Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

comfyui教程

Answer

以下是为您提供的 ComfyUI 教程相关信息:

  • 有几个网站提供了关于 ComfyUI 的学习教程:
    • ComfyUI 官方文档:提供了使用手册和安装指南,适合初学者和有经验的用户。网址:https://www.comfyuidoc.com/zh/
    • 优设网:提供了详细的入门教程,适合初学者,介绍了特点、安装方法及生成图像等内容。网址:https://www.uisdc.com/comfyui-3
    • 知乎:有用户分享了部署教程和使用说明,适合有一定基础并希望进一步了解的用户。网址:https://zhuanlan.zhihu.com/p/662041596
    • Bilibili:提供了从新手入门到精通各个阶段的系列视频教程。网址:https://www.bilibili.com/video/BV14r4y1d7r8/
  • 全面的 ComfyUI 教程:https://www.comflowy.com/zh-CN
  • 超有意思的 ComfyUI 教程:https://comfyanonymous.github.io/ComfyUI_tutorial_vn/

此外,ComfyUI 基础教程中关于 KSampler 的部分: KSampler 即采样器,包含以下参数:

  • seed:随机种子,用于控制潜空间的初始噪声,若要重复生成相同图片,需种子和 Prompt 相同。
  • control_after_generate:设置每次生成完图片后 seed 数字的变化规则,有 randomize(随机)、increment(递增 1)、decrement(递减 1)、fixed(固定)。
  • step:采样的步数,一般步数越大效果越好,但与使用的模型和采样器有关。
  • cfg:一般设置为 6 - 8 之间较好。
  • sampler_name:可设置采样器算法。
  • scheduler:控制每个步骤中去噪的过程,可选择不同的调度算法。
  • denoise:表示要增加的初始噪声,文生图一般默认设置成 1。

内容由 AI 大模型生成,请仔细甄别。

Content generated by AI large model, please carefully verify (powered by aily)

References

问: 有没有comfy ui相关的学习资料?

是的,根据搜索结果,有几个网站提供了关于ComfyUI的学习教程:1.ComfyUI官方文档:提供了ComfyUI的使用手册和安装指南,适合初学者和有经验的用户。你可以在[ComfyUI官方文档网站](https://www.comfyuidoc.com/zh/)找到相关信息。2.优设网:提供了一篇详细的ComfyUI入门教程,这篇教程适合初学者,详细介绍了ComfyUI的特点、安装方法以及如何使用ComfyUI生成图像等内容。教程地址是[优设网的ComfyUI入门教程](https://www.uisdc.com/comfyui-3)。3.知乎:有用户分享了ComfyUI的部署教程和使用说明,这篇介绍适合那些已经有一定基础并希望进一步了解ComfyUI的用户。可以在[知乎的ComfyUI介绍](https://zhuanlan.zhihu.com/p/662041596)找到相关教程。4.Bilibili:提供了一系列的ComfyUI视频教程,涵盖了从新手入门到精通的各个阶段。这些视频教程可以帮助用户更直观地学习ComfyUI的使用。可以在[Bilibili的ComfyUI系列教程](https://www.bilibili.com/video/BV14r4y1d7r8/)找到视频教程。这些资源为用户提供了丰富的学习材料,从基础操作到高级技巧,可以帮助用户更好地掌握ComfyUI的使用。内容由AI大模型生成,请仔细甄别。

ComfyUI:入门教程

一个全面的ComfyUI教程https://www.comflowy.com/zh-CN发现一个超有意思的comfyui教程https://comfyanonymous.github.io/ComfyUI_tutorial_vn/

小田:ComfyUI基础教程—小谈

KSampler,Sampler中文名称是采样器,如果你想详细了解采样器,可以阅读相关进阶教程,而基础教程只会告诉你如何使用。KSampler包含以下参数:seed:这个是随机种子,它主要用于控制潜空间的初始噪声。如果你想重复生成一模一样的图片。就需要用到这个随机种子。需要注意种子和Prompt都要相同,才能生成一模一样的图。control_after_generate:每次生成完图片后,上面的seed数字都会变化,而这个配置项,则是设置这个变化规则:randomize(随机)、increment(递增1)、decrement(递减1)、fixed(固定)。step:采样的步数。一般步数越大,效果越好,但也跟使用的模型和采样器有关。cfg:这个值设置一般设置为6~8之间会比较好。sampler_name:采样器名称。你可以通过这个来设置采样器算法。scheduler:调度器主要是控制每个步骤中去噪的过程。你可以通过它选择不同的调度算法,有些算法是选择每一步减去相同数量的噪声,有些则是每一步都尽可能去掉多的噪声。denoise:表示要增加多少初始噪声,1表示全部。一般文生图你都可以默认将其设置成1。

Others are asking
我要配置一台跑ComfyUI的电脑,请给我最具性价比的推荐
以下是为您推荐的跑 ComfyUI 最具性价比的电脑配置: 系统:Windows 7 以上。 显卡:建议使用 6GB 以上显存的 NVIDIA 显卡(N 卡),最低要求 NVDIA 独立显卡且显存至少 4G 起步。SDXL 出来后,最低需要 8GB 显存+32GB 运行内存,12GB 可流畅运行,推荐 16GB 以上。运行内存最低 32GB,越高越好,最低配可能会经常爆显存。 硬盘:留有足够的空间,最低 100G 起步(包括模型)。最好把软件和模型部署在 SSD(固态硬盘)上,以提高加载模型的速度。 CPU:无特别要求,但如果您的电脑能顺畅清晰地玩 3A 游戏,那运行 ComfyUI 通常也没问题。 需要注意的是,ComfyUI 相比 WebUI 配置更低,系统资源占用更少,出图速度更快,最低可在小于 3G 的 GPU 上运行,甚至没有 GPU 光用 CPU 也可以运行,但速度极慢。配置上不封顶,您可以根据自己的需求和预算来选择。
2025-02-15
comfyui的本地部署安装,GPU:RX6600 8G,CPU:R5 5600,内存:DDR4 8G*2
以下是关于 ComfyUI 本地部署安装的相关信息: ComfyUI 相比 WebUI,配置更低,系统资源占用更少,出图速度更快,最低可在小于 3G 的 GPU 上运行,甚至没有 GPU 光用 CPU 也可以运行,但速度极慢。SDXL 出来后提高了运行配置,最低需要 8GB 显存+32GB 运行内存,12GB 流畅运行,推荐 16GB 以上。运行内存最低 32GB,越高越好,最低配会经常爆显存。玩 SDwebui 和 ComfyUI 建议使用 6GB 以上显存的 NVIDIA 显卡(N 卡),内存在 16G 以上。硬盘会影响加载模型的速度,最好把软件和模型部署在 SSD 上。如果电脑能顺畅清晰地玩 3A 游戏,那玩 webui 和 ComfyUI 也没问题。配置上不封顶,根据自己的需求和预算来即可。 安装地址:https://github.com/comfyanonymous/ComfyUI 。可以下载安装包也可以直接 Git clone https://github.com/comfyanonymous/ComfyUI.git ,或者下载安装包 file:ComfyUI.zip ,下载安装包或者点击链接下载并解压至本地除 C 盘外的任意盘。然后找到文件名称为 run_nvidia_gpu 的文件双击并启动。启动完成即进入基础界面。 节点存放目录:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\custom_nodes 。 模型存放目录: 大模型:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\checkpoints 。 Lora:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\loras 。 Vae:D:\\COMFYUI\\ComFYUI_windows_portable\\ComfyUI\\models\\vae 。 已经安装了 SDWebUI 的同学可以通过修改文件路径和 WebUI 共用一套模型即可,这样就不用重复下载模型了。找到已安装好的 ComfyUI 目录文件下的 extra_model_paths.yaml.example 文件,将后缀.example 删除,然后右键用记事本打开。 您的电脑配置为 GPU:RX6600 8G,CPU:R5 5600,内存:DDR4 8G2,可能需要注意内存方面可能不太满足推荐配置,可能会影响运行效果。
2025-02-13
如何凭借comfyUI,成为自由职业工作者
ComfyUI 是一种具有独特特点和优势的工具,以下是关于如何凭借它成为自由职业工作者的相关内容: ComfyUI 的概念和重要性: ComfyUI 的 UI 界面相较于 SD WebUI 更为复杂,除输入框外还有很多块状元素和复杂连线。 虽然学习成本较高,但连线并不复杂,小方块与 SD WebUI 的输入框和按钮作用相同,都是对参数进行配置,连线类似搭建自动化工作流,从左到右依次运行。 ComfyUI 的功能和优势: 从功能角度看,它与 SD WebUI 提供的功能相同,但以连线方式呈现。 通过改变节点可实现不同功能,如一个是直接加载图片,一个是通过画板绘制图片,从而实现导入图片生图或绘图生图等不同功能。 选择 ComfyUI 的核心原因在于其自由和拓展性,可根据自身需求搭建适合自己的工作流,无需依赖开发者,还能开发并改造节点。 ComfyUI 的基础界面和操作: 熟悉基本界面,如创建第一个工作流时,要进行加载 Latent(设置图片宽高和批次)、加载 VAE 等操作。 节点分为起始节点、最终输出节点和过程执行节点,将各节点按规则串联,如 checkpoint 加载器、CLIP 对应链接正向和负向提示词等,最终得到工作流。 要成为凭借 ComfyUI 的自由职业工作者,需要多练习和使用,尝试通过变现图片获取收益。
2025-02-10
可以不学sd而是直接学comfyui
学习 ComfyUI 而不先学习 SD 是可行的。ComfyUI 具有一些独特的优势,例如更接近 SD 的底层工作原理,能够实现自动化工作流以消灭重复性工作,作为强大的可视化后端工具还能实现 SD 之外的功能,如调用 API 等,并且可根据定制需求开发节点或模块。 比如,有人基于 ComfyUI 中的创建了工作流,不仅能用于绿幕素材的抠图,还能自动生成定制需求的抠图素材,全程只需几秒。 在电脑硬件方面,使用 ComfyUI 时,系统要求 Windows7 以上,显卡要求 NVDIA 独立显卡且显存至少 4G 起步,硬盘需留有至少 100G 空间(包括模型)。但 mac 系统、AMD 显卡、低显卡的情况也能安装使用,只是功能不全、出错率偏高,严重影响使用体验,建议升级设备或采用云服务器。
2025-02-08
ComfyUI教程
以下是一些关于 ComfyUI 的学习教程资源: 1. ComfyUI 官方文档:提供使用手册和安装指南,适合初学者和有经验的用户,可在获取相关信息。 2. 优设网:有详细的 ComfyUI 入门教程,适合初学者,介绍了特点、安装方法及生成图像等内容,教程地址是。 3. 知乎:有用户分享了 ComfyUI 的部署教程和使用说明,适合有一定基础并希望进一步了解的用户,可在找到相关教程。 4. Bilibili:提供了从新手入门到精通各个阶段的系列视频教程,可在查看。 此外,还有以下教程: 1. 一个全面的 ComfyUI 教程:https://www.comflowy.com/zhCN 2. 超有意思的 ComfyUI 教程:https://comfyanonymous.github.io/ComfyUI_tutorial_vn/ ComfyUI 基础教程中关于 KSampler 的部分: KSampler 即采样器,包含以下参数: 1. seed:随机种子,用于控制潜空间的初始噪声,若要重复生成相同图片,需种子和 Prompt 相同。 2. control_after_generate:设置每次生成完图片后 seed 数字的变化规则,有 randomize(随机)、increment(递增 1)、decrement(递减 1)、fixed(固定)。 3. step:采样的步数,一般步数越大效果越好,但与使用的模型和采样器有关。 4. cfg:一般设置在 6 8 之间较好。 5. sampler_name:可通过此设置采样器算法。 6. scheduler:控制每个步骤中去噪的过程,可选择不同调度算法。 7. denoise:表示要增加的初始噪声,文生图一般默认设置为 1。 内容由 AI 大模型生成,请仔细甄别。
2025-02-07
comfyui
ComfyUI 是一个基于节点流程式的 stable diffusion AI 绘图工具 WebUI,以下是关于它的详细介绍: 简介:可以想象成集成了 stable diffusion 功能的 substance designer,通过将 stable diffusion 的流程拆分成节点,实现更精准的工作流定制和完善的可复现性。 优劣势: 优势:对显存要求相对较低,启动速度快,出图速度快;具有更高的生成自由度;可以和 webui 共享环境和模型;可以搭建自己的工作流程,可以导出流程并分享给别人,报错时能清晰发现错误所在;生成的图片拖进后会还原整个工作流程,模型也会选择好。 劣势:操作门槛高,需要有清晰的逻辑;生态没有 webui 多(常用的都有),也有一些针对 Comfyui 开发的有趣插件。 官方链接:从 github 上下载作者部署好环境和依赖的整合包,按照官方文档按照即可:https://github.com/comfyanonymous/ComfyUI 安装部署: 电脑硬件要求: 系统:Windows7 以上。 显卡要求:NVDIA 独立显卡且显存至少 4G 起步。 硬盘留有足够的空间,最低 100G 起步(包括模型)。 注:mac 系统,AMD 显卡,低显卡的情况也可以安装使用,功能不全,出错率偏高,严重影响使用体验个人建议升级设备或者采用云服务器玩耍。 下载并安装所需要环境: 依次下载并安装 python、Git、VSCode,安装过程中一直点击勾选对应选项,一直下一步。 安装 Python:https://www.python.org/downloads/release/python3119/ ,安装的时候选中“将 Python 添加到系统变量”。 安装 VSCode:https://code.visualstudio.com/Download 。 安装 Git:https://gitscm.com/download/win 。 安装 CUDA:https://developer.nvidia.com/cuda1220downloadarchive?target_os=Windows&target_arch=x86_64&target_version=11&target_type=exe_network 。 地址:https://github.com/comfyanonymous/ComfyUI ,可以下载安装包也可以直接 Git clone https://github.com/comfyanonymous/ComfyUI.git ,或者下载安装包 file:ComfyUI.zip ,下载安装包或者点击链接下载并解压至本地除 C 盘外的任意盘。然后找到文件名称为 run_nvidia_gpu 的文件双击并启动。启动完成即进入基础界面。 节点存放目录:comfyUI 的节点包括后面安装的拓展节点都存放在本目录下 D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\custom_nodes 。 模型存放目录: 大模型:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\checkpoints 。 Lora:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\loras 。 Vae:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\vae 。 模型共用:已经安装了 SDWebUI 的同学可以通过修改文件路径和 WebUI 共用一套模型即可,这样就不用重复下载模型了。找到已安装好的 ComfyUI 目录文件下的 extra_model_paths.yaml.example 文件,将后缀.example 删除,然后右键用记事本打开。
2025-02-07
通义灵码教程
以下是关于通义灵码的教程: 1. 通义灵码安装:在 vscode 中安装通义灵码,包括在应用商店搜索、安装及相关设置。 2. vscode 界面介绍:讲解新下载 vscode 后的界面,如文件操作、左侧栏功能、搜索功能等,重点指出初级阶段需了解的三个点。 3. 通义灵码拖动:演示将通义灵码从左侧拖动至右侧的操作,此操作基于个人习惯,不拖也不影响使用。 4. 活动回顾与目标:回顾第一节课关于 AI 编程的理解、能力边界、表达需求等内容,明确本次活动目标为完成新年接福小游戏。 5. 复刻新年接福小游戏的流程与方法: 明确目标:确定制作小游戏的目的,如为课程增添趣味性。 绘制原型:将想法具象化,画出游戏页面框架,如开始页、游戏中财宝掉落和用户操作等。 准备素材:寻找合适的图片完善游戏画面,如背景图、财宝和人物形象等。 清晰表达:把需求准确表述给 AI 程序员,如创建文件夹、在特定位置编辑需求等。 利用工具:使用 AI 程序员和相关编程工具实现游戏开发。 此外,通义灵码是阿里巴巴团队推出的一款基于通义大模型的智能编程辅助工具,提供行级/函数级实时续写、自然语言生成代码、单元测试生成、代码注释生成、代码解释、研发智能问答、异常报错排查等能力。在 Pytharm 中,通过“文件”“设置”“插件”红色框位置搜索“通义灵码”进行安装(目前免费)。
2025-02-17
有没有lora怎么使用的教程
以下是关于 Lora 使用的教程: 1. 港风胶片 Lora 模型使用方法: 方法 1:利用上一期活动图片反推工作流,使用唯美港风图片进行反推提示词,在大模型后接一个墨悠_胶片 Lora。上一期活动链接:。胶片 Lora 链接:https://www.liblib.art/modelinfo/e16a07d8be544e82b1cd14c37e217119?from=personal_page 方法 2:利用抱脸的 joycaption 图片反推提示词,然后在哩布上跑 flux 文生图工作流。 joycaption 链接(需要魔法):https://huggingface.co/spaces/fancyfeast/joycaptionprealpha 文生图工作流: 在哩布上跑文生图:https://www.liblib.art/modelinfo/e16a07d8be544e82b1cd14c37e217119?from=personal_page 2. Comfyui SDXLLightning 中 Lora 的使用: SDXLLightning 是字节跳动推出的高速文本生成图像模型,包含完整的 UNet 和 LoRA 检查点。用户可以使用 Diffusers 和 ComfyUI 等框架进行配置。模型地址:https://huggingface.co/ByteDance/SDXLLightning/tree/main 。 实际使用时,拿 Lora 的使用来做介绍,使用方法和平常的 Lora 用法一样,但需要注意 CFG 值需要调小,一般设置为 1,另外步数设置根据使用的 Lora 步数为准。 3. Stable Diffusion 中 Lora 的使用: 当想要生成多张同一张脸的照片时,需要用到 Lora 模型。Lora 可以固定照片的特征,如人物特征、动作特征、照片风格。 点击“生成”下面的第三个按钮,弹出新的选项框,找到 Lora,就会出现下载保存到电脑的 Lora 模型。 点击要用的 Lora,会自动添加到关键词的文本框里面。Lora 可以叠加使用,但建议新手不要使用太多 Lora,每个 Lora 后面的数字用于调整权重,一般只会降低权重。 选择 Lora 时,要根据最开始想要生成的照片类型来选择,比如想生成真人模特,对应的 Lora 也要选用真人模特。
2025-02-17
帮我找一些具有文件上传功能的AI智能体或应用的搭建教程
以下是一些具有文件上传功能的 AI 智能体或应用的搭建教程: 使用 Coze 搭建: 方法一:直接使用 Coze 的 API 对接前端 UI 框架,将工作流逻辑集中在工程模板端,实现前后端分离的处理方式。 方法二:直接调用大模型 API,并通过前端代码实现提示词处理和逻辑控制,将交互流程完全放入前端代码中。 实现文件上传:通过 Coze 的,用户可将本地文件上传至 Coze 的云存储。在消息或对话中,文件上传成功后可通过指定 file_id 来直接引用该文件。 Coze 的 API 与工作流执行:关于 API 的使用及工作流执行流程可以参考。 设计界面:搭建 Demo 最简单的方式是首先绘制草图,然后借助多模态 AI 工具(如 GPT/Claude)生成初步的前端结构代码。前端开发语言包括 HTML 用于构建网页基础框架,定义整体页面结构;CSS 负责网页布局样式美化;JavaScript 实现交互逻辑,如信息处理、网络请求及动态交互功能。 Stuart 教学 coze 应用中的“上传图片”: 传递上传图片地址:首先,把工作流的入参设置为 File>Image。然后,注意代码内容,其中 ImageUpload1 部分是可以替换成实际的文件上传组件的组件名称的,一个引号,一个大括号都不能错。 获得图片 URL:接下来就比较简单了,工作流中可以直接用这个 image 变量,也可以用 string 模式输出,它会在工作流中变成图片的 URL。 无企业资质也能 coze 变现: 以 API 形式链接 Zion 和 Coze:同理也可以为 dify、kimi 等给任何大模型&Agent 制作收费前端。参考教程: 自定义配置:变现模版 UI 交互、API、数据库等拓展功能,支持在 Zion 内自由修改,可参考文档配置。相关链接:支付: 微信小程序变现模版正在开发中,不久将会上线。目前实现小程序端可以通过 API 形式搭建。 Zion 支持小程序,Web,AI 行为流全栈搭建,APP 端全栈搭建 2025 上线。
2025-02-16
帮我查找关于文件上传的智能体搭建教程 、
以下是关于文件上传的智能体搭建教程: 1. 上传文档至知识库: 点击【上传知识】按钮,进入知识上传和配置页面。 上传文档文件或 URL 导入。 上传文档类知识:支持上传 pdf(建议)、doc/docx、ppt/pptx、xlsx、csv、txt、md 等类型的文档,当前文档默认上传大小不超过 50M。对于本地化部署的知识库,可通过配置文件调整此限制。 可以添加 URL 类知识:支持添加多个 url 链接,添加后将会至网页中抓取静态内容,当前暂不支持下钻抓取其他网页的内容;手动点击更新后将会从网页上重新爬取内容(仅包含静态网页内容,不可下钻爬取内容)。若企业自有网站会做知识的动态更新,可以手动快速同步到清流平台上。 配置知识的切片方式:切片类型选择当前系统会根据解析的知识类型自动选择,若想了解更多信息,可至【进阶功能】【文档切片调优】处查看。设置支持配置图片处理方式和自定义切片方式,了解更多信息,可至【进阶功能】【文档切片调优】、【图片解析】处查看。 知识预览:根据选择的知识类型,展示预览内容方便查看切片效果。 2. 知识处理学习:配置完成后知识将进入数据处理中状态,主要对知识进行解析、切片和向量化处理,此时耐心等待数据处理完成即可。
2025-02-16
coze教程
以下是关于 Coze 教程的相关内容: 可能是全网最好的 Coze 教程之一,能一次性带您入门 Coze 工作流。即使是非技术出身的爱好者也能上手跟学,一站式学会 AI Agent 从设计到落地的全流程方法论。 阅读指南: 长文预警,请视情况收藏保存。 核心看点: 通过实际案例逐步演示,用 Coze 工作流构建一个能够稳定按照模板要求,生成结构化内容的 AI Agent。 开源 AI Agent 的设计到落地的全过程思路。 10+项常用的 Coze 工作流的配置细节、常见问题与解决方法。 适合人群: 任何玩过 AI 对话产品的一般用户(如果没用过,可以先找个国内大模型耍耍)。 希望深入学习 AI 应用开发平台(如 Coze、Dify),对 AI Agent 工作流配置感兴趣的爱好者。 注:本文不单独讲解案例所涉及 Prompt 的撰写方法。文末「拓展阅读」中,附有相关 Prompt 通用入门教程、Coze 其他使用技巧等内容,以供前置或拓展学习。 此外,还有以下关于 Coze 的介绍: Coze 是新一代一站式 AI Bot 开发平台。无论是否有编程基础,都可以在 Coze 平台上快速搭建基于 AI 模型的各类问答 Bot,从解决简单的问答到处理复杂逻辑的对话。并且,可以将搭建的 Bot 发布到各类社交平台和通讯软件上,与这些平台/软件上的用户互动。 个人认为:Coze 是字节针对 AI Agent 这一领域的初代产品,在 Coze 中将 AI Agent 称之为 Bot。字节针对 Coze 这个产品部署了两个站点,分别是国内版和海外版。 国内版: 网址:https://www.coze.cn 官方文档教程:https://www.coze.cn/docs/guides/welcome 大模型:使用的是字节自研的云雀大模型,国内网络即可正常访问。 海外版: 网址:https://www.coze.com 官方文档教程:https://www.coze.com/docs/guides/welcome 大模型:GPT4、GPT3.5 等大模型(可以在这里白嫖 ChatGPT4,具体参考文档:),访问需要突破网络限制的工具。 参考文档:https://www.coze.com/docs/zh_cn/welcome.html AI Agent 的开发流程: Bot 的开发和调试页面布局主要分为如下几个区块:提示词和人设的区块、Bot 的技能组件、插件、工作流、Bot 的记忆组件、知识库、变量、数据库、长记忆、文件盒子、一些先进的配置、触发器(例如定时发送早报)、开场白(用户和 Bot 初次对话时,Bot 的招呼话语)、自动建议(每当和 Bot 一轮对话完成后,Bot 给出的问题建议)、声音(和 Bot 对话时,Bot 读对话内容的音色)。下面会逐一讲解每个组件的能力以及使用方式。
2025-02-16
coze 教程
以下是为您提供的 Coze 教程相关信息: 一泽 Eze 的教程:可能是全网最好的 Coze 教程之一,一次性带您入门 Coze 工作流。即使是非技术出身的爱好者也能上手跟学,一站式学会 AI Agent 从设计到落地的全流程方法论。阅读指南中提到长文预警,请视情况收藏保存。核心看点包括通过实际案例逐步演示用 Coze 工作流构建能稳定按模板要求生成结构化内容的 AI Agent、开源 AI Agent 的设计到落地的全过程思路、10+项常用的 Coze 工作流的配置细节、常见问题与解决方法。适合人群为玩过 AI 对话产品的一般用户,以及对 AI 应用开发平台(如 Coze、Dify)和 AI Agent 工作流配置感兴趣的爱好者。注:本文不单独讲解案例所涉及 Prompt 的撰写方法。文末「拓展阅读」中,附有相关 Prompt 通用入门教程、Coze 其他使用技巧等内容,以供前置或拓展学习。 相关比赛中的教程: 基础教程: 大圣:胎教级教程:万字长文带你使用 Coze 打造企业级知识库(https://waytoagi.feishu.cn/wiki/CT3UwDM8OiVmOOkohPbcV3JCndb) 大聪明:保姆级教程:Coze 打工你躺平(https://waytoagi.feishu.cn/wiki/PQoUwXwpvi2ex7kJOrIcnQTCnYb) 安仔:Coze 全方位入门剖析免费打造自己的 AI Agent(https://waytoagi.feishu.cn/wiki/SaCFwcw9xi2qcrkmSxscxTxLnxb) 基础教程:Coze“图像流”抢先体验(https://waytoagi.feishu.cn/wiki/AHs2whOS2izNJakGA1NcD5BEnuf) YoYo:Coze 图像流小技巧:探索视觉艺术的隐藏宝藏(https://waytoagi.feishu.cn/wiki/CTajwJnyZizxlJk8a4AcJYywnfe) 【智能体】让 Coze 智能体机器人连上微信和微信群详细配置文档(https://waytoagi.feishu.cn/wiki/ExHMwCDZ7i6NA7knCWucFvFvnvJ)
2025-02-16