Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

大模型中的权重与偏置是什么

Answer

在大模型中,权重(weight)和偏置(bias)是非常重要的概念。

大模型的“大”主要体现在用于表达 token 之间关系的参数众多,其中就包括权重和偏置。例如 GPT-3 拥有 1750 亿参数,其中权重数量达到了这一量级,而词汇表 token 数只有 5 万左右。

以 Transform 为代表的大模型采用自注意力(Self-attention)机制来学习不同 token 之间的依赖关系,生成高质量 embedding。

在感知机学习算法中,感知机的输出和人类标记的正确答案进行比较,如果答案错误,权重和阈值会发生变化。每个权重的变化量取决于与其相关的输入值。对于每个权重 wj:wj←wj+η(t+y)xj,其中 t 表示正确的输出(1 或 0);对于给定的输入,y 是感知机的实际输出;xj 是与权重 wj 有关的输入;η是由程序员给出的学习速率。阈值通过创建一个附加的输入 x0 合并得到,x0 为常数 1,其相对应的权重 w0=-threshold(阈值)。只有在输入与权重的乘积,即输入向量与权重向量之间的点积大于或等于 0 时,感知机才会被触发。

在某些案例中,比如判断数字大小的问题中,不同概念的权重不同,会影响模型的判断结果。例如 9.11 作为日期“概念”的权重可能比它是个数字“概念”的权重大。

Content generated by AI large model, please carefully verify (powered by aily)

References

大模型入门指南

数字化的好处是便于计算机处理。但为了让计算机理解Token之间的联系,还需要把Token表示成稠密矩阵向量,这个过程称之为embedding([3]),常见的算法有:基于统计Word2Vec,通过上下文统计信息学习词向量GloVe,基于词共现统计信息学习词向量基于深度网络CNN,使用卷积网络获得图像或文本向量RNN/LSTM,利用序列模型获得文本向量基于神经网络BERT,基于Transformer和掩码语言建模(Masked LM)进行词向量预训练Doc2Vec,使用神经网络获得文本序列的向量以Transform为代表的大模型采用自注意力(Self-attention)机制来学习不同token之间的依赖关系,生成高质量embedding。大模型的“大”,指的是用于表达token之间关系的参数多,主要是指模型中的权重(weight)与偏置(bias),例如GPT-3拥有1750亿参数,其中权重数量达到了这一量级,而词汇表token数只有5万左右。参考:[How does an LLM"parameter"relate to a"weight"in a neural network?](https://datascience.stackexchange.com/questions/120764/how-does-an-llm-parameter-relate-to-a-weight-in-a-neural-network"How does an LLM"parameter"relate to a"weight"in a neural network?")

人人都能搞定的大模型原理 - 神经网络

接下来,将感知机的输出和人类标记的正确答案(“8”或者“非8”)做比较。如果感知机给出的答案是正确的,则权重和阈值不会发生变化,但是如果感知机是错误的,其权重和阈值就会发生变化,以使感知机在这个训练样本上给出的答案更接近于正确答案。此外,每个权重的变化量取决于与其相关的输入值,也就是说,对错误的“罪责”的分配取决于哪个输入的影响更大或更小。在上图“8”的324个像素块中,纯黑色方块的像素强度为0影响较大,而纯白色方块的像素强度为255则不会有任何影响。对此数学原理感兴趣的读者,可以查阅下面的计算细节:从数学的角度看,感知机学习算法如下。对于每个权重wj:wj←wj+η(t+y)xj,其中t表示正确的输出(1或0);对于给定的输入,y是感知机的实际输出;xj是与权重wj有关的输入;η是由程序员给出的学习速率,箭头表示更新。阈值通过创建一个附加的输入x0合并得到。x0为常数1,其相对应的权重w0=-threshold(阈值)。对于给定额外的输入和权重(称为偏差),只有在输入与权重的乘积,即输入向量与权重向量之间的点积大于或等于0时,感知机才会被触发。通常,输入值会被缩小或者应用其他变换以防止权重过大。下一个训练将重复上述整个过程。感知机会将这个训练过程在所有的训练样本上运行很多遍,每一次出错时,感知机都会对权重和阈值稍做修改。

有人破译了模型回答 9.9<9.11 的原因! (大佬把模型拆了, 解剖神经元帮你解释

1.选择自定义提示词(当然你也可以选之前预定义的话题,也就是黑色的按钮):PS:黑色的按钮会带着你做新手使用指引。然后左边会出现我们熟悉的chat界面,就不详细介绍这个界面。网站上提供的模型是Llama-3.1 8B Instruct:1.输入你的对话内容,等待左右两边的内容生成。如果这时右边的分析没刷新成上图的样子,在这两个按钮之间做做切换。由于它的归因聚类也是用了大模型,所以稍微等等,它也有个反应时间,过程中可能是这样的:最终你得到的结果可能和我不同,甚至可能是正确的答案,猜测是这个模型用的温度temprature不是最低,因此你会得到不同的结果。Activation Mode:你将获得整段的推理判断。Attribution Mode:你需要选中一个token,它会帮你分析对应的内容里最大的关联。1.从结果中,你会发现模型认知的9.11大概率是那个著名的时间,也可能是一个日期。这种情况下,模型就判断9月11日比9月3日大。而如果我们用一个显然不是日期的数字对比,比如9.31和9.4比,大概率答案是正确的:解释也回归到了数字范畴:它从侧面证明了LLM的基本原理:LLM是采用多头注意力机制预测下一个token的,因此训练数据中相关的语句如果越多,它们之间的相关性概率会越高。在这个案例里,9.11作为日期“概念”的权重显然比它是个数字“概念”的权重大。

Others are asking
一个 prompt 有 10 段文本内容,怎么标记不同段落的权重
当一个 prompt 有 10 段文本内容时,标记不同段落权重的方法如下: 使用双冒号“::”将提示分成不同部分,并在双冒号后面立即添加一个数字来指定该部分的相对权重。例如,“hot::2 dog”表示单词“hot”比“dog”重要度高出两倍。 在版本 1、2、3 中只接受整数作为权值,版本 4 能接受权值的小数位数。未指定权值时默认为 1。 负数权值可用于提示中以删除或排除不需要的元素,但所有权值的比必须是正数。 改变 tag 权重有多种方式: :数值从 0.1 到 100,低于 1 减弱,大于 1 加强。 括号,权重就重 1.1 倍;每加一层括号就反向减弱 1.1 倍。 小括号权重乘 1.1,如 a;中括号权重除以 1.1;小括号里面直接用冒号写权重也行;反斜杠可以让小括号的权重不生效当做一般字符串处理。 花括号写法,一个花括号权重为 1.05。 提示词其他常用语法:是画到一半的时候开始不画女孩。
2024-11-17
ai大模型有哪些常用参数
以下是关于 AI 大模型常用参数的相关内容: 1. 架构方面: Encoderonly:适用于自然语言理解任务,如分类和情感分析,代表模型是 BERT。 Encoderdecoder:结合 Transformer 架构的 encoder 和 decoder 来理解和生成内容,用例包括翻译和摘要,代表是谷歌的 T5。 Decoderonly:更擅长自然语言生成任务,众多 AI 助手采用此结构,如 ChatGPT。 2. 规模方面: 预训练数据量大,往往来自互联网上的论文、代码、公开网页等,一般用 TB 级别数据进行预训练。 参数众多,如 Open 在 2020 年发布的 GPT3 就已达到 170B 的参数。参数指的是神经网络的输入权重和输出阈值的总和。假定一个神经元有 9 个输入权重和 1 个输出阈值,就有 10 个参数。当有 100 亿个这样的神经元时,就形成千亿级参数的大模型。 3. 模型部署方面: 在 LLM 中,Token 是输入的基本单元。由于大模型参数多,如 GPT2 有 1.5B 参数,每个参数用 float32 表示需 6GB 内存,更先进的模型如 LLAMA 有 65B 参数则需 260G 内存(还不考虑词汇表)。因此实际部署时会进行模型压缩。 在训练 LLM 中,CPU 与内存之间的传输速度往往是系统瓶颈,核心数反而不是大问题,减小内存使用是首要优化点。使用内存占用更小的数据类型是直接方式,如 16 位浮点数可将内存使用减倍。目前有几种相互竞争的 16 位标准,英伟达在其最新一代硬件中引入了对 bfloat16 的支持。
2025-03-03
大模型中的参数是什么
大模型中的参数主要指模型中的权重(weight)与偏置(bias)。例如,GPT3 拥有 1750 亿参数,其中权重数量达到了这一量级,而词汇表 token 数只有 5 万左右。在 LLM 中,由于模型参数非常多,如 GPT2 有 1.5B 参数,每个参数用 float32 表示,所需内存大小为 4 bytes1,500,000,000 = 6GB,更先进的模型如 LLAMA 有 65B 参数,所需内存就需要 260G(这还是在不考虑词汇表的情况下)。因此在进行模型实际部署时,会进行模型的压缩。
2025-03-03
推理行大模型对于RAG的准确性提升,带来哪些改变
推理行大模型对 RAG 准确性提升带来了以下改变: 1. 当辅以能有效提取文档中结构化信息并整合为提示词的 PDF 解析器时,大语言模型能作出更准确的响应,提高了提供给模型的数据质量和相关性,从而提升模型输出质量。 2. 大模型应用领域常用的 RAG 方法,能让模型用自定义数据生成结果,处理无尽私有数据,将模型当成高效推理机器。但 RAG 存在一些常见误区: 随意输入任何文档不一定能得到准确回答,RAG 流程中的多个环节都会影响最终质量。 RAG 虽能减少幻觉,但不能完全消除,只要有大模型参与就可能产生幻觉。 RAG 仍消耗大模型的 Token,最终需大模型处理检索结果生成通顺回答。 未来,将研究分享更多基于深度学习的文档解析方法,以更全面理解 RAG 质量和文档解析质量的关系。同时,前沿模型研发团队力争做到吞吐量、速度和准确度的最佳平衡。
2025-03-03
怎么利用大模型训练自己的机器人
利用大模型训练自己的机器人可以参考以下内容: OpenAI 通用人工智能(AGI)的计划显示,在互联网上所有的图像和视频数据上训练一个与人类大脑大小相当的 AI 模型,将足以处理复杂的机器人学任务。常识推理隐藏在视频和文本数据中,专注于文本的 GPT4 在常识推理上表现出色。Google 最近的例子展示了机器人学能力可从大型视觉/语言模型中学习,在语言和视觉训练基础上,只需最少的机器人学数据,视觉和文本任务的知识就能转移到机器人学任务上。特斯拉训练的“Optimus”通过人类示范学习抓取物体,若人类示范是先进机器人学性能所需的一切,在互联网上所有视频上训练的大模型肯定能实现惊人的机器人学性能。 梦飞提供了在自己的电脑上部署 COW 微信机器人项目的教程,程序在本地运行,若关掉窗口进程结束,想持续使用需保持窗口打开和运行。以 Windows10 系统为例,注册大模型可参考百炼首页:https://bailian.console.aliyun.com/ ,需更改"model"和添加"dashscope_api_key",获取 key 可参考视频教程。 张梦飞提供了从 LLM 大语言模型、知识库到微信机器人的全本地部署教程,部署大语言模型包括下载并安装 Ollama,根据电脑系统下载:https://ollama.com/download ,安装完成后将下方地址复制进浏览器中确认安装完成:http://127.0.0.1:11434/ 。下载 qwen2:0.5b 模型,Windows 电脑按 win+R 输入 cmd 回车,Mac 电脑通过 Command(⌘)+Space 键打开 Spotlight 搜索输入“Terminal”或“终端”,复制命令行粘贴回车等待下载完成。
2025-03-03
帮我找出现在成熟的人工智能大模型,列举他们的功能,附上打开链接
以下是一些成熟的人工智能大模型及其功能和链接: 百度(文心一言):https://wenxin.baidu.com 。 抖音(云雀大模型):https://www.doubao.com 。 智谱 AI(GLM 大模型):https://chatglm.cn 。 中科院(紫东太初大模型):https://xihe.mindspore.cn 。 百川智能(百川大模型):https://www.baichuanai.com/ 。 商汤(日日新大模型):https://www.sensetime.com/ 。 MiniMax(ABAB 大模型):https://api.minimax.chat 。 上海人工智能实验室(书生通用大模型):https://internai.org.cn 。 在这些大模型中: 能生成 Markdown 格式的:智谱清言、商量 Sensechat、MiniMax 。 目前不能进行自然语言交流的:昇思、书生 。 受限制使用:MiniMax(无法对生成的文本进行复制输出,且只有 15 元的预充值额度进行体验,完成企业认证后可以进行充值) 。 特色功能:昇思——生图,MiniMax——语音合成 。 此外,还有其他一些大模型: OpenAI 系统:包括 3.5 和 4.0 版本,一个新的变种使用插件连接到互联网和其他应用程序。Code Interpreter 是一个非常强大的 ChatGPT 版本,可以运行 Python 程序。如果未为 OpenAI 付费,只能使用 3.5 。除了插件变种和一个暂时停用的带有浏览功能的 GPT4 版本之外,这些模型都没有连接到互联网。微软的 Bing 使用 4 和 3.5 的混合,通常是 GPT4 家族中首个推出新功能的模型,例如可以创建和查看图像,且可以在网页浏览器中阅读文档,并连接到互联网。 谷歌:一直在测试自己的人工智能 Bard,由各种基础模型驱动,最近是一个名叫 PaLM 2 的模型。 Anthropic:发布了 Claude 2,其最值得注意的是有一个非常大的上下文窗口,本质上是 LLM 的记忆。Claude 几乎可以保存一整本书或许多 PDF,与其他大型语言模型相比,它不太可能恶意行事。
2025-03-03
flux模型放在那个文件夹
FLUX 模型的放置位置如下: FLUX.1等版本的模型应放在 ComfyUI/models/unet/文件夹中。如果爆显存了,“UNET 加载器”节点中的 weight_dtype 可以控制模型中权重使用的数据类型,设置为 fp8 可降低显存使用量,但可能会稍降质量,默认的 weight_type 显存使用较大。 t5xxl_fp16.safetensors 和 clip_l.safetensors 应放在 ComfyUI/models/clip/文件夹里面。可以使用 t5xxl_fp8_e4m3fn.safetensors 来降低内存使用率,若有超过 32GB 内存,建议使用 fp16。 下载的 Vae 模型应放入 ComfyUI/models/vae 文件夹。 同时,以下模型也有对应的放置位置: flux1dev.safetensors 放在 ComfyUI/models/unet/目录下。 t5xxl_fp16.safetensors 和 clip_l.safetensors 放在 ComfyUI/models/clip/目录下。 ae.safetensors 放在 ComfyUI/models/vae/目录下。 flux1dev.safetensors 是底模,ae.safetensors 是 VAE,clip_l.safetensors 和 t5xxl_fp16.safetensors 是关于文字语言编码。
2025-03-03