Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

kimi和秘塔的区别是什么

Answer

Kimi 和秘塔 AI 的区别在于以下方面:

  • 功能特点:传音智库是公司内部的 AI 平台,功能类似于 Poe,仅内网可访问,可用 Kimi 替代。
  • 平台性质:Kimi 是国产新星,秘塔 AI 被称为搜索神器。
  • 访问网址:Kimi 的网址为 https://kimi.moonshot.cn/ ,秘塔 AI 未提及具体网址。
Content generated by AI large model, please carefully verify (powered by aily)

References

危柯宇:如何让 AI 走进我们的工作和生活

备注:传音智库是公司内部的ai平台,功能类似于poe,仅内网可访问,可用kimi替代

危柯宇:如何让 AI 走进我们的工作和生活

内部平台,功能类似PoeKimichat

Others are asking
如何评价秘塔AI
秘塔 AI 是一款由秘塔科技开发的具有多种特色和优势的产品: 1. 作为 AI 搜索引擎,它提供多模式搜索、无广告干扰、结构化展示和信息聚合等功能,旨在提升用户的搜索效率和体验。 2. 整体流程较长且完整。首先需构建专题,并上传文档或复制网页链接,然后在搜索框左下角选中专题以定制数据源。搜索完成后的操作类型丰富,包括继续追问、导出文档、收藏、保存到秘塔写作猫并编辑、生成演示文稿、下载脑图图片、查看与原文对应关系并进一步搜索等。其创作编辑分享的 AIGC 工作流已初具雏形,RAG 和搜索能力表现良好,是国产之光。 3. 秘塔科技在 9 月 20 日发布的产品经理招聘信息的 JD 描述不拘一格,受到赞誉。 此外,还有众多其他的 AI 搜索引擎,如 Perplexity、360AI 搜索、天工 AI 搜索、Flowith、Devv、Phind 等,它们通过不同的技术和功能,为用户提供更加精准、高效和个性化的搜索体验。
2025-01-18
秘塔是ai吗
秘塔是 AI 。秘塔科技开发了秘塔 AI 搜索,它提供多模式搜索、无广告干扰、结构化展示和信息聚合等功能,旨在提升用户的搜索效率和体验。在一些关于 AI 时代搜索的介绍中,也将秘塔 AI 搜索作为示例,指出其没有广告,能直达结果。同时在相关的比较和讨论中,也有涉及到秘塔。
2024-12-14
秘塔搜索的提示词
以下是关于秘塔搜索提示词的相关信息: 在“大圣:我用 Coze 搓了一个乞丐版的秘塔搜索”中,提到在 AI 搜索工作流中有变量节点和大模型节点。大模型节点最关键的是提示词,其源头是一个 github 的开源项目(https://github.com/leptonai/search_with_lepton/blob/main/search_with_lepton.py ),且提示词完全参考艾木大佬的文章(https://mp.weixin.qq.com/s/Ory8iVXXjjN3zSTcupPm6Q )。由于本篇教程主要是让大家对 Coze 的能力更有体感,所以提示词这里不做深入探讨。 同样在“大圣:我用 Coze 搓了一个乞丐版的秘塔搜索”中,提到按照编写人设提示词、打造工作流、预览以及调试的流程来搓 Bot,且为了方便大家理解,贴出了中英两版人设提示词。 一些推荐的 AI 搜索引擎中包括秘塔 AI 搜索,它由秘塔科技开发,提供多模式搜索、无广告干扰、结构化展示和信息聚合等功能,旨在提升用户的搜索效率和体验。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2024-12-05
秘塔AI擅长处理什么事情
秘塔 AI 具有以下功能和擅长处理的事项: 1. 作为搜索引擎,提供多模式搜索、无广告干扰、结构化展示和信息聚合等功能,旨在提升用户的搜索效率和体验。 2. 在调研工作中,可进行定向搜索,为深度调研提供支持。 3. 作为智能写作助手,能辅助用户进行高质量写作,例如检查语法、拼写错误,进行智能润色和内容创作辅助。
2024-11-11
给我一个秘塔搜索的介绍及使用指南
秘塔搜索是由秘塔科技开发的一款 AI 搜索引擎,具有以下特点和功能: 1. 多模式搜索:提供多种搜索方式,满足不同用户需求。 2. 无广告干扰:为用户提供更纯净的搜索环境。 3. 结构化展示:使搜索结果呈现更清晰、有条理。 4. 信息聚合:整合各类相关信息,提升搜索效率和体验。 使用指南方面: 1. 明确搜索需求:清晰地知道自己想要查找的内容。 2. 输入准确关键词:有助于获得更精准的搜索结果。 如果您想了解更多关于秘塔搜索的详细内容,建议您访问其官方网站获取最新和更全面的信息。
2024-11-01
请问国内的ai大模型,比如coze,豆包,kimi,科大讯飞,天工,通义千问,智谱清言,秘塔,知乎直达,文心一言,他们各有什么有优势
以下是国内一些 AI 大模型的优势: 通义千问:由阿里云开发,能够与人交互、回答问题及协作创作。 科大讯飞(SparkDesk):有免费接口,在某些应用场景中具有出色表现。 智谱清言:在聊天状态下能生成 Markdown 格式。 文心一言:百度出品的 AI 对话产品,定位为智能伙伴,能写文案、想点子,又能陪你聊天、答疑解惑。 抖音(云雀大模型):暂未明确其独特优势。 智谱 AI(GLM 大模型):暂未明确其独特优势。 中科院(紫东太初大模型):暂未明确其独特优势。 百川智能(百川大模型):暂未明确其独特优势。 商汤(日日新大模型):暂未明确其独特优势。 MiniMax(ABAB 大模型):目前不能进行自然语言交流,但有语音合成等特色功能。 Kimi 智能助手:由 Moonshot AI 出品,有着超大“内存”,可以一口气读完二十万字的小说,还会上网冲浪。 需要注意的是,不同大模型的优势会因应用场景和用户需求的不同而有所差异。
2024-09-03
请对比文心一言、豆包、天工、Kimi以上几个软件各自的优势
以下是文心一言、豆包(字节跳动)、天工(不太明确您提到的天工具体所指,可能是指某些特定的模型或产品)、Kimi 这几个软件的优势对比: 文心一言 4.0(网页版): 优势:由百度开发,可能在某些特定领域的知识储备和语言理解能力上有一定优势。 豆包(字节跳动): 优势:无需科学上网,使用方便。 Kimi: 优势:不需要科学上网,无收费,不需要登录可以直接使用;有案例,点击预设问题即可开始尝试。 需要注意的是,对于不同的用户和应用场景,这些软件的优势可能会有所不同,其表现也会受到数据、算法、训练等多种因素的影响。
2025-01-16
请给我提供一些用KIMI处理excel数据的方法
以下是一些用 KIMI 处理 Excel 数据的方法: 1. 对数据的基本操作包括增加、删除、修改和查询。 2. 若要与数据库沟通,需学会 SQL 语句。 3. 可以通过 Kimi Chat(https://kimi.moonshot.cn)向 KIMI 提问,获取针对增、删、改、查的回答。 4. 对于新人,可通过深挖 KIMI 的回答来了解相关语法。 5. 收集资料时,可借助 AI 工具如 Perplexity.AI 高效完成,也可使用 KIMI 读取和整理网页内容,但需注意其阅读能力的限制,可分批次提供资料。
2025-01-09
kimi是什么
Kimi 是由 Moonshot AI 出品的智能助手,具有超大“内存”,能一口气读完二十万字的小说,还会上网冲浪。在聊天对话类 AI 产品中,Kimi 最显著的特点是超长上下文能力,最初支持 20 万字,现已提升到 200 万字,对于处理长文本或大量信息的任务有优势,但在文字生成和语义理解、文字生成质量方面可能不如国内其他产品,且不支持用户自定义智能体。
2025-01-08
怎么用kimi、即梦AI这两款软件做小红书博主
要利用 Kimi 和即梦 AI 做小红书博主,可以参考以下步骤: 利用 Kimi: 1. 收集相关资料:明确主题后,借助 AI 工具如 Perplexity.AI 的强大搜索功能获取信息。启用 Pro 功能或使用微软的 Bing 搜索引擎等具备联网搜索功能的工具,输入具体的 Prompt 快速定位相关资讯。 2. 整理资料:使用月之暗面开发的 Kimi 这个 AI 会话助手。Kimi 具备读取网页内容并生成一定内容的能力,当读取完毕会显示绿色标点作为提示。但需注意其阅读能力有限,可能无法一次性处理大量资讯或某些网站内容,可分批次提供资料确保其有效读取和理解。 3. 生成文章:让 Kimi 整理资讯内容并转化成吸引人的公众号文章。 关于即梦 AI 如何用于做小红书博主,目前提供的内容中未提及相关具体方法。
2025-01-02
像文心一言、kimi之类的人工智能助手还有哪些
以下是一些常见的人工智能助手: 1. Kimi 智能助手:由 Moonshot AI 出品,具有超大“内存”,能读长篇小说、上网冲浪,还能协助处理资料和生成内容。 2. 文心一言:百度出品的 AI 对话产品,可写文案、想点子、聊天、答疑解惑。 3. 通义千问:由阿里云开发,能够与人交互、回答问题及协作创作。 此外,还有夸克、豆包等。更多大模型产品,您可以访问相关网站查看。但需要注意的是,内容由 AI 大模型生成,请仔细甄别。
2024-12-30
新手如何使用kimi
新手使用 Kimi 的方法如下: 浏览器 Kimi 插件: 安装后,在浏览网络文章时点击插件图标,或使用快捷键 Ctrl/Cmd+Shift+K,即可一键召唤 Kimi 总结网页内容。 特点: 极简,点击一键总结,无其他花里胡哨的功能。 Kimi 无法访问的网页也能进行总结,如推特等。 英文文章直接用中文总结要点。 支持 Dark Mode。 注意事项: 本插件为第三方爱好者开发,不是 Kimi 或月之暗面官方产品。 由于 Arc 等浏览器没有所需的 API,所以本插件在 Arc 等浏览器无法使用。 Kimi 阅读助手: 这个插件支持快捷调用 Kimi,然后将当前页面打包成一个.md 文件喂给 Kimi,历史会话中能看到刚才的记录。 总结模型可自己选择。 注意事项: 需要 Chrome 114 及以上版本才能正常使用扩展。 暂不支持 Arc 游览器(Arc 缺少相关 API)。 对于新手,Kimi 是 Chatgpt 的国产平替,实际上手体验好,适合入门学习和体验 AI。 优势: 不用科学上网、不用付费、支持实时联网。 是国内最早支持 20 万字无损上下文的 AI,也是目前对长文理解做得最好的 Ai 产品。 能一次搜索几十个数据来源,无广告,能定向指定搜索源(如小红书、学术搜索)。 下载方式: PC 端: 移动端 Android/ios:
2024-12-19
ai本地部署对比网页版区别在哪
AI 本地部署和网页版主要有以下区别: 1. 出图速度:网页版出图速度快,本地部署可能相对较慢。 2. 硬件配置要求:网页版不吃本地显卡配置,本地部署对电脑配置要求较高,配置不高可能出现生成半天后爆显存导致出图失败的情况。 3. 出图质量:本地部署出图质量通常高于网页版。 4. 功能扩展性:本地部署可以自己添加插件,网页版功能相对固定。 5. 算力限制:网页版为节约算力成本,通常只支持出最高 1024×1024 左右的图,制作横板、高清等图片受限;本地部署算力限制较小。 6. 电脑使用状态:本地部署使用期间电脑基本处于宕机状态,网页版则无此问题。 例如,在图像生成方面,线上的优势在于找参考、测试模型,线下则是主要的出图工具。一些在线体验平台如哩布哩布 AI 每天有一百次生成次数,集成了最新模型;Clipdrop 每天免费 400 张图片,需排队,出图约需二三十秒。
2025-02-05
豆包和coze有什么区别
Dify 和 Coze 都是大模型中间层产品,有以下主要异同点: 开源性: Dify 是开源的,允许开发者自由访问和修改代码以定制,由专业团队和社区共同打造。 Coze 由字节跳动推出,目前未明确是否开源,可能更侧重商业化服务和产品。 功能和定制能力: Dify 提供直观界面,结合多种功能,支持基于任何 LLM 部署 API 和服务。 Coze 有丰富插件能力和高效搭建效率,支持发布到多个平台作为 Bot 能力使用。 社区和支持: Dify 作为开源项目有活跃社区,开发者可参与共创共建。 Coze 可能更多依赖官方更新和支持,社区参与和开源协作程度可能不如 Dify。 豆包和 Coze 的区别在于: 豆包主要是大模型交互,功能相对默认。 Coze 不用魔法,上手简单,更新快,插件多。在模型选择方面,GLM 模型和 MoonShot 模型对结构化提示词理解良好,适合处理精确输入输出任务;豆包系列模型在角色扮演和工具调用方面有优势,能识别用户意图并选择合适工具或服务。将这三种模型结合在工作流或多 Agent 中可实现优势互补。
2025-01-25
精准率和召回率有什么区别
精准率和召回率是常见的评估指标,主要区别如下: 精准率(Precision):指返回的检索内容中有用信息的占比。也就是说,在所有被检索出来的内容中,真正有用的信息所占的比例。其计算公式为:精准率 = 真正例 / (真正例 + 假正例)。 召回率(Recall):指相关信息被正确预测出来的比例,即真正例在所有实际相关信息中的占比。其计算公式为:召回率 = 真正例 / (真正例 + 假反例)。 例如,在一个文档检索的场景中,精准率体现的是检索出的文档中有多少是真正有用的;召回率则体现的是相关的文档有多少被包含在返回的检索结果里。 总的来说,精准率关注的是检索结果的准确性,而召回率关注的是检索结果的完整性。
2025-01-23
深度学习跟机器学习有啥区别呀?能不能举个通俗易懂的例子
深度学习和机器学习的区别主要体现在以下几个方面: 1. 学习方式:机器学习通常需要人工选择和设计特征,而深度学习能够自动从数据中学习特征。 2. 模型结构:机器学习模型相对简单,深度学习则使用多层的神经网络,结构更复杂。 3. 数据处理能力:深度学习能够处理更大量和更复杂的数据模式。 例如,在图像识别任务中,如果使用机器学习,可能需要人工提取图像的颜色、形状等特征,然后基于这些特征进行分类。但在深度学习中,神经网络可以自动从大量的图像数据中学习到有效的特征表示,从而实现更准确的分类。 机器学习是人工智能的一个子领域,让计算机通过数据学习来提高性能,不是直接编程告诉计算机如何完成任务,而是提供数据让机器找出隐藏模式或规律,然后用这些规律预测新的未知数据。 深度学习是机器学习的一个子领域,模拟人脑工作方式,创建人工神经网络处理数据,包含多个处理层,能学习和表示大量复杂模式,在图像识别、语音识别和自然语言处理等任务中非常有效。 大语言模型是深度学习在自然语言处理领域的应用之一,目标是理解和生成人类语言,需要在大量文本数据上训练,如 ChatGPT、文心一言。同时,大语言模型具有生成式 AI 的特点,不仅能理解和分析数据,还能创造新的独特输出。
2025-01-21
深度学习跟机器学习有啥区别呀
深度学习和机器学习的区别主要体现在以下几个方面: 1. 范畴:机器学习是人工智能的一个子领域,深度学习则是机器学习的一个子集。 2. 工作方式:机器学习通过输入数据训练模型,让计算机在没有明确编程的情况下学习。深度学习模拟人脑工作方式,创建人工神经网络处理数据。 3. 处理模式:机器学习模型可以是监督的或无监督的,监督模型使用标记的数据学习并预测未来值,无监督模型专注于发现原始数据中的模式。深度学习使用人工神经网络,能处理更复杂的模式,神经网络可使用标记和未标记的数据,实现半监督学习。 4. 应用效果:深度学习在图像识别、语音识别和自然语言处理等任务中表现出色,因为其能学习和表示大量复杂的模式。 例如,大语言模型是深度学习在自然语言处理领域的应用,其不仅能理解和分析数据,还能创造新的独特输出,如 ChatGPT、文心一言等。
2025-01-21
AIGC和AGI的区别
AIGC(人工智能生成内容)是利用人工智能技术生成各种类型内容的应用方式,包括文字、图像、视频等。它在内容创作、广告、媒体等领域广泛应用。 AGI(通用人工智能)则是一种让机器具备像人类一样的通用智能的目标,能够理解、学习和处理各种不同的任务和领域。 AIGC 侧重于内容的生成,是通过机器学习和深度学习算法,根据输入的数据和指令生成符合特定要求的内容。而 AGI 追求的是更广泛和通用的智能能力。 例如,AIGC 可以生成文章、艺术作品、短视频等具体的内容形式;AGI 则是期望机器能够像人类一样进行思考、推理、解决复杂的综合性问题等。 总的来说,AIGC 是 AGI 在内容生成方面的一种具体应用,而 AGI 是更宏观和高远的人工智能发展目标。
2025-01-19