直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

comfyui 报错提示

回答

以下是关于 ComfyUI 报错提示的一些常见情况及解决方法:

  1. 如果报错提示“图片里面没有检查到面部”,这可能是在第一次运行时比较慢,也可能是网络环境没有下载 insightface。
  2. 若节点报错显示“ERROR: Could not install packages due to an OSError: [WinError 5] 拒绝访问。”,在命令后面输入“--user”即可。
  3. 本地安装 ComfyUI 时,如果终端显示某个模块下载失败或无法下载,可能是因为网络没有做到终端 FanQiang,需要配置好代理。具体端口要根据自己的 FanQiang 服务来看,最好把配置添加到默认的终端启动项里,如:export https_proxy=http://127.0.0.1:7890 http_proxy=http://127.0.0.1:7890 all_proxy=socks5://127.0.0.1:7890。或者考虑使用第三方镜像站下载,如 TUNA(https://pypi.tuna.tsinghua.edu.cn/simple)、网易(https://mirrors.163.com/pypi/)。
  4. 终端显示“ERROR:Could not find a version that satisfies the requirement pyyaml(from versions:none)”,这是因为缺少 pyyaml,可以运行相关命令完成安装后,再继续安装 ComfyUI。
内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

ComfyUI IPAdapter

这个是图片里面没有检查到面部在第一次运行时候,会比较慢,如果报错了,可能是网络环境没有下载insightface

Comfyui节点报错小帮

Consider using the `--user` option or check the permissions.在命令后面输入--user即可

问:如何在本地安装 ComfyUI

Q:终端显示某个模块下载失败,或无法下载该怎么办?这是因为网络没有做到终端FanQiang,终端FanQiang需要配置好代理。具体端口要根据自己的FanQiang服务来看,最好把这个配置到默认的终端启动项里边export https_proxy=http://127.0.0.1:7890 http_proxy=http://127.0.0.1:7890 all_proxy=socks5://127.0.0.1:7890或者是考虑使用第三方镜像站下载,详细信息请参考对应镜像站的帮助手册。|镜像站|URL|帮助|<br>|-|-|-|<br>|TUNA|[https://pypi.tuna.tsinghua.edu.cn/simple(opens in a new tab)](https://pypi.tuna.tsinghua.edu.cn/simple)|[🔗(opens in a new tab)](https://mirrors.tuna.tsinghua.edu.cn/help/pypi/)|<br>|网易|[https://mirrors.163.com/pypi/(opens in a new tab)](https://mirrors.163.com/pypi/)|[🔗(opens in a new tab)](https://mirrors.163.com/.help/pypi.html)|Q:终端显示ERROR:Could not find a version that satisfies the requirement pyyaml(from versions:none)该如何处理?这是因为缺少pyyaml,你可以运行:完成安装后,再继续安装ComfyUI。

其他人在问
训练loro时报错什么原因吗:f"NaN detected in latents: {info.absolute_path}"
在 Comfy UI 中训练 LoRA 模型时,出现“f"NaN detected in latents: {info.absolute_path}"的报错,可能有以下原因: 1. 数据方面:图像必须放在以“”命名的文件夹中,数字应较小,如 5,且必须有下划线。对于 data_path,需写入包含数据库文件夹的文件夹路径。 2. 参数方面:在第一行可从 checkpoint 文件夹中选择任何模型,但据说进行 LoRA 训练最好选择一个基本模型。可选择一个名称为 LoRA 的模型,若默认值不合适可更改,epochs 数应接近 40。 3. 环境方面:按 Enter 键安装所有所需依赖项使其与 ComfyUI 兼容。若为 Comfy 使用了虚拟环境,必须首先激活它。Python 中需要斜杠,但节点会自动将反斜杠转换为斜杠,文件夹名称中的空格不是问题。 您可以根据上述情况检查和调整您的训练设置,以解决报错问题。
2024-10-15
在comfyui中执行k值采样器报错是什么原因 ror occurred when executing KSamplerAdvanced:
在 ComfyUI 中执行 K 值采样器报错,可能由多种原因导致。但仅根据您提供的“”内容,难以确切判断具体原因。常见的可能因素包括: 1. 模型配置问题:模型的参数设置不正确,或者与 K 值采样器的要求不匹配。 2. 输入数据格式错误:输入给采样器的数据格式不符合要求,例如数据类型、维度等。 3. 软件版本不兼容:ComfyUI 本身的版本与 K 值采样器存在兼容性问题。 4. 计算资源不足:系统的内存、GPU 等计算资源不足以支持 K 值采样器的运行。 要准确诊断问题,还需要更多的错误提示信息、相关配置和操作的详细描述。
2024-08-14
在comfyui中执行k值采样器报错是什么原因
在 ComfyUI 中执行 K 值采样器报错可能有多种原因。以下是一些常见的情况及相关设置步骤: 1. 首先,在“K 采样器”处,可通过点击“右键”“新建节点”“采样器”,选择“K 采样器(高级)”,其会有更多调整参数。 2. 对于 SDXL,由于需要用到 base 和 refiner 两套模型,所以要将模型节点和采样器节点分别复制一份。 对于第一个 base 模型的采样器,参数设置如下: 添加噪波:enable,确保打开以添加噪声。 步数:30,即迭代的总步数。 结束降噪步数:20,代表前面 20 步采用 base 模型进行运算。 返回噪波:enable,以便将剩下的噪声传递给下一个 refiner 模型。 3. 建立第一个工作流时,可按以下步骤操作: 清空所有节点,从零开始。先加载一个模型选择器的节点,右键点击空白处,选择【add node】——【loaders】——【load checkpoint】,生成节点后可选择安装好的大模型,且后面有三个连接点可指向下一个模块。 按住 clip 后面的点进行拖拽,点击【CLIPTextEncode】,得到提示词输入框。同理可再加一个提示词框,形成正向和负向提示架构。 为方便管理,可添加组,将相关节点放在组里一起移动。 从提示词节点后面再次拉出一根线,选择【KSampler】,其中有熟悉的参数如种子数、迭代步数、CFG、采样器等。 最后,设置输出图片尺寸,从【latent image】中拉出一个节点,选择【EmptyLatentImage】。 如果您能提供更具体的报错信息,将更有助于准确判断报错原因。
2024-08-14
我在MacBook用docker安装的dify,以app形式安装的ollama,但在dify设置ollama的api时候,总是报错。如何解决
根据搜索结果,解决 dify 设置 ollama API 时报错的方法如下: 1. 检查 IP 地址和 URL 是否正确 有用户反映,通过修改 IP 地址和 URL 格式解决了类似的问题 确保使用了正确的 IP 地址和完整的 URL 格式 2. 尝试使用 LiteLLM 与 Ollama 有用户建议使用 LiteLLM 与 Ollama 的组合,这似乎是一个可行的解决方案 3. 检查 Ollama 的版本兼容性 有用户提到,Ollama 可能升级了客户端,需要检查与 Dify 的版本兼容性 4. 检查 OpenAI 账户类型和模型权限 确保 OpenAI 账户类型和所选模型(如 GPT4)是否有访问权限 5. 尝试禁用流式传输模式 有用户反映,流式传输可能会导致错误,可以尝试禁用该功能 总之,解决这个问题的关键是确保 Ollama 的 IP 地址、URL 格式、版本兼容性以及 OpenAI 账户权限等都设置正确。如果还有其他问题,可以继续在 Dify 的 GitHub 仓库中寻找相关的讨论和解决方案。
2024-04-19
comfyUI
ComfyUI 是一个基于节点流程式的 stable diffusion AI 绘图工具 WebUI,以下是关于它的详细介绍: 简介:可以想象成集成了 stable diffusion 功能的 substance designer,通过将 stable diffusion 的流程拆分成节点,实现更精准的工作流定制和完善的可复现性。 优劣势: 优势: 对显存要求相对较低,启动速度快,出图速度快。 具有更高的生成自由度。 可以和 webui 共享环境和模型。 可以搭建自己的工作流程,可以导出流程并分享给别人,报错时能清晰发现错误所在步骤。 生成的图片拖进后会还原整个工作流程,模型也会选择好。 劣势: 操作门槛高,需要有清晰的逻辑。 生态没有 webui 多(常用的都有),但也有一些针对 Comfyui 开发的有趣插件。 官方链接:从 github 上下载作者部署好环境和依赖的整合包,按照官方文档安装即可:https://github.com/comfyanonymous/ComfyUI 安装部署: 电脑硬件要求: 系统:Windows7 以上。 显卡要求:NVDIA 独立显卡且显存至少 4G 起步。 硬盘留有足够的空间,最低 100G 起步(包括模型)。 注:mac 系统,AMD 显卡,低显卡的情况也可以安装使用,但功能不全,出错率偏高,严重影响使用体验,个人建议升级设备或者采用云服务器玩耍。 下载并安装所需要环境: 依次下载并安装 python、Git、VSCode,安装过程中一直点击勾选对应选项,一直下一步。 安装 Python:https://www.python.org/downloads/release/python3119/ ,安装时选中“将 Python 添加到系统变量”。 安装 VSCode:https://code.visualstudio.com/Download 。 安装 Git:https://gitscm.com/download/win 。 安装 CUDA:https://developer.nvidia.com/cuda1220downloadarchive?target_os=Windows&target_arch=x86_64&target_version=11&target_type=exe_network 。 安装步骤: 地址:https://github.com/comfyanonymous/ComfyUI ,可以下载安装包也可以直接 Git clone https://github.com/comfyanonymous/ComfyUI.git ,或者下载安装包 file:ComfyUI.zip ,https://github.com/comfyanonymous/ComfyUI ,下载安装包或者点击链接下载并解压至本地除 C 盘外的任意盘。然后找到文件名称为 run_nvidia_gpu 的文件双击并启动。启动完成即进入基础界面。 节点存放目录:comfyUI 的节点包括后面安装的拓展节点都存放在本目录下 D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\custom_nodes 。 模型存放目录: 大模型:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\checkpoints 。 Lora:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\loras 。 Vae:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\vae 。 模型共用:已经安装了 SDWebUI 的同学可以通过修改文件路径和 WebUI 共用一套模型即可,这样就不用重复下载模型了。找到已安装好的 ComfyUI 目录文件下的 extra_model_paths.yaml.example 文件,将后缀.example 删除,然后右键用记事本打开。 快捷键:暂未提及。
2024-11-09
comfyui做视频
以下是关于 comfyui 做视频的相关信息: 一些人员在相关领域的情况: 德方:18600081286,从事设计、建模、绘图、效果图、视频工作。 谌峰:13925911177,从事视频,人物,室内设计工作。 陈铭生:18861511571,利用 comfyUI 做 AI 视频,掌握 comfy 工作流设计,给一些公司定制 comfy 流程。 郑路:18868755172,进行出图、短视频创作。 塵:从事绘图与视频工作。 阿牛:13720121256,掌握 comfy 工作流。 Stable Video Diffusion 模型核心内容与部署实战中 ComfyUI 部署实战的相关步骤: 运行 ComfyUI 并加载工作流。在命令行终端操作,在浏览器输入相应地址,出现界面。默认的 ComfyUI 版本存在一些问题,需安装 ComfyUI Manager 插件。再次运行 python main.py 出现 Manager 菜单,可跑文生视频的工作流。工作流可从指定途径获取,使用 ComfyUI 菜单的 load 功能加载,点击菜单栏「Queue Prompt」开始视频生成,通过工作流上的绿色框查看运行进度,在 ComfyUI 目录下的 output 文件夹查看生成好的视频。若生成视频时出现显存溢出问题,有相应解决办法。 关于 ComfyUI 的介绍:现在甚至可以生成视频等,包括写真、表情包、换脸、换装等,只需要一个工作流一键完成,后续会一一讲解介绍如何使用。如何启动搭建 Comfyui 界面的部分简单带过。
2024-11-09
comfyui教程
以下是为您提供的 ComfyUI 教程相关信息: 有几个网站提供了关于 ComfyUI 的学习教程: ComfyUI 官方文档:提供了使用手册和安装指南,适合初学者和有经验的用户。网址:https://www.comfyuidoc.com/zh/ 优设网:提供了详细的入门教程,适合初学者,介绍了特点、安装方法及生成图像等内容。网址:https://www.uisdc.com/comfyui3 知乎:有用户分享了部署教程和使用说明,适合有一定基础并希望进一步了解的用户。网址:https://zhuanlan.zhihu.com/p/662041596 Bilibili:提供了从新手入门到精通各个阶段的系列视频教程。网址:https://www.bilibili.com/video/BV14r4y1d7r8/ 全面的 ComfyUI 教程:https://www.comflowy.com/zhCN 超有意思的 ComfyUI 教程:https://comfyanonymous.github.io/ComfyUI_tutorial_vn/ 此外,ComfyUI 基础教程中关于 KSampler 的部分: KSampler 即采样器,包含以下参数: seed:随机种子,用于控制潜空间的初始噪声,若要重复生成相同图片,需种子和 Prompt 相同。 control_after_generate:设置每次生成完图片后 seed 数字的变化规则,有 randomize(随机)、increment(递增 1)、decrement(递减 1)、fixed(固定)。 step:采样的步数,一般步数越大效果越好,但与使用的模型和采样器有关。 cfg:一般设置为 6 8 之间较好。 sampler_name:可设置采样器算法。 scheduler:控制每个步骤中去噪的过程,可选择不同的调度算法。 denoise:表示要增加的初始噪声,文生图一般默认设置成 1。 内容由 AI 大模型生成,请仔细甄别。
2024-11-09
comfyui
ComfyUI 是一个基于节点流程式的 stable diffusion AI 绘图工具 WebUI,以下是关于它的详细介绍: 简介:可以想象成集成了 stable diffusion 功能的 substance designer,通过将 stable diffusion 的流程拆分成节点,实现更精准的工作流定制和完善的可复现性。 优劣势: 优势: 对显存要求相对较低,启动速度快,出图速度快。 具有更高的生成自由度。 可以和 webui 共享环境和模型。 可以搭建自己的工作流程,可以导出流程并分享给别人,报错时能清晰发现错误所在步骤。 生成的图片拖进后会还原整个工作流程,模型也会选择好。 劣势: 操作门槛高,需要有清晰的逻辑。 生态没有 webui 多(常用的都有),但也有一些针对 Comfyui 开发的有趣插件。 官方链接:从 github 上下载作者部署好环境和依赖的整合包,按照官方文档安装即可:https://github.com/comfyanonymous/ComfyUI 安装部署: 电脑硬件要求: 系统:Windows7 以上。 显卡要求:NVDIA 独立显卡且显存至少 4G 起步。 硬盘留有足够的空间,最低 100G 起步(包括模型)。 注:mac 系统,AMD 显卡,低显卡的情况也可以安装使用,但功能不全,出错率偏高,严重影响使用体验,个人建议升级设备或者采用云服务器玩耍。 下载并安装所需要环境: 依次下载并安装 python、Git、VSCode,安装过程中一直点击勾选对应选项,一直下一步。 安装 Python:https://www.python.org/downloads/release/python3119/ ,安装时选中“将 Python 添加到系统变量”。 安装 VSCode:https://code.visualstudio.com/Download 。 安装 Git:https://gitscm.com/download/win 。 安装 CUDA:https://developer.nvidia.com/cuda1220downloadarchive?target_os=Windows&target_arch=x86_64&target_version=11&target_type=exe_network 。 安装步骤: 地址:https://github.com/comfyanonymous/ComfyUI ,可以下载安装包也可以直接 Git clone https://github.com/comfyanonymous/ComfyUI.git ,或者下载安装包 file:ComfyUI.zip ,https://github.com/comfyanonymous/ComfyUI ,下载安装包或者点击链接下载并解压至本地除 C 盘外的任意盘。然后找到文件名称为 run_nvidia_gpu 的文件双击并启动。启动完成即进入基础界面。 节点存放目录:comfyUI 的节点包括后面安装的拓展节点都存放在本目录下 D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\custom_nodes 。 模型存放目录: 大模型:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\checkpoints 。 Lora:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\loras 。 Vae:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\vae 。 模型共用:已经安装了 SDWebUI 的同学可以通过修改文件路径和 WebUI 共用一套模型即可,这样就不用重复下载模型了。找到已安装好的 ComfyUI 目录文件下的 extra_model_paths.yaml.example 文件,将后缀.example 删除,然后右键用记事本打开。
2024-11-09
ComfyUI是什么
ComfyUI 是一个基于节点流程式的 stable diffusion AI 绘图工具 WebUI,您可以将其视为集成了 stable diffusion 功能的 substance designer。通过把 stable diffusion 的流程拆分成节点,实现了更精准的工作流定制和良好的可复现性。 其具有以下优劣势: 优势: 1. 对显存要求相对较低,启动速度快,出图速度快。 2. 具有更高的生成自由度。 3. 可以和 webui 共享环境和模型。 4. 可以搭建自己的工作流程,可以导出流程并分享给别人,报错时能清晰发现错误所在步骤。 5. 生成的图片拖进后会还原整个工作流程,模型也会选择好。 劣势: 1. 操作门槛高,需要有清晰的逻辑。 2. 生态没有 webui 多(但常用的都有),也有一些针对 Comfyui 开发的有趣插件。 ComfyUI 是一个开源的图形用户界面,主要基于 Stable Diffusion 等扩散模型。其工作原理包括: 1. Pixel Space(像素空间):图的左边表示输入图像的像素空间,在 ComfyUI 中,对应于可能通过“图像输入”模块或直接从文本提示生成的随机噪声图像。生成过程结束时,系统会将处理后的潜在表示转换回像素空间,生成最终的图像。 2. Latent Space(潜在空间):ComfyUI 中的许多操作都在潜在空间中进行,如 KSampler 节点就是在这个空间中执行采样过程。图像被映射到潜在空间后,扩散过程在这个空间中进行。在 ComfyUI 中,您可以通过节点调整对潜在空间的操作,如噪声添加、去噪步数等。 3. 扩散过程(Diffusion Process):噪声的生成和逐步还原。扩散过程表示从噪声生成图像的过程。在 ComfyUI 中,通常通过调度器(Schedulers)控制,典型的调度器有 Normal、Karras 等,它们会根据不同的采样策略逐步将噪声还原为图像。您可以通过 ComfyUI 中的“采样器”节点选择不同的调度器,来控制如何在潜在空间中处理噪声,以及如何逐步去噪回归到最终图像。时间步数:在生成图像时,扩散模型会进行多个去噪步。 您可以从 github 上下载作者部署好环境和依赖的整合包,按照官方文档安装即可,官方链接为:https://github.com/comfyanonymous/ComfyUI 。 此外,开源项目作者 ailm 在 ComfyUI 上搭建了一个可以接入飞书的 AI 女友麦洛薇(mylover),实现了稳定人设,无限上下文,永久记忆,无缝联动 SD 绘图等功能,适合完全没有代码基础的小伙伴们复现并且按自己的想法修改。
2024-11-06
ComfyUI 工作流
ComfyUI 的工作流是其核心部分,指的是节点结构及数据流运转过程。以下为您介绍一些相关内容: 推荐工作流网站: “老牌” workflow 网站 Openart.ai:https://openart.ai/workflows/ 。流量较高,支持上传、下载、在线生成,免费账户有 50 个积分,加入 Discord 可再加 100 积分,开通最低每月 6 美元的套餐后,每月有 5000 积分。 ComfyWorkflows 网站:https://comfyworkflows.com/cloud 。支持在线运行工作流,从实际下载量和访问量来看,略少于 openart。 Flowt.ai:https://flowt.ai/community 工作流设计方面: ComfyUI 将开源绘画模型 Stable Diffusion 进行工作流化操作,用户在流程编辑器中配置 pipeline,通过节点和连线完成模型操作和图片生成,提高流程可复用性,降低时间成本,其 DSL 配置文件支持导出导入。 Dify.AI 的工作流设计语言与 ComfyUI 有相似之处,都定义了标准化的 DSL 语言,方便导入导出复用工作流。 模仿式工作流是一种快速学习方法,Large Action Model 采用“通过演示进行模仿”的技术,从用户示例中学习。 但 Agentic Workflow 存在使用用户较少、在复杂流程开发上不够稳定可靠等问题。 动画工作流示例: :https://bytedance.feishu.cn/space/api/box/stream/download/all/GCSQbdL1oolBiUxV0lRcjJeznYe?allow_redirect=1 :https://bytedance.feishu.cn/space/api/box/stream/download/all/LcYfbgXb4oZaTCxWMnacJuvbnJf?allow_redirect=1 :https://bytedance.feishu.cn/space/api/box/stream/download/all/WGdJbouveo6b9Pxg3y8cZpXQnDg?allow_redirect=1 :https://bytedance.feishu.cn/space/api/box/stream/download/all/KZjObxCpSoF1WuxQ2lccu9oinVb?allow_redirect=1 :https://bytedance.feishu.cn/space/api/box/stream/download/all/EVdUbp7kvojwH4xJEJ3cuEp0nPv?allow_redirect=1 :https://bytedance.feishu.cn/space/api/box/stream/download/all/TnwFbAx3FoU617x8iabcOSYcnXe?allow_redirect=1 :https://bytedance.feishu.cn/space/api/box/stream/download/all/TWwCbnVOtoyMpyxpGBqcUECLnNc?allow_redirect=1
2024-11-04
常用的结构化提示词框架有哪些?
以下是一些常用的结构化提示词框架: 1. 基础的结构化编写 Prompt 框架: Role: Profile: author:作者 version:版本 language:中文 description: Goals: 1. 2. Constrains: Skills: Workflows: 1. 2. 2. CRISPE 框架(Capacity and Role,Insight,Statement,Personality,Experiment) 3. BROKE 框架(Background,Role,Objectives,Key Results,Evolve) 4. ICIO 框架: Instruction(指令):明确定义 AI 需要执行的任务,遵循简洁明了、具体详细、行动导向、单一任务等原则。 Context(背景信息):提供任务的相关背景,包括任务目的、目标受众、相关背景、限制条件、角色扮演等。 Input Data(输入数据):为 AI 提供执行任务所需的具体信息或数据。 Output Indicator(输出引导):指导 AI 如何构建和呈现输出结果,包括格式要求、语气和风格、长度限制、结构指引、特殊要求、评估标准等。
2024-11-14
提示词学习
以下是关于提示词学习的相关内容: 提示词的知识体系: 可分为五个维度,从高到低依次是思维框架、方法论、语句、工具和场景。但对于初学者,舒适的学习顺序应是反过来的。 学习 Stable Diffusion 提示词的步骤: 1. 学习基本概念:了解其工作原理、模型架构,理解提示词如何影响生成结果,掌握提示词的组成部分。 2. 研究官方文档和教程:通读官方文档,研究开发团队和专家的教程与技巧分享。 3. 学习常见术语和范例:熟悉相关领域术语和概念,研究优秀的图像标题和描述作为范例。 4. 掌握关键技巧:学会组合词条精确描述效果,掌握控制生成权重的符号技巧,处理抽象概念等无形事物的描述。 5. 实践和反馈:尝试生成不同风格和主题的图像,对比结果并总结经验,在社区分享请教获取反馈。 6. 创建提示词库:按主题、风格等维度建立,记录成功案例方便复用。 7. 持续跟进前沿:关注最新更新和社区分享,掌握新技术、新范式、新趋势。 学习提示词运用的建议: 1. 理解提示词的作用:向模型提供上下文和指示,影响模型输出质量。 2. 学习构建技巧:明确任务目标,用简洁准确语言描述,提供背景信息和示例,使用清晰指令,明确特殊要求。 3. 参考优秀案例:在领域社区、Github 等资源中研究学习。 4. 实践、迭代、优化:与语言模型互动,根据输出提高提示词质量,尝试变体并分析差异。 5. 活用提示工程工具:如 Anthropic 的 Constitutional AI 等。 6. 跟上前沿研究:持续关注最新研究成果和方法论。
2024-11-13
我现在正在使用mid journey生成图片,做漫画,我想知道怎么样写提示词,才能更好的让mid journey生成我需要的图片
以下是关于在 Midjourney 中写提示词以生成所需图片的一些指导: 1. 常规操作: 登录 Discord 网站,打开 MJ 服务器出图。 通过 /imagine 命令,在对话框输入“/imagine”激活指令,然后把提示词粘贴到“prompt”后面,点击发送即可。 想要多少张图片,就要输入多少次提示词,且输入下一次提示词之前,要等待上一张图片生成完毕。 2. 使用插件提效: Autojourney 是电脑浏览器的一个插件,可在浏览器拓展程序中下载安装。 它功能强大,支持批量发送提示词、自动下载图片、自动放大图片、生成提示词等功能,能够提高使用 Midjourney 的效率。 点击浏览器右上角的插件,选择 Autojourney 插件将其激活,将提示词复制到插件中点击发送,提示词会排队进入 MJ 发送程序,自动批量出图。 Autojourney 插件支持一次输入 10 组提示词。 3. Midjourney V6 更新风格参考命令 2.0“sref”: 将“sref”和 URL添加到提示的末尾,以参考风格参考图像的视觉风格创建新图像。 新提示本身没有美学内容,有助于“sref”的执行。 4. Midjourney 最新编辑器更新: 常见问题:提出极其不合适的请求或要求修改非常小的区域,可能无法得到预期结果;在场景中放很小的头部并要求外绘,生成的身体可能会太大。 重纹理化:是一种通过使用另一张图像来引导图像结构或构图的方法,从构图引导图像开始,然后使用提示词和参数添加所需细节。 右侧显示的缩略图:显示器右侧的缩略图显示最近几次编辑会话的记录,左边稍大的缩略图是上传或链接的母图像,其他四张是子图像,展示根据提示生成的不同表达方式。 “View All /查看全部”按钮:每次在不改变选择区域的情况下对母图像进行编辑时,会生成新的缩略图行,更改提示词,新提示词对应的图像会显示在子图像中。
2024-11-13
如何学习提示词
学习提示词可以参考以下步骤和方法: 1. 基础概念学习 了解相关模型(如 Stable Diffusion)的工作原理和架构。 理解提示词如何影响生成结果。 掌握提示词的组成部分,如主题词、修饰词、反面词等。 2. 研究官方资料 通读官方文档,了解提示词相关指南。 研究开发团队和专家的教程、技巧分享。 3. 学习常见术语和范例 熟悉相关领域(如 UI、艺术、摄影)的专业术语和概念。 研究优秀的图像标题和描述作为范例。 4. 掌握关键技巧 学会组合多个词条精确描述想要的效果。 掌握使用特定符号(如“()”、“”)控制生成权重。 学会处理抽象概念、情感等无形事物的描述。 5. 实践与反馈 用不同提示词生成各种风格和主题的图像。 对比结果,分析原因,总结经验。 在社区分享,请教高手获取反馈建议。 6. 创建提示词库 按主题、风格等维度建立自己的词库。 记录成功案例和总结,方便复用。 7. 持续跟进前沿 关注模型的最新更新和社区动态。 掌握提示词的新技术、新范式、新趋势。 此外,还需注意: 1. 理解提示词的作用,它为模型提供上下文和指示,影响输出质量。 2. 学习构建技巧,明确任务目标,用简洁准确语言描述,提供背景信息和示例,使用清晰指令,明确特殊要求。 3. 参考优秀案例,可在领域社区、Github 等资源中寻找。 4. 多实践、迭代、优化,尝试变体并分析输出差异。 5. 活用提示工程工具,如 Anthropic 的 Constitutional AI。 6. 跟上前沿研究,提示工程是前沿领域,持续关注最新成果和方法论。 精心设计的提示词能最大程度发挥语言模型的潜力,多实践、多学习、多总结才能掌握窍门。
2024-11-13
如何学习提示词
学习提示词可以按照以下步骤和方法进行: 1. 基本概念的学习: 了解 Stable Diffusion 的工作原理和模型架构。 理解提示词如何影响生成结果。 掌握提示词的组成部分,如主题词、修饰词、反面词等。 2. 研究官方文档和教程: 通读 Stable Diffusion 官方文档,了解提示词相关指南。 研究来自开发团队和专家的教程和技巧分享。 3. 学习常见术语和范例: 熟悉 UI、艺术、摄影等相关领域的专业术语和概念。 研究优秀的图像标题和描述,作为提示词范例。 4. 掌握关键技巧: 学习如何组合多个词条来精确描述想要的效果。 掌握使用“()”、“”等符号来控制生成权重的技巧。 了解如何处理抽象概念、情感等无形事物的描述。 5. 实践和反馈: 使用不同的提示词尝试生成各种风格和主题的图像。 对比提示词和实际结果,分析原因,总结经验教训。 在社区内分享结果,请教高手,获取反馈和建议。 6. 创建提示词库: 根据主题、风格等维度,建立自己的高质量提示词库。 将成功案例和总结记录在案,方便后续参考和复用。 7. 持续跟进前沿: 关注 Stable Diffusion 的最新更新和社区分享。 及时掌握提示词的新技术、新范式、新趋势。 此外,提示词在现代大型语言模型中极其重要,掌握其运用技巧能最大限度发挥模型潜能。具体包括: 1. 理解提示词的作用:提示词向模型提供上下文和指示,其质量直接影响模型输出质量。 2. 学习提示词的构建技巧:明确任务目标,用简洁准确的语言描述;给予足够背景信息和示例,帮助模型理解语境;使用清晰指令,如“解释”“总结”“创作”等;对特殊要求应给予明确指示,如输出格式、字数限制等。 3. 参考优秀案例:研究和学习已有的优秀提示词案例,了解行之有效的模式和技巧。 4. 实践、迭代、优化:多与语言模型互动,根据输出提高提示词质量。尝试各种变体,比较分析输出差异,持续优化提示词构建。 5. 活用提示工程工具:目前已有一些提示工程工具可供使用。 6. 跟上前沿研究:提示工程是当前前沿研究领域之一,持续关注最新研究成果和方法论。 提示词是给大语言模型的输入文本,用于指定模型执行任务和生成输出,发挥“提示”模型的作用。设计高质量提示词需根据目标任务和模型能力精心设计。学习提示词需要先了解大模型特性,具备清晰表述需求和任务的能力。
2024-11-13
suno提示词怎么写
以下是关于 Suno 提示词的写法: 在创作“离谱村”时,先收到台词素材和配音,构思出“童趣”“欢乐”等词,让 AJ 提出活泼、离谱搞笑的方向。然后把台词和想到的形容词投喂给 GPT4 生成音乐脚本,再将脚本输入给 SunoBeats 生成提示词。但最初生成的提示词太长,之后参考论坛网友分享的格式,即通过调式变化加上情节描述,使用和弦进展推动故事情节发展,让 SunoBeats 模仿这种格式生成提示词,测试发现这种格式的提示词质量更好、利用率更高。 推荐的写法可参考详细教程,如。 Suno 创作音乐的小技巧:如果想参考现有歌曲的节奏,可以在(引子)来更好地告诉 AI 这段歌词应该怎么唱。
2024-11-13