多模态指多数据类型交互,能够提供更接近人类感知的场景。大模型对应的模态包括文本、图像、音频、视频等。例如,Gemini 模型本身就是多模态的,它展示了无缝结合跨模态能力,如从表格、图表或图形中提取信息和空间布局,以及语言模型的强大推理能力,在识别输入中的细微细节、在空间和时间上聚合上下文,以及在一系列视频帧和/或音频输入上应用这些能力方面表现出强大的性能。
跨模态通常指不同模态之间的交互和融合。例如在 GPT-4 的相关研究中,探索了视觉和音频等可能出乎意料的模态。智能的一个关键衡量标准是能够从不同的领域或模式中综合信息,并能够跨不同的情境或学科应用知识和技能。
图9大模型核心基础概念泛化能力:不用人话说是“指模型在未曾见过的数据上表现良好的能力”,用大白话讲就是“举一反三”的能力,人类就是泛化能力很强的物种,我们不需要见过这个世界上的每一只猫,就能认识猫这个概念。多模态:指多数据类型交互,从而能够提供更接近人类感知的场景。正如人有眼、耳、鼻、舌、身、意等多个模态,大模型对应的模态是文本、图像、音频、视频……对齐能力:指与人类价值观与利益目标保持一致的能力。大模型相比我们普通人类个体是“无所不知”的,但他并不会把他知道的都告诉你,例如你问chatGPT如何制造炸弹,他虽然知道,但并不会告诉你具体步骤和配方,这是因为chatGPT做了很好的对齐工程,但目前阶段,有很多提示词注入的方法,也能绕过各种限制,这也开辟了大模型领域黑白对抗的新战场(事实上,人类自身就不是一个价值观对齐的物种,同一件事在一些群体眼中稀松平常,但在另一些群体眼中十恶不赦,因此“和谁对齐”确实是一个灵魂问题)。图10大模型核心基础概念
Gemini模型本身就是多模态的。这些模型展示了无缝结合跨模态能力的独特能力(例如从表格、图表或图形中提取信息和空间布局),以及语言模型的强大推理能力(例如在数学和编码方面的最新性能),如图5和12中的示例所示。这些模型在识别输入中的细微细节、在空间和时间上聚合上下文,以及在一系列视频帧和/或音频输入上应用这些能力方面也表现出强大的性能。下面的部分提供了对模型在不同模态(图像、视频和音频)上的更详细评估,以及模型在图像生成和跨不同模态的信息组合能力方面的定性示例。
Multimodal and interdisciplinary composition智能的一个关键衡量标准是能够从不同的领域或模式中综合信息,并能够跨不同的情境或学科应用知识和技能。在本节中,我们将看到:-GPT-4不仅在文学、医学、法律、数学、物理科学和编程等不同领域展示了高水平的专业知识,而且还能够流畅地结合多个领域的技能和概念,展现出对复杂思想的令人印象深刻的理解。-我们还在第2.2节和第2.3节中探索了两种可能出乎意料的模态(正如介绍中所解释的,我们再次强调我们的实验是在GPT-4的早期版本上进行的,该版本不是多模态的),分别是视觉和音频。