vae 文件夹。 同时,以下模型也有对应的放置位置: flux1dev.safetensors 放在 ComfyUI/models/unet/目录下。 t5xxl_fp16.safetensors 和 clip_l.safetensors 放在 ComfyUI/models/clip/目录下。 ae.safetensors 放在 ComfyUI/models/vae/目录下。 flux1dev.safetensors 是底模,ae.safetensors 是 VAE,clip_l.safetensors 和 t5xxl_fp16.safetensors 是关于文字语言编码。
2025-03-03