直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

怎么建设多模态知识库

回答

建设多模态知识库可以参考以下方面:

  1. 学习相关知识:例如了解 Vision Transformer 的入门知识及其相关应用,包括 ViT(2020.10)、ViT-22B(2023.02)、Swin Transformer(2021.08)、MAE(2021.11)、BEiT(2021.06)、BEiTv2(2022.08)、TimeSFormer(2021.02)、BEVFormer(2022.03)等。
  2. 明确多模态任务、训练评测数据集和评测方法,例如 Video Action Recognition 任务、Image Text Retrival 任务、Image Caption 任务、Visual QA 任务、Visual Reasoning 任务、Visual Entailment 任务等。
  3. 利用效率工具:有效组织各种文件,通过聊天界面访问存储的信息,与他人轻松共享知识,将有价值的内容从视频和音频中转录出来,创建多语言的知识库。

此外,还可以参考一些相关的知识库文章,如“ChatBot 是怎么炼成的?”等,了解大模型下游应用的研发过程。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

小A-技术开发/大模型

|标题|备注|作者|链接|发布日期|附件(1)|单选|<br>|-|-|-|-|-|-|-|<br>|ChatBot是怎么炼成的?|本文介绍了LLM基座大模型下游应用ChatBot的研发过程。在介绍ChatBot之前,作者先介绍了LLM在辅助编程方面的应用,主要包括Codex和AlphaCode两个奠基性工作。Codex提出了编程数据集和pass@k指标,并采用了2阶段训练方式。文章还介绍了Codex的局限性和辅助编程问题定义。|[aaronxic](https://www.zhihu.com/people/aaronxic)|[(3)ChatBot是怎么炼成的?](https://ywh1bkansf.feishu.cn/wiki/HRnLw588DiTDLPkSTXCcKit8nbD)|2023/07/08|||<br>|多模态的大一统之路|首先介绍了Vision Transformer的入门知识和相关的应用。包括了[ViT(2020.10)](https://link.zhihu.com/?target=https%3A//arxiv.org/abs/2010.11929),[ViT-22B(2023.02)](https://link.zhihu.com/?target=https%3A//arxiv.org/abs/2302.05442),[Swin Transformer(2021.08)](https://link.zhihu.com/?target=https%3A//arxiv.org/abs/2103.14030),[MAE(2021.11)](https://link.zhihu.com/?

效率工具篇2-5000+个AI 项目详解

有效组织各种文件。通过聊天界面访问存储的信息。与他人轻松共享知识。将有价值的内容从视频和音频中转录出来。创建多语言的知识库。

(4)多模态的大一统之路

大家好,我是小A。前面几篇我们已经了解了transformer是如何应用在LLM领域中,从这一篇开始我们进入多模态的领域,看看多模态是如何通过transformer架构逐渐走向大一统的。提纲如下,共5个章节首先介绍了Vision Transformer的入门知识和相关的应用。包括了[ViT(2020.10)](https://arxiv.org/abs/2010.11929),[ViT-22B(2023.02)](https://arxiv.org/abs/2302.05442),[Swin Transformer(2021.08)](https://arxiv.org/abs/2103.14030),[MAE(2021.11)](https://arxiv.org/abs/2111.06377),[BEiT(2021.06)](https://arxiv.org/abs/2106.08254),[BEiTv2(2022.08)](https://arxiv.org/abs/2208.06366),[TimeSFormer(2021.02)](https://arxiv.org/abs/2102.05095),[BEVFormer(2022.03)](https://arxiv.org/abs/2203.17270)。接着介绍了多模态任务、训练评测数据集和评测方法。包括了Video Action Recognition任务,Image Text Retrival任务,Image Caption任务,Visual QA任务,Visual Reasoning任务,Visual Entailment任务。

其他人在问
什么是多模态?什么是跨模态?
多模态指多数据类型交互,能够提供更接近人类感知的场景。大模型对应的模态包括文本、图像、音频、视频等。例如,Gemini 模型本身就是多模态的,它展示了无缝结合跨模态能力,如从表格、图表或图形中提取信息和空间布局,以及语言模型的强大推理能力,在识别输入中的细微细节、在空间和时间上聚合上下文,以及在一系列视频帧和/或音频输入上应用这些能力方面表现出强大的性能。 跨模态通常指不同模态之间的交互和融合。例如在 GPT4 的相关研究中,探索了视觉和音频等可能出乎意料的模态。智能的一个关键衡量标准是能够从不同的领域或模式中综合信息,并能够跨不同的情境或学科应用知识和技能。
2024-12-16
多模态应用
多模态应用是生成式人工智能领域的重要突破点,具有以下特点和潜力: 能够无缝处理和生成多种音频或视觉格式的内容,将交互扩展到超越语言的领域。如 GPT4、Character.AI 和 Meta 的 ImageBind 等模型已能处理和生成图像、音频等模态,但能力还较基础,不过进展迅速。 随着 LLMs 不断进化,能更好地理解和与多种模态交互,使用依赖 GUI 的现有应用程序,为消费者提供更引人入胜、连贯和全面的体验,改变娱乐、学习与发展以及跨各种消费者和企业用例的内容生成。 与工具使用密切相关,使 LLMs 能够使用设计给人类使用但没有自定义集成的工具,如传统的企业资源计划(ERP)系统等。从长远看,多模态特别是与计算机视觉的集成,可通过机器人、自动驾驶车辆等应用程序,将 LLMs 扩展到物理现实中。 关键突破点在于多模态模型能够在没有重大定制的情况下推理图像、视频甚至物理环境。 基于多模态大模型的应用能够迅速解释现实世界,如将手机置于车载摄像机位置,实时分析当前地区新春的流行趋势。其架构中后端采用 llama.cpp 挂载 LLaVA 模型提供推理服务,部署 Flask 应用用于数据处理,前端页面采用 HTML5 采集画面和用户输入。
2024-12-09
请推荐几个国内能用的支持多模态交流的app
以下为您推荐几个国内能用的支持多模态交流的 APP 及相关模型: 1. 百度(文心一言):https://wenxin.baidu.com 2. 抖音(云雀大模型):https://www.doubao.com 3. 智谱 AI(GLM 大模型):https://chatglm.cn 4. 中科院(紫东太初大模型):https://xihe.mindspore.cn 5. 百川智能(百川大模型):https://www.baichuanai.com/ 6. 商汤(日日新大模型):https://www.sensetime.com/ 7. MiniMax(ABAB 大模型):https://api.minimax.chat 8. 上海人工智能实验室(书生通用大模型):https://internai.org.cn 此外,智谱·AI 开源的多模态模型有: 1. CogAgent18B:基于 CogVLM17B 改进的开源视觉语言模型。拥有 110 亿视觉参数和 70 亿语言参数,支持 11201120 分辨率的图像理解,具备 GUI 图像的 Agent 能力。 代码链接: 模型下载: 2. CogVLM17B:强大的开源视觉语言模型(VLM),在多模态权威学术榜单上综合成绩优异。 代码链接:无 模型下载: 3. Visualglm6B:开源的支持图像、中文和英文的多模态对话语言模型。 代码链接: 模型下载:
2024-11-22
现在哪几家的大模型支持通过手机视频多模态实时交流?
以下几家的大模型支持通过手机视频多模态实时交流: 1. PandaGPT:能够理解不同模式的指令并根据指令采取行动,包括文本、图像/视频、音频、热、深度和惯性测量单位。 2. VideoLLaMA:引入了多分支跨模式 PT 框架,使语言模型能够在与人类对话的同时处理给定视频的视觉和音频内容。 3. 视频聊天 GPT:专门为视频对话设计,能够通过集成时空视觉表示来生成有关视频的讨论。 4. NExTGPT:端到端、通用的 anytoany 多模态语言模型,支持图像、视频、音频、文本的自由输入输出。
2024-11-22
多模态大模型
以下是关于多模态大模型的相关信息: Google 的多模态大模型叫 Gemini,是由 Google DeepMind 团队开发的。它不仅支持文本、图片等提示,还支持视频、音频和代码提示,能够理解和处理几乎任何输入,结合不同类型的信息,并生成几乎任何输出,被称为 Google 迄今为止最强大、最全面的模型,从设计之初就支持多模态,能够处理语言、视觉、听觉等不同形式的数据。 多模态大模型(MLLM)是一种在统一的框架下,集成了多种不同类型数据处理能力的深度学习模型,这些数据可以包括文本、图像、音频和视频等。通过整合这些多样化的数据,MLLM 能够更全面地理解和解释现实世界中的复杂信息,在面对复杂任务时表现出更高的准确性和鲁棒性。其典型架构包括一个编码器、一个连接器和一个 LLM,还可选择性地在 LLM 上附加一个生成器,以生成除文本之外的更多模态。连接器大致可分为基于投影的、基于查询的和基于融合的三类。 有基于多模态大模型给现实世界加一本说明书的应用,例如将手机置于车载摄像机位置,能够实时分析当前地区今年新春的最新流行趋势。在这种架构中,后端采用 llama.cpp 挂载 LLaVA 模型,为应用提供推理服务。同时,部署了一个 Flask 应用用于数据前处理和后处理,提供 Stream 流服务。前端页面采用 HTML5,用于采集画面和用户输入,整体设计以简单高效为主。下载模型 ggml_llavav1.513b,这里选择是 13b 4bit 的模型。BakLLaVA 推理速度更快,但对中文的支持较差,7b 的模型在语义理解方面普遍存在不足,特别是在需要规范数据格式进行交互的场合。对于 function call 和 action 操作,极度依赖模型的 AGI 能力。
2024-11-18
clip模型能应用与跨模态检索
CLIP 模型能应用于跨模态检索。以下是关于 CLIP 模型的一些详细信息: 对比语言图像预训练(CLIP)通过将图像和文本转换成固定大小的向量,使它们在一个共同的嵌入空间中对齐来训练模型,对于多模态信息检索和相关任务非常重要。 在 Stable Diffusion 中,CLIP 模型作为文生图模型的文本编码模块,决定了语义信息的优良程度,影响图片生成的多样性和可控性。它包含 Text Encoder 和 Image Encoder 两个模型,分别用于提取文本和图像的特征,可灵活切换,且具有强大的 zeroshot 分类能力。其庞大的图片与标签文本数据的预训练赋予了其强大的能力,把自然语言领域的抽象概念带到了计算机视觉领域。 自 2021 年以来,多模态模型成为热门议题,CLIP 作为开创性的视觉语言模型,将 Transformer 架构与视觉元素相结合,便于在大量文本和图像数据集上进行训练,可在多模态生成框架内充当图像编码器。 为解决 CLIP 模型在仅文本任务中表现不如专门用于文本的模型,导致信息检索系统处理仅文本和多模态任务时效率低下的问题,已提出新颖的多任务对比训练方法训练相关模型,使其在文本图像和文本文本检索任务中达到最先进性能。
2024-10-31
在WAY TO AGI 知识库有没有适合老师备课用的AI?请推荐
以下是为老师备课推荐的一些 AI 相关内容: B 站 up 主 Nally 的课程,免费且每节 15 分钟,内容很棒。 14、15 号左右白马老师和麦菊老师将带大家用 AI 做生图、毛毡字、光影字、机甲字等。 16 号晚上中老师将带大家动手操作炼丹,炼丹可能需要准备一些图,后续会让中老师提前发布内容方便大家准备。 工程生产有很多可控性,AI 视频相关内容丰富,文档会列出工具优劣及操作。很多工具每天有免费积分,共学课程基本不用花钱。每周有 AI 视频挑战赛。 有 AI 音乐的流派和 prompt 电子书,格林同学做了翻译。 此外,还有以下相关信息: 高效 PB 及相关案例:高效 PB 投入力度大,有厉害的伙伴,案例在社区,有多种 battle 方式,会有菩萨老师专门介绍。 11 月 2 号左右将开展博物馆奇妙日主题活动,在各地博物馆进行新创意。 关于 AI 知识库及学习路径的介绍,包括时代杂志评选的领军人物、AI 相关名词解释、知识库的信息来源、社区共创项目、学习路径、经典必读文章、初学者入门推荐、历史脉络类资料等。
2024-12-20
我想用coze搭建一个智能体,关于自然语言课程的期末复习指南,要将我的教材导入扣子作为知识库,智能体支持用户提问,搜索知识点,结合知识库和互联网搜索的内容给出问答,需要使用多智能体或工作流,使用卡片功能进行显示,请给出我搭建这个智能体的步骤
以下是使用 Coze 搭建一个关于自然语言课程期末复习指南智能体的步骤: 1. 访问 Coze 官网(https://www.coze.cn),注册并登录。 2. 点击页面左上角的⊕,通过【标准创建】填入智能体的基本信息。 3. 了解 Bot 开发调试界面: 人设与回复逻辑(左侧区域):设定智能体的对话风格、专业领域定位,配置回复的逻辑规则和限制条件,调整回复的语气和专业程度。 功能模块(中间区域): 技能配置: 插件:扩展智能体的专业能力,如计算器、日历等工具。 工作流:设置固定的处理流程和业务逻辑。 图像流:处理和生成图像的相关功能。 触发器:设置自动化响应条件。 知识库管理: 文本:存储文字类知识材料。 表格:结构化数据的存储和调用。 照片:图像素材库。 记忆系统: 变量:存储对话过程中的临时信息。 数据库:管理持久化的结构化数据。 长期记忆:保存重要的历史对话信息。 文件盒子:管理各类文档资料。 交互优化(底部区域): 开场白:设置初次对话的问候语。 用户问题建议:配置智能推荐的后续问题。 快捷指令:设置常用功能的快速访问。 背景图片:自定义对话界面的视觉效果。 预览与调试(右侧区域):实时测试智能体的各项功能,调试响应效果,优化交互体验。 4. 设定智能体的人设与回复逻辑后,为智能体配置对应的技能,以保证其可以按照预期完成目标任务。例如,以获取 AI 新闻的智能体为例,需要为它添加一个搜索新闻的接口来获取相关新闻。具体操作如下: 在智能体编排页面的技能区域,单击插件功能对应的+图标。 在添加插件页面,选择相关功能,然后单击新增。 修改人设与回复逻辑,指示智能体使用相应插件来搜索所需内容。 (可选)为智能体添加开场白,让用户更好地了解智能体的功能。开场白功能目前支持豆包、微信公众号(服务号)。 5. 配置好智能体后,在预览与调试区域中测试智能体是否符合预期。可单击清除图标清除对话记录。 6. 完成测试后,将智能体发布到社交渠道中使用。具体操作如下: 在智能体的编排页面右上角,单击发布。 在发布页面输入发布记录,并勾选发布渠道。 单击发布。 更多内容,请访问 Coze 官方文档: 英文版:https://www.coze.com/docs/welcome.html 中文版:https://www.coze.cn/docs/guides/welcome
2024-12-20
怎么构建个人本地知识库
构建个人本地知识库可以按照以下步骤进行: 1. 了解 RAG 技术: 利用大模型的能力搭建知识库是 RAG 技术的应用。 大模型训练数据有截止日期,RAG 可解决依靠不在训练集中的数据的问题。 RAG 应用包括文档加载、文本分割、存储、检索和输出 5 个过程。 文档加载可从多种来源加载,如 PDF 等非结构化数据、SQL 等结构化数据和代码等。 文本分割将文档切分为指定大小的块。 存储涉及将文档块嵌入转换为向量形式并存储到向量数据库。 检索通过算法找到与输入问题相似的嵌入片。 输出是将问题和检索出的嵌入片提交给 LLM 生成答案。 文本加载器将用户提供的文本加载到内存以便后续处理。 2. 准备软件: 需要一个额外的软件 AnythingLLM,它包含所有 Open WebUI 的能力,并额外支持选择文本嵌入模型和向量数据库。 3. 安装和配置: 安装地址:https://useanything.com/download 。 安装完成后进入配置页面,主要分为三步:选择大模型、选择文本嵌入模型、选择向量数据库。 4. 构建本地知识库: 在 AnythingLLM 中创建自己独有的 Workspace 与其他项目数据隔离。 首先创建一个工作空间。 上传文档并在工作空间中进行文本嵌入。 选择对话模式,AnythingLLM 提供 Chat 模式(大模型根据训练数据和上传文档综合给出答案)和 Query 模式(大模型仅依靠文档中的数据给出答案)。 完成配置后进行测试对话。 本文的思路来源于视频号博主黄益贺,作者按照其视频进行了实操并附加了一些关于 RAG 的额外知识。
2024-12-19
可不可以提供一个本地化的大模型方法,让我建立这个合规法律的知识库
以下是为您提供的本地化大模型及搭建合规法律知识库的方法: 一、通过 Open WebUI 使用大模型 1. 首先访问相关网址。打开页面时需使用邮箱注册账号。 2. 登陆成功后,若您使用过类似 ChatGPT 的大模型对话网站,对该页面不会陌生。 3. Open WebUI 一般有两种使用方式: 聊天对话。 RAG 能力,即让模型根据文档内容回答问题,这是构建知识库的基础之一。 4. 如果要求不高,此时已搭建本地大模型,并通过 Web UI 实现对话功能。 5. ChatGPT 访问速度快且回答效果好的原因: 速度快是因为 GPT 大模型部署的服务器配置高。 效果好是因为 GPT 大模型的训练参数多、数据更优及训练算法更好。 二、您的硬件达标了么 运行大模型需要很高的机器配置,个人玩家大多负担不起。以下是不同类型大模型的配置要求: 1. 生成文字大模型: 最低配置:8G RAM + 4G VRAM 建议配置:16G RAM + 8G VRAM 理想配置:32G RAM + 24G VRAM(如果要跑 GPT3.5 差不多性能的大模型) 2. 生成图片大模型(比如跑 SD): 最低配置:16G RAM + 4G VRAM 建议配置:32G RAM + 12G VRAM 3. 生成音频大模型: 最低配置:8G VRAM 建议配置:24G VRAM 最低配置运行非常慢,不建议使用。但这不妨碍我们亲自实操一遍,以加深对大模型构建知识库底层原理的了解。若想要更顺滑的体验知识库,可以参考文章: 三、本地知识库进阶 若要更灵活掌控知识库,需额外软件 AnythingLLM。它包含 Open WebUI 的所有能力,并额外支持以下能力: 1. 选择文本嵌入模型。 2. 选择向量数据库。 AnythingLLM 安装和配置 安装地址:https://useanything.com/download 。安装完成后进入配置页面,主要分为三步: 1. 第一步:选择大模型。 2. 第二步:选择文本嵌入模型。 3. 第三步:选择向量数据库。 构建本地知识库 AnythingLLM 中有 Workspace 的概念,可创建独有的 Workspace 与其他项目数据隔离。具体步骤: 1. 首先创建一个工作空间。 2. 上传文档并在工作空间中进行文本嵌入。 3. 选择对话模式。AnythingLLM 提供两种对话模式: Chat 模式:大模型会根据自己的训练数据和上传的文档数据综合给出答案。 Query 模式:大模型仅依靠文档中的数据给出答案。 4. 测试对话。完成上述配置后,即可与大模型进行对话。 四、写在最后 “看十遍不如实操一遍,实操十遍不如分享一遍”。若您对 AI Agent 技术感兴趣,可以联系我或者加我的免费知识星球(备注 AGI 知识库)。
2024-12-18
基于知识库系统的人工智能
基于知识库系统的人工智能包括以下方面: 专家系统: 是符号人工智能的早期成就之一,为充当有限问题领域的专家而设计。 基于从人类专家提取的知识库,并包含推理引擎。 像人类推理系统一样,包含短期记忆(问题记忆)和长期记忆(知识库)。 问题记忆包含与当前要解决问题有关的知识,称为静态知识。 知识库代表问题领域的长期知识,是动态知识。 推理引擎协调问题状态空间中的搜索过程,必要时向用户提问并找到适用规则。 例如,可根据动物物理特征判断动物的专家系统,其图称为 ANDOR 树,早期提取知识时绘制树形图有用,计算机中用规则表示更方便。 FastGPT: 基于 LLM 技术,能理解自然语言并生成高质量答案。 支持连接外部知识库获取更全面信息。 具有可视化工作流编排工具,方便创建复杂问答场景。 具备开箱即用的数据处理和模型调用功能,上手速度快。 是功能强大、易于使用的知识库问答系统,可帮助企业构建智能客服、知识库搜索、文档生成等应用。 相关资源: 您可以为喜欢的主题写一个 ANDOR 树。同时,可参见了解实施正向推理和反向推理的专家系统示例。需注意,此例简单,规则达一定数量(约 200 多条)时才会有智能行为,规则复杂时可能难以牢记,基于知识的系统重要特点是能准确解释任何决定的做出过程。
2024-12-17
我是一个投资人,我想针对每个项目建立知识库,类似一个个对话的形式,我把关于某个项目的材料全部丢进一个对话中,然后可以针对每个项目进行提问,或者要求AI帮我产出某种类型的文件。哪个App可以最好的满足我的需求?
以下是一些可能满足您需求的 App 选项: 1. WaytoAGI 网站: 提供和 AI 知识库对话的功能,您可以在此询问任何关于 AI 的问题。 集合了精选的 AI 网站,方便您按需求找到适合的工具。 有精选的 AI 提示词,可复制到 AI 对话网站使用。 会将每天知识库的精华内容呈现给大家。 2. 阿里千问模型:可以作为 AI 模型用于问答机器人的配置。 在配置问答机器人时,需要注意模型、提示词和知识库的协同作用。模型就像拥有无穷智慧的人,提示词能设定其角色和专注技能,知识库则如同工作手册,为其提供特定项目的详细信息。
2024-12-17
城市智能充电服务系统建设方案
很抱歉,目前知识库中没有关于城市智能充电服务系统建设方案的相关内容。但一般来说,建设城市智能充电服务系统可以从以下几个方面考虑: 1. 需求分析:了解城市中电动汽车的数量、分布以及用户的充电需求和习惯。 2. 站点规划:根据需求分析结果,合理规划充电站点的位置,考虑交通便利性、电力供应等因素。 3. 技术选型:选择适合的充电技术,如交流慢充、直流快充等,并确保设备的稳定性和安全性。 4. 电力供应:与电力部门合作,确保充电站点有稳定的电力供应,并优化电力分配。 5. 网络连接:实现充电站点的网络连接,便于远程监控、管理和支付。 6. 运营管理:建立有效的运营管理机制,包括设备维护、用户服务、费用结算等。 7. 安全保障:采取防火、防雷、防盗等安全措施,保障充电设施和用户的安全。 8. 数据分析:收集和分析充电数据,为优化服务和站点布局提供依据。 以上只是一个初步的框架,具体的建设方案还需要根据城市的实际情况进行详细的调研和规划。
2024-12-17
请写一份基于人工智能的智能家居安防系统建设方案,包括项目介绍、商业模式、、竞品分析、行业分析、经营规划、风险评估、融资规划等。
以下是为您生成的基于人工智能的智能家居安防系统建设方案: 项目介绍: 智能家居安防系统是利用人工智能技术,对家居环境进行实时监控和安全防护的系统。它融合了智能硬件、智能软件、智能网联和服务平台等技术,旨在提升家居安防的效率和可靠性。 商业模式: 可以采用设备销售与服务订阅相结合的模式。销售智能安防设备获取收入,同时提供定期的维护和升级服务,用户按需订阅。 竞品分析: 目前市场上的竞品主要包括传统安防企业的智能化产品和新兴科技公司的创新方案。传统企业可能在硬件制造和渠道方面有优势,新兴公司则在技术创新和用户体验上有所突破。 行业分析: 智能家居安防市场正处于快速发展阶段。随着人们对生活品质和安全的重视,需求不断增长。同时,技术的进步也为行业发展提供了有力支持。 经营规划: 1. 产品研发:不断优化智能安防设备的性能和功能。 2. 市场推广:通过线上线下多种渠道进行宣传和推广。 3. 客户服务:建立完善的售后服务体系,提高用户满意度。 风险评估: 1. 技术风险:如技术更新换代快,需要持续投入研发。 2. 市场风险:竞争激烈,市场份额可能受到挤压。 3. 法律风险:需符合相关法律法规和标准。 融资规划: 根据项目的发展阶段和资金需求,制定合理的融资计划。可以考虑天使投资、风险投资、银行贷款等多种融资渠道。 需要注意的是,以上方案仅为初步框架,具体内容还需要进一步深入调研和细化。
2024-12-11
如何建设自己的数据集
建设自己的数据集可以参考以下步骤: 1. 明确目的和需求:确定数据集的用途和所需涵盖的内容范围。 2. 收集数据:可以通过多种方式获取数据,例如自行创作、与追随者共同创作等,同时要注意征得相关人员的同意,并遵循法律和服务政策。 3. 数据格式和整理: 注意数据的格式,如支持的格式有 Json 和 CSV 等。 对于中文数据集,要留意可能出现的乱码问题。 对数据进行整理和标记,如图片和对应的标签应匹配。 4. 搭建测试环境: 将主要的提示词放到 System 中,控制模型的行为与设定。 预置 User 提示词,并使用特殊的变量形式写法。 5. 上传和准备数据集: 可以上传自己的测试数据集,也可以使用提供的测试数据集。 对于较大的数据集,建议提前将图片和标签打包成 zip 文件上传。 6. 检查和确认:上传后等待一段时间,确认数据集创建成功,并可进行详情检查和预览。
2024-12-10
城市智能停车服务系统建设方案
很抱歉,目前知识库中没有关于城市智能停车服务系统建设方案的相关内容。但一般来说,建设城市智能停车服务系统可以从以下几个方面考虑: 1. 需求分析:了解城市的停车需求、现有停车设施状况以及存在的问题。 2. 技术选型:选择适合的传感器、通信技术、数据库管理系统等。 3. 系统设计:包括车位监测与管理、用户端应用设计、后台管理系统等。 4. 数据采集与处理:准确采集车位使用情况等数据,并进行有效的处理和分析。 5. 支付与计费系统:提供便捷的支付方式,并制定合理的计费规则。 6. 与其他系统的集成:如交通管理系统、城市规划系统等。 7. 安全与隐私保护:确保系统的安全性和用户数据的隐私。 8. 维护与升级:定期对系统进行维护和升级,以适应不断变化的需求。 以上只是一个初步的框架,具体的建设方案需要根据城市的实际情况进行详细的规划和设计。
2024-11-12