直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

多模态大模型

回答

以下是关于多模态大模型的相关信息:

Google 的多模态大模型叫 Gemini,是由 Google DeepMind 团队开发的。它不仅支持文本、图片等提示,还支持视频、音频和代码提示,能够理解和处理几乎任何输入,结合不同类型的信息,并生成几乎任何输出,被称为 Google 迄今为止最强大、最全面的模型,从设计之初就支持多模态,能够处理语言、视觉、听觉等不同形式的数据。

多模态大模型(MLLM)是一种在统一的框架下,集成了多种不同类型数据处理能力的深度学习模型,这些数据可以包括文本、图像、音频和视频等。通过整合这些多样化的数据,MLLM 能够更全面地理解和解释现实世界中的复杂信息,在面对复杂任务时表现出更高的准确性和鲁棒性。其典型架构包括一个编码器、一个连接器和一个 LLM,还可选择性地在 LLM 上附加一个生成器,以生成除文本之外的更多模态。连接器大致可分为基于投影的、基于查询的和基于融合的三类。

有基于多模态大模型给现实世界加一本说明书的应用,例如将手机置于车载摄像机位置,能够实时分析当前地区今年新春的最新流行趋势。在这种架构中,后端采用 llama.cpp 挂载 LLaVA 模型,为应用提供推理服务。同时,部署了一个 Flask 应用用于数据前处理和后处理,提供 Stream 流服务。前端页面采用 HTML5,用于采集画面和用户输入,整体设计以简单高效为主。下载模型 ggml_llava-v1.5-13b,这里选择是 13b 4bit 的模型。BakLLaVA 推理速度更快,但对中文的支持较差,7b 的模型在语义理解方面普遍存在不足,特别是在需要规范数据格式进行交互的场合。对于 function call 和 action 操作,极度依赖模型的 AGI 能力。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

问:Google 的多模态大模型叫什么?

Google的人工智能多模态大模型叫Gemini。具体介绍如下:- Gemini是Google DeepMind团队开发的多模态模型,不仅支持文本、图片等提示,还支持视频、音频和代码提示。- Gemini能够理解和处理几乎任何输入,结合不同类型的信息,并生成几乎任何输出。- Gemini被称为Google迄今为止最强大、最全面的模型。- Gemini被描述为一种"原生多模态大模型",从设计之初就支持多模态,能够处理语言、视觉、听觉等不同形式的数据。内容由AI大模型生成,请仔细甄别

谷歌Gemini多模态提示词培训课——Part1

本系列课程是Deeplearning联合谷歌Gemini团队开发的免费在线课程,课程中使用了Gemini模型作为教学模型,教授大家如何使用多模态提示词与模型交互。由于课程内容中有很多在国内无法应用的部分,在其之中也缺乏了某些概念。有鉴于此,我截取了部分教程内容,并适当混合了一些入门概念。将其进行重新整理和刊发,以增强其普世价值。(如有需要,请访问[原版在线课程](https://learn.deeplearning.ai/))在这个系列中你可以学到:1.了解什么是多模态大模型2.了解Gemini系列模型3.使用Gemini API进行多模态提示词最佳实践(其提示词理念也同样也适用于完整AI产品的交互,0代码读者不必过多担心)[heading1]一、什么是多模态大模型(MLLM)[content]多模态大模型(MLLM)是一种在统一的框架下,集成了多种不同类型数据处理能力的深度学习模型,这些数据可以包括文本、图像、音频和视频等,通过整合这些多样化的数据,MLLM能够更全面地理解和解释现实世界中的复杂信息。这种多元化的数据处理能力使得MLLM在面对复杂任务时表现出更高的准确性和鲁棒性。通过综合分析不同类型的信息,这些模型能够得出更加全面和准确的结论,从而在各种应用场景中发挥重要作用。下方是一个典型MLLM架构的示意图。它包括一个编码器、一个连接器和一个LLM。可以选择性地在LLM上附加一个生成器,以生成除文本之外的更多模态。编码器接收图像、音频或视频并输出特征,这些特征经由连接器处理,使LLM能更好地理解。连接器大致可分为三类:基于投影的、基于查询的和基于融合的连接器。前两种类型采用词元级融合,将特征处理成词元,与文本词元一起发送,而最后一种类型则在LLM内部实现特征级融合。注:词元=Token

基于多模态大模型给现实世界加一本说明书

随着ChatGPT()的蓬勃发展,大型模型正深刻地影响着各个行业,技术的飞速发展让人感觉仿佛“度日如年”(每天涌现的新技术数量甚至超过过去一年)。在这个快速发展的潮流中,多模态技术作为行业的前沿更是突飞猛进,呈现出一统计算机视觉(CV)和自然语言处理(NLP)的势头。本文介绍了一款能够迅速解释现实世界的应用,它基于多模态大型模型,为现实世界提供了一本实时说明书。将手机置于车载摄像机位置,该应用能够实时分析当前地区今年新春的最新流行趋势。不仅展示了多模态技术的强大之处,还为我们提供了对真实世界的深入解释。这是快速在手机上利用多模态技术的方式之一,「近距离地感受一下大模型对传统APP开发的降维打击」。在这种架构中,后端采用llama.cpp挂载LLaVA模型,为应用提供推理服务。同时,部署了一个Flask应用用于数据前处理和后处理,提供Stream流服务。前端页面采用HTML5,用于采集画面和用户输入,整体设计以简单高效为主打。[heading2]建立llama.cpp服务器[heading2]LLaVA模型[content]下载模型ggml_llava-v1.5-13b,这里选择是13b 4bit的模型。BakLLaVA推理速度更快,但对中文的支持较差,7b的模型在语义理解方面普遍存在不足,特别是在需要规范数据格式进行交互的场合。对于function call和action操作,极度依赖模型的AGI能力。希望开源社区在不断努力,早日赶上GPT-4V的水平。

其他人在问
clip模型能应用与跨模态检索
CLIP 模型能应用于跨模态检索。以下是关于 CLIP 模型的一些详细信息: 对比语言图像预训练(CLIP)通过将图像和文本转换成固定大小的向量,使它们在一个共同的嵌入空间中对齐来训练模型,对于多模态信息检索和相关任务非常重要。 在 Stable Diffusion 中,CLIP 模型作为文生图模型的文本编码模块,决定了语义信息的优良程度,影响图片生成的多样性和可控性。它包含 Text Encoder 和 Image Encoder 两个模型,分别用于提取文本和图像的特征,可灵活切换,且具有强大的 zeroshot 分类能力。其庞大的图片与标签文本数据的预训练赋予了其强大的能力,把自然语言领域的抽象概念带到了计算机视觉领域。 自 2021 年以来,多模态模型成为热门议题,CLIP 作为开创性的视觉语言模型,将 Transformer 架构与视觉元素相结合,便于在大量文本和图像数据集上进行训练,可在多模态生成框架内充当图像编码器。 为解决 CLIP 模型在仅文本任务中表现不如专门用于文本的模型,导致信息检索系统处理仅文本和多模态任务时效率低下的问题,已提出新颖的多任务对比训练方法训练相关模型,使其在文本图像和文本文本检索任务中达到最先进性能。
2024-10-31
多模态AI是什么,和深度学习的关系
多模态 AI 是指能够处理和生成多种数据类型(如文本、图像、音频、视频等)交互的人工智能技术,从而能够提供更接近人类感知的场景。 多模态 AI 与深度学习有着密切的关系。在深度学习时期,深度神经网络等技术的发展为多模态 AI 提供了基础。当前,多模态 AI 是 AI 领域的前沿技术之一。 多模态 AI 具有以下特点和应用: 1. 能够无缝地处理和生成多种音频或视觉格式的内容,将交互扩展到超越语言的领域。 2. 像 GPT4、Character.AI 和 Meta 的 ImageBind 等模型已经能够处理和生成图像、音频等模态,但能力还比较基础,不过进展迅速。 3. 多模态模型可以为消费者提供更加引人入胜、连贯和全面的体验,使用户能够超越聊天界面进行互动。 4. 多模态与工具使用密切相关,能够使用设计给人类使用但没有自定义集成的工具。 5. 从长远来看,多模态(特别是与计算机视觉的集成)可以通过机器人、自动驾驶车辆等应用程序,将大语言模型扩展到物理现实中。
2024-10-28
使用多模态提取图片中的表格信息
以下是关于多模态提取图片中表格信息的相关内容: 在多模态任务和评测方法方面,有以下任务及相关信息: |任务名称|简称|数据集名称|数据集大小|指标计算| |||||| |Video Action Recognition|VAR|UCF101|101 类共 13K 个视频片段|Accuracy| |||HMDB51|51 类共 7K 个视频片段|Accuracy| |||Moments in Time|339 类共 1M 个视频片段|Accuracy| |||Kinetics400|400 类且每类 400 个视频片段|Accuracy| |||Kinetics600|600 类且每类 600 个视频片段|Accuracy| |||Kinetics700|700 类且每类 700 个视频片段|Accuracy| |Image Text Retrival|Retrival 任务|Flickr30K|31K 张图片,155K 文字描述|R@1| |||MSCOCO|113K 张图片,567K 文字描述|R@1| |Image Caption|Caption 任务|Visual Genome|108K 图片,5.41M 文字描述|CIDEr| |||CC3M|3.01M 对图片和文字描述|CIDEr| |||SBU|867K 对图片和文字描述|CIDEr| |||LAION400M|400M 图片|CIDEr| |Visual QA|VQA|VQAv2|265K 张图片|Accuracy| |||VisDial|130K 图片|Accuracy| Gemini 模型本身是多模态的,展示了无缝结合跨模态能力,例如从表格、图表或图形中提取信息和空间布局,以及语言模型的强大推理能力。 GPT4V 在视觉编码能力方面,图 46 进一步展示了其将输入图像中的表格重构为 MarkDown/LaTex 代码。
2024-09-20
多模态大模型
Google 的多模态大模型叫 Gemini,是由 Google DeepMind 团队开发的。它不仅支持文本、图片等提示,还支持视频、音频和代码提示,能够理解和处理几乎任何输入,结合不同类型的信息,并生成几乎任何输出,被称为 Google 迄今为止最强大、最全面的模型,从设计之初就支持多模态,能够处理语言、视觉、听觉等不同形式的数据。 以下是 26 个多模态大模型的部分介绍: XLLM 陈等人扩展到包括音频在内的各种模式,并表现出强大的可扩展性。利用 QFormer 的语言可迁移性,XLLM 成功应用于汉藏语境。 VideoChat 开创了一种高效的以聊天为中心的 MMLLM 用于视频理解对话,为该领域的未来研究制定标准,并为学术界和工业界提供协议。 InstructBLIP 基于预训练的 BLIP2 模型进行训练,在 MM IT 期间仅更新 QFormer。通过引入指令感知的视觉特征提取和相应的指令,该模型使得能够提取灵活多样的特征。 PandaGPT 是一种开创性的通用模型,能够理解 6 不同模式的指令并根据指令采取行动:文本、图像/视频、音频、热、深度和惯性测量单位。 PaLIX 使用混合 VL 目标和单峰目标进行训练,包括前缀完成和屏蔽令牌完成。事实证明,这种方法对于下游任务结果和在微调设置中实现帕累托前沿都是有效的。 VideoLLaMA 张引入了多分支跨模式 PT 框架,使 LLMs 能够在与人类对话的同时同时处理给定视频的视觉和音频内容。该框架使视觉与语言以及音频与语言保持一致。 随着 ChatGPT 的蓬勃发展,大型模型正深刻地影响着各个行业。多模态技术作为行业前沿突飞猛进,呈现出一统计算机视觉(CV)和自然语言处理(NLP)的势头。有一款基于多模态大型模型的应用能够迅速解释现实世界,将手机置于车载摄像机位置,能实时分析当前地区今年新春的最新流行趋势。该应用后端采用 llama.cpp 挂载 LLaVA 模型,为应用提供推理服务。同时,部署了一个 Flask 应用用于数据前处理和后处理,提供 Stream 流服务。前端页面采用 HTML5,用于采集画面和用户输入,整体设计以简单高效为主。
2024-09-13
多模态搜索工具
以下是为您介绍的多模态搜索工具: 推荐的 AI 搜索引擎: 秘塔 AI 搜索:由秘塔科技开发,具有多模式搜索、无广告干扰、结构化展示和信息聚合等功能,提升用户搜索效率和体验。 Perplexity:聊天机器人式搜索引擎,允许自然语言提问,用生成式 AI 技术收集信息并给出答案。 360AI 搜索:360 公司推出,通过 AI 分析问题生成答案,支持增强模式和智能排序。 天工 AI 搜索:昆仑万维推出,采用生成式搜索技术,支持自然语言交互和深度追问,未来支持图像、语音等多模态搜索。 Flowith:创新的 AI 交互式搜索和对话工具,基于节点式交互,支持多种 AI 模型和图像生成技术,有插件系统和社区功能。 Devv:面向程序员的 AI 搜索引擎,提供编程等领域专业建议和指导。 Phind:专为开发者设计,利用大型语言模型提供相关搜索结果和动态答案,擅长处理编程和技术问题。 关于提升 AI 搜索准确度和多模态检索: 提升准确度的方法:通过提示词请求大模型以思维导图形式输出答案,通过提示词请求大模型做 Function Calling 判断使用的 Agents。提示词工程是系统学科,需大量调试设计适合业务的提示词。 多模态检索:是提升信息密度的重要措施,随着 5G 发展,互联网信息多元化,图片/视频/音频比重增大。多模态检索要获取不同形式信息聚合参考,实现困难,涉及海量信息源处理和识别,现阶段可基于谷歌搜索,先使用其图片/视频检索 API 拿到匹配内容,再通过 OCR 图片识别/音视频转录等方法获取文本内容。 ThinkAny 的相关情况: 冷启动:未提及具体冷启动方式。 产品特性: 部署方案:当前线上服务采用 Vercel + Supabase 的云平台部署,后续将迁移至基于 AWS 搭建的 K8S 集群,以提升服务稳定性和动态扩容表现。 功能创新:支持 Search / Chat / Summarize 三种模式,对应检索问答/大模型对话/网页摘要三种使用场景;集成包括 Llama 3 70B / Claude 3 Opus / GPT4 Turbo 在内的 10+大语言模型;支持检索链接/图片/视频等模态内容;支持以对话/大纲/思维导图/时间线等形式输出搜索问答内容;支持检索 Google / Wikipedia / Github 等信息源的内容,作为搜索问答的挂载上下文。此外,还开源了一个 API 项目 ragsearch,实现联网检索功能,并对检索结果进行重排和获取详情内容,得到准确度不错的检索结果。
2024-09-02
目前有哪些模型有多模态功能
目前具有多模态功能的模型主要有以下几种: 1. GPT4:能够处理和生成图像、音频等多种模态,但这方面能力还处于基础阶段。 2. Character.AI:具备多模态处理和生成能力。 3. Meta 的 ImageBind:可以处理和生成多种模态。 4. 智谱·AI 推出的多模态模型: Visualglm6B:开源的支持图像、中文和英文的多模态对话语言模型,语言模型基于 ChatGLM6B,具有 62 亿参数;图像部分通过训练 BLIP2Qformer 构建起视觉模型与语言模型的桥梁,整体模型共 78 亿参数。 RDM:Relay Diffusion Model,级联扩散模型,可以从任意给定分辨率的图像快速生成,而无需从白噪声生成。 CogAgent18B:基于 CogVLM17B 改进的开源视觉语言模型,拥有 110 亿视觉参数和 70 亿语言参数,支持 11201120 分辨率的图像理解,在 CogVLM 功能的基础上,具备 GUI 图像的 Agent 能力。 CogVLM17B:强大的开源视觉语言模型(VLM),基于对视觉和语言信息之间融合的理解,能实现视觉语言特征的深度融合,是目前多模态权威学术榜单上综合成绩第一的模型,在 14 个数据集上取得了 stateoftheart 或者第二名的成绩。
2024-09-01
认为如果我是一个大学生,想要通过大模型去参加项目什么样的方向会比较好我应该做一个怎样的大模型?
对于大学生想要通过大模型参加项目,以下是一些方向和相关知识: 大模型的概念: 通俗来讲,大模型是输入大量语料,让计算机获得类似人类的“思考”能力,能够进行文本生成、推理问答、对话、文档摘要等工作。可以用“上学参加工作”来类比大模型的训练和使用过程: 1. 找学校:训练大模型需要大量计算,GPU 更合适,只有有资本购买大量 GPU 的才有能力训练自己的大模型。 2. 确定教材:大模型需要大量的数据量,几千亿序列(Token)的输入基本是标配。 3. 找老师:即选择合适的算法让大模型更好地理解 Token 之间的关系。 4. 就业指导:为了让大模型更好地胜任某一行业,需要进行微调(fine tuning)指导。 5. 搬砖:就业指导完成后,进行如翻译、问答等工作,在大模型里称之为推导(infer)。Token 被视为模型处理和生成的文本单位,会对输入进行数字化形成词汇表。 大模型的训练: 一般训练会有 3 个步骤,每个步骤都需要资金投入。 1. 无监督学习:模型通过分析大量文本数据,学习语言的基本结构和常识,具备文本补齐能力而非直接回答问题,将人类的知识通过向量化的方法转换,从而获得基础的语言模型。 2. 清洗出好的数据。 3. 指令微调:模型被训练以理解并执行具体指令,如翻译文本,从而能够回答问题。输入内容包括 3 个部分,中间可能有分隔符。还有对齐过程,通过引入人类的评价标准和处理特定格式要求,进一步优化模型的输出以符合人类的期望。 大模型的微调: 在人工智能领域,通常会根据应用领域将大模型分为通用大模型和领域特定模型。通用大模型如 GPT4.0、GPT3.5 等,通过训练获得广泛的自然语言理解能力,但在特定领域表现可能不理想。微调是对大模型针对特定领域进行的训练过程,通过在特定领域的数据上训练模型,优化所有层的参数,提高其在该领域的专业性。从头开始训练一个具备自然语言处理能力的大模型需要大量时间和资源,小公司负担不起,微调可以在现有模型基础上更经济、高效地适应新的应用领域。
2024-11-18
在调用大模型的过程中,将token设置最大值,大模型回答还是会出现中断的情况,应该怎么避免和解决
在调用大模型的过程中,将 token 设置最大值但回答仍出现中断的情况,可以从以下几个方面避免和解决: 1. 调整相关参数: Max_output_tokens:根据具体需求设置合适的值。若需要更短响应,设为较低值;若希望更长回答,设为较高值。但注意设置过低可能导致回答在奇怪位置截断。 Temperature:值越小,模型返回结果越确定;值调高,可能更随机和具创造性。对于质量保障等任务设低,诗歌生成等创造性任务可适当调高。 Top_p:用于控制模型返回结果的真实性,需要准确和事实答案时调低,想要更多样化答案时调高。一般改变 Temperature 和 Top_p 其中一个参数即可。 Max Length:调整以控制大模型生成的 token 数,有助于防止生成冗长或不相关响应并控制成本。 Stop Sequences:指定字符串,模型生成文本遇到时停止,可控制响应长度和结构。 Frequency Penalty:对下一个生成的 token 进行惩罚,与 token 在响应和提示中出现次数成比例,减少单词重复。 2. 利用插入文本的最佳实践: 使用 max_tokens > 256,模型插入较长完成时效果更好,且只按实际生成 token 数收费。 优先选择 finish_reason == "stop",表明模型成功连接后缀且完成质量良好。 重新采样 3 5 次,温度较高以增加多样性。若所有返回示例的 finish_reason 都是“length”,可能 max_tokens 太小,需考虑增加再重试。 尝试给出更多线索,通过提供示例帮助模型确定自然停顿处。
2024-11-18
目前市面上能力最强的AI模型是哪家的
目前市面上能力较强的 AI 模型来自多家公司和机构。 OpenAI 的 GPT4 是一个表现出色的大型多模态模型,在各种专业和学术基准测试中表现出与人类相当的水平。此外,OpenAI 还带来了其他优秀的模型,如 DALL·E 3 等。 Meta 开发的 Llama 3.1 是迄今为止最大版本,其在推理、数学、多语言和长上下文任务中能够与 GPT4 相抗衡,标志着首次开放模型缩小与专有前沿的差距。 谷歌 DeepMind 与纽约大学团队开发的 AlphaGeometry 在奥林匹克级几何问题基准测试中表现优异。 中国的 DeepSeek、零一万物、知谱 AI 和阿里巴巴等开发的模型在 LMSYS 排行榜上取得了优异的成绩,尤其在数学和编程方面表现出色,且在某些子任务上挑战了 SOTA。 Mistral 7B 是一个具有 73 亿参数的模型,在所有基准测试上超越了 Llama 2 13B,在许多基准测试上超越了 Llama 1 34B,在代码任务上接近 CodeLlama 7B 的性能,同时在英语任务上表现良好。 需要注意的是,AI 模型的能力评估会因不同的任务和应用场景而有所差异,且技术在不断发展和进步,新的更强的模型可能会不断涌现。
2024-11-18
如何减少 大模型的幻觉
减少大模型幻觉的方法主要有以下几点: 1. 使用 Prompt:在与大模型交互时,Prompt 是一套语言模板。它能为大模型提供更多的输入、限定、上下文和更明确的结果输出要求,帮助大模型更好地理解用户问题,从而减少随意发挥导致的幻觉问题。 2. 上采样(Up Sampling):针对“Imitative Falsehoods”,即样本存在错误的情况,上采样可以作为一种缓解办法。 3. 注意数据隐私保护:减少模型见数据的次数,例如避免模型过多重复接触某些数据,以降低记忆隐私泄露的风险,这在一定程度上也有助于减少幻觉问题。 大模型出现幻觉的原因包括: 1. 样本存在错误:如果大模型学习的“教材”中有错误,其输出也可能出错。 2. 信息过时:存在以前正确但现在过时的信息。 此外,大语言模型偶尔会根据输入输出荒谬或不符合事实的内容,目前各家大语言模型在该问题上的表现都有待改进。
2024-11-18
chilloutmix模型
以下是关于 chilloutmix 模型的相关信息: 在腊八节相关的生成中,模型为 chilloutmix_NiPrunedFp32Fix,生成尺寸与草稿图保持一致,有正、负面关键词及 ControlNet 设置等具体参数。 在猫猫相关的生成中,虽然作者建议使用 chilloutmix_NiPrunedFp32Fix 模型,但也可以尝试其他模型。 在 AIGC Weekly 09 中,提到从 civitai 下载 ChilloutMix 模型并放到整合包 models\\Stablediffusion 目录里启动 web UI 切换模型。
2024-11-17
SD好的模型分享
以下是为您分享的关于 SD 模型的相关内容: 对于 SDXL 的 ControlNet 模型中的 Canny 硬边缘模型,有不同型号,如 4080ti 笔记本测试中,12G 显存下,sdxl base+refiner 模型,使用 diffusers 的 2.5Gfull 模型绘制 10241024 尺寸图片需 2 分 57 秒,320Mb 的 small 模型用时 34s,质量差距不大但时间优势明显。其他作者如 kohya 的用时 33 秒,更接近真实质感。sai 的 128lora 和 256lora 分别用时 39 秒和 1 分 08 秒,偏绘画感觉。t2i 的用时 34s,偏插画。关闭 refiner 能节省一半左右时间,平均 17 秒左右。 在 Depth 深度模型测试中,图形尺寸 6641024,diffusers 的 full 模型用时 2 分 48 秒,small 模型用时 23s,kohya 模型用时 42 秒,sai 模型用时 1 分 12 秒,sargezt 模型用时 1 分 52 秒。 用 Stable Diffusion 时,要先确定照片风格,如生成真人 AI 小姐姐可选用 chilloutmix 的大模型。部分常用大模型可在分享的链接中根据文件夹名称找到。文章第三部分会详细介绍模型下载位置和存放位置。 对于 ControlNet 中线条约束类的预处理器和模型,作者已整理好,如需获取可添加公众号【白马与少年】回复【SD】。同时作者还附上一张图帮助理解 ControlNet 模型的命名规则。
2024-11-17