直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

ComfyUI 工作流

回答

ComfyUI 的工作流是其核心部分,指的是节点结构及数据流运转过程。以下为您介绍一些相关内容:

  • 推荐工作流网站:
    • “老牌” workflow 网站 Openart.ai:https://openart.ai/workflows/ 。流量较高,支持上传、下载、在线生成,免费账户有 50 个积分,加入 Discord 可再加 100 积分,开通最低每月 6 美元的套餐后,每月有 5000 积分。
    • ComfyWorkflows 网站:https://comfyworkflows.com/cloud 。支持在线运行工作流,从实际下载量和访问量来看,略少于 openart。
    • Flowt.ai:https://flowt.ai/community
  • 工作流设计方面:
    • ComfyUI 将开源绘画模型 Stable Diffusion 进行工作流化操作,用户在流程编辑器中配置 pipeline,通过节点和连线完成模型操作和图片生成,提高流程可复用性,降低时间成本,其 DSL 配置文件支持导出导入。
    • Dify.AI 的工作流设计语言与 ComfyUI 有相似之处,都定义了标准化的 DSL 语言,方便导入导出复用工作流。
    • 模仿式工作流是一种快速学习方法,Large Action Model 采用“通过演示进行模仿”的技术,从用户示例中学习。
    • 但 Agentic Workflow 存在使用用户较少、在复杂流程开发上不够稳定可靠等问题。
  • 动画工作流示例:
    • [111AnimateDiff - From one image to another.json]:https://bytedance.feishu.cn/space/api/box/stream/download/all/GCSQbdL1oolBiUxV0lRcjJeznYe?allow_redirect=1
    • [111 丝滑无闪烁视频转绘.json]:https://bytedance.feishu.cn/space/api/box/stream/download/all/LcYfbgXb4oZaTCxWMnacJuvbnJf?allow_redirect=1
    • [video_upscale_LCM.json]:https://bytedance.feishu.cn/space/api/box/stream/download/all/WGdJbouveo6b9Pxg3y8cZpXQnDg?allow_redirect=1
    • [音频生成视频一键 mv_第一版.json]:https://bytedance.feishu.cn/space/api/box/stream/download/all/KZjObxCpSoF1WuxQ2lccu9oinVb?allow_redirect=1
    • [多曲线 animatediff 动画 0506(2).json]:https://bytedance.feishu.cn/space/api/box/stream/download/all/EVdUbp7kvojwH4xJEJ3cuEp0nPv?allow_redirect=1
    • [AnimateDIff 时间穿梭工作流.json]:https://bytedance.feishu.cn/space/api/box/stream/download/all/TnwFbAx3FoU617x8iabcOSYcnXe?allow_redirect=1
    • [SVD - 图生视频工作流.json]:https://bytedance.feishu.cn/space/api/box/stream/download/all/TWwCbnVOtoyMpyxpGBqcUECLnNc?allow_redirect=1
内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

ComfyUI工作流网站

Workflow是ComfyUI的精髓。所谓Workflow工作流,在ComfyUI这里就是它的节点结构及数据流运转过程。[heading2]推荐工作流网站[heading3]“老牌” workflow网站Openart.ai[content]https://openart.ai/workflows/流量比较高,支持上传、下载、在线生成,免费账户总共有50个积分,加入Discord可以再加100积分,开通最低的每个月6美元的套餐后,每个月会有5000积分。[heading3]ComfyWorkflows网站[content]https://comfyworkflows.com/cloud支持在线运行工作流,从workflow的实际下载量和访问量来看,略少于openart。[heading3]Flowt.ai[content]https://flowt.ai/community

Inhai: Agentic Workflow:AI 重塑了我的工作流

[title]Inhai:Agentic Workflow:AI重塑了我的工作流RPA其实很早就已经出现,就是做工作流编排领域。流程机器人(RPA)软件的目标是使符合某些适用性标准的基于桌面的业务流程和工作流程实现自动化,一般来说这些操作在很大程度上是重复的,数量比较多的,并且可以通过严格的规则和结果来定义,现在越来越多的RPA软件带上了LLM。ComfyUI的工作流设计近期出现的ComfyUI是将开源绘画模型Stable Diffusion进行工作流化操作模式,用户需要在流程编辑器中配置出每一个的pipeline,并通过不同节点和连线来完成模型的操作和图片内容生成,提高了流程的可复用性,降低了时间成本,同时它的DSL配置文件还支持导出导入。Dify.AI可被复制的工作流设计在Dify.AI中,我很兴奋的看到它的工作流设计语言跟ComfyUI会有一些相似之处,都是定义了一套标注化的DSL语言,并且非常方便的可以使用导入导出的功能进行工作流的复用。模仿式工作流是最快的学习方法Large Action Model采用称为“通过演示进行模仿”的技术。检查人们在单击按钮或输入数据时如何与界面互动,然后准确地模仿这些操作,他们收集知识并从用户提供的示例中学习,使他们更能适应进一步的变化并能够处理不同的任务。但是,有没有想过一个问题:Agentic Workflow看起来十分美好,但是使用的用户究竟有多少呢?我看了很多Agent商店,通过工作流创建的应用目前来看还是比较少的(可能是出现周期、工作流使用的上手难度等等一系列因素导致),此外Agentic Workflow似乎在复杂流程上的开发又并不是那么稳定可靠。Idea Time:通过自然语言创建工作流

啊朔:Comfyui工作流

[title]啊朔:Comfyui工作流[heading2]动画工作流[111AnimateDiff - From one image to another.json](https://bytedance.feishu.cn/space/api/box/stream/download/all/GCSQbdL1oolBiUxV0lRcjJeznYe?allow_redirect=1)[111丝滑无闪烁视频转绘.json](https://bytedance.feishu.cn/space/api/box/stream/download/all/LcYfbgXb4oZaTCxWMnacJuvbnJf?allow_redirect=1)[video_upscale_LCM.json](https://bytedance.feishu.cn/space/api/box/stream/download/all/WGdJbouveo6b9Pxg3y8cZpXQnDg?allow_redirect=1)[音频生成视频一键mv_第一版.json](https://bytedance.feishu.cn/space/api/box/stream/download/all/KZjObxCpSoF1WuxQ2lccu9oinVb?allow_redirect=1)[多曲线animatediff动画0506(2).json](https://bytedance.feishu.cn/space/api/box/stream/download/all/EVdUbp7kvojwH4xJEJ3cuEp0nPv?allow_redirect=1)[AnimateDIff时间穿梭工作流.json](https://bytedance.feishu.cn/space/api/box/stream/download/all/TnwFbAx3FoU617x8iabcOSYcnXe?allow_redirect=1)[SVD-图生视频工作流.json](https://bytedance.feishu.cn/space/api/box/stream/download/all/TWwCbnVOtoyMpyxpGBqcUECLnNc?allow_redirect=1)

其他人在问
comfyUI
ComfyUI 是一个基于节点流程式的 stable diffusion AI 绘图工具 WebUI,以下是关于它的详细介绍: 简介:可以想象成集成了 stable diffusion 功能的 substance designer,通过将 stable diffusion 的流程拆分成节点,实现更精准的工作流定制和完善的可复现性。 优劣势: 优势: 对显存要求相对较低,启动速度快,出图速度快。 具有更高的生成自由度。 可以和 webui 共享环境和模型。 可以搭建自己的工作流程,可以导出流程并分享给别人,报错时能清晰发现错误所在步骤。 生成的图片拖进后会还原整个工作流程,模型也会选择好。 劣势: 操作门槛高,需要有清晰的逻辑。 生态没有 webui 多(常用的都有),但也有一些针对 Comfyui 开发的有趣插件。 官方链接:从 github 上下载作者部署好环境和依赖的整合包,按照官方文档安装即可:https://github.com/comfyanonymous/ComfyUI 安装部署: 电脑硬件要求: 系统:Windows7 以上。 显卡要求:NVDIA 独立显卡且显存至少 4G 起步。 硬盘留有足够的空间,最低 100G 起步(包括模型)。 注:mac 系统,AMD 显卡,低显卡的情况也可以安装使用,但功能不全,出错率偏高,严重影响使用体验,个人建议升级设备或者采用云服务器玩耍。 下载并安装所需要环境: 依次下载并安装 python、Git、VSCode,安装过程中一直点击勾选对应选项,一直下一步。 安装 Python:https://www.python.org/downloads/release/python3119/ ,安装时选中“将 Python 添加到系统变量”。 安装 VSCode:https://code.visualstudio.com/Download 。 安装 Git:https://gitscm.com/download/win 。 安装 CUDA:https://developer.nvidia.com/cuda1220downloadarchive?target_os=Windows&target_arch=x86_64&target_version=11&target_type=exe_network 。 安装步骤: 地址:https://github.com/comfyanonymous/ComfyUI ,可以下载安装包也可以直接 Git clone https://github.com/comfyanonymous/ComfyUI.git ,或者下载安装包 file:ComfyUI.zip ,https://github.com/comfyanonymous/ComfyUI ,下载安装包或者点击链接下载并解压至本地除 C 盘外的任意盘。然后找到文件名称为 run_nvidia_gpu 的文件双击并启动。启动完成即进入基础界面。 节点存放目录:comfyUI 的节点包括后面安装的拓展节点都存放在本目录下 D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\custom_nodes 。 模型存放目录: 大模型:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\checkpoints 。 Lora:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\loras 。 Vae:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\vae 。 模型共用:已经安装了 SDWebUI 的同学可以通过修改文件路径和 WebUI 共用一套模型即可,这样就不用重复下载模型了。找到已安装好的 ComfyUI 目录文件下的 extra_model_paths.yaml.example 文件,将后缀.example 删除,然后右键用记事本打开。 快捷键:暂未提及。
2024-11-09
comfyui做视频
以下是关于 comfyui 做视频的相关信息: 一些人员在相关领域的情况: 德方:18600081286,从事设计、建模、绘图、效果图、视频工作。 谌峰:13925911177,从事视频,人物,室内设计工作。 陈铭生:18861511571,利用 comfyUI 做 AI 视频,掌握 comfy 工作流设计,给一些公司定制 comfy 流程。 郑路:18868755172,进行出图、短视频创作。 塵:从事绘图与视频工作。 阿牛:13720121256,掌握 comfy 工作流。 Stable Video Diffusion 模型核心内容与部署实战中 ComfyUI 部署实战的相关步骤: 运行 ComfyUI 并加载工作流。在命令行终端操作,在浏览器输入相应地址,出现界面。默认的 ComfyUI 版本存在一些问题,需安装 ComfyUI Manager 插件。再次运行 python main.py 出现 Manager 菜单,可跑文生视频的工作流。工作流可从指定途径获取,使用 ComfyUI 菜单的 load 功能加载,点击菜单栏「Queue Prompt」开始视频生成,通过工作流上的绿色框查看运行进度,在 ComfyUI 目录下的 output 文件夹查看生成好的视频。若生成视频时出现显存溢出问题,有相应解决办法。 关于 ComfyUI 的介绍:现在甚至可以生成视频等,包括写真、表情包、换脸、换装等,只需要一个工作流一键完成,后续会一一讲解介绍如何使用。如何启动搭建 Comfyui 界面的部分简单带过。
2024-11-09
comfyui教程
以下是为您提供的 ComfyUI 教程相关信息: 有几个网站提供了关于 ComfyUI 的学习教程: ComfyUI 官方文档:提供了使用手册和安装指南,适合初学者和有经验的用户。网址:https://www.comfyuidoc.com/zh/ 优设网:提供了详细的入门教程,适合初学者,介绍了特点、安装方法及生成图像等内容。网址:https://www.uisdc.com/comfyui3 知乎:有用户分享了部署教程和使用说明,适合有一定基础并希望进一步了解的用户。网址:https://zhuanlan.zhihu.com/p/662041596 Bilibili:提供了从新手入门到精通各个阶段的系列视频教程。网址:https://www.bilibili.com/video/BV14r4y1d7r8/ 全面的 ComfyUI 教程:https://www.comflowy.com/zhCN 超有意思的 ComfyUI 教程:https://comfyanonymous.github.io/ComfyUI_tutorial_vn/ 此外,ComfyUI 基础教程中关于 KSampler 的部分: KSampler 即采样器,包含以下参数: seed:随机种子,用于控制潜空间的初始噪声,若要重复生成相同图片,需种子和 Prompt 相同。 control_after_generate:设置每次生成完图片后 seed 数字的变化规则,有 randomize(随机)、increment(递增 1)、decrement(递减 1)、fixed(固定)。 step:采样的步数,一般步数越大效果越好,但与使用的模型和采样器有关。 cfg:一般设置为 6 8 之间较好。 sampler_name:可设置采样器算法。 scheduler:控制每个步骤中去噪的过程,可选择不同的调度算法。 denoise:表示要增加的初始噪声,文生图一般默认设置成 1。 内容由 AI 大模型生成,请仔细甄别。
2024-11-09
comfyui
ComfyUI 是一个基于节点流程式的 stable diffusion AI 绘图工具 WebUI,以下是关于它的详细介绍: 简介:可以想象成集成了 stable diffusion 功能的 substance designer,通过将 stable diffusion 的流程拆分成节点,实现更精准的工作流定制和完善的可复现性。 优劣势: 优势: 对显存要求相对较低,启动速度快,出图速度快。 具有更高的生成自由度。 可以和 webui 共享环境和模型。 可以搭建自己的工作流程,可以导出流程并分享给别人,报错时能清晰发现错误所在步骤。 生成的图片拖进后会还原整个工作流程,模型也会选择好。 劣势: 操作门槛高,需要有清晰的逻辑。 生态没有 webui 多(常用的都有),但也有一些针对 Comfyui 开发的有趣插件。 官方链接:从 github 上下载作者部署好环境和依赖的整合包,按照官方文档安装即可:https://github.com/comfyanonymous/ComfyUI 安装部署: 电脑硬件要求: 系统:Windows7 以上。 显卡要求:NVDIA 独立显卡且显存至少 4G 起步。 硬盘留有足够的空间,最低 100G 起步(包括模型)。 注:mac 系统,AMD 显卡,低显卡的情况也可以安装使用,但功能不全,出错率偏高,严重影响使用体验,个人建议升级设备或者采用云服务器玩耍。 下载并安装所需要环境: 依次下载并安装 python、Git、VSCode,安装过程中一直点击勾选对应选项,一直下一步。 安装 Python:https://www.python.org/downloads/release/python3119/ ,安装时选中“将 Python 添加到系统变量”。 安装 VSCode:https://code.visualstudio.com/Download 。 安装 Git:https://gitscm.com/download/win 。 安装 CUDA:https://developer.nvidia.com/cuda1220downloadarchive?target_os=Windows&target_arch=x86_64&target_version=11&target_type=exe_network 。 安装步骤: 地址:https://github.com/comfyanonymous/ComfyUI ,可以下载安装包也可以直接 Git clone https://github.com/comfyanonymous/ComfyUI.git ,或者下载安装包 file:ComfyUI.zip ,https://github.com/comfyanonymous/ComfyUI ,下载安装包或者点击链接下载并解压至本地除 C 盘外的任意盘。然后找到文件名称为 run_nvidia_gpu 的文件双击并启动。启动完成即进入基础界面。 节点存放目录:comfyUI 的节点包括后面安装的拓展节点都存放在本目录下 D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\custom_nodes 。 模型存放目录: 大模型:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\checkpoints 。 Lora:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\loras 。 Vae:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\vae 。 模型共用:已经安装了 SDWebUI 的同学可以通过修改文件路径和 WebUI 共用一套模型即可,这样就不用重复下载模型了。找到已安装好的 ComfyUI 目录文件下的 extra_model_paths.yaml.example 文件,将后缀.example 删除,然后右键用记事本打开。
2024-11-09
ComfyUI是什么
ComfyUI 是一个基于节点流程式的 stable diffusion AI 绘图工具 WebUI,您可以将其视为集成了 stable diffusion 功能的 substance designer。通过把 stable diffusion 的流程拆分成节点,实现了更精准的工作流定制和良好的可复现性。 其具有以下优劣势: 优势: 1. 对显存要求相对较低,启动速度快,出图速度快。 2. 具有更高的生成自由度。 3. 可以和 webui 共享环境和模型。 4. 可以搭建自己的工作流程,可以导出流程并分享给别人,报错时能清晰发现错误所在步骤。 5. 生成的图片拖进后会还原整个工作流程,模型也会选择好。 劣势: 1. 操作门槛高,需要有清晰的逻辑。 2. 生态没有 webui 多(但常用的都有),也有一些针对 Comfyui 开发的有趣插件。 ComfyUI 是一个开源的图形用户界面,主要基于 Stable Diffusion 等扩散模型。其工作原理包括: 1. Pixel Space(像素空间):图的左边表示输入图像的像素空间,在 ComfyUI 中,对应于可能通过“图像输入”模块或直接从文本提示生成的随机噪声图像。生成过程结束时,系统会将处理后的潜在表示转换回像素空间,生成最终的图像。 2. Latent Space(潜在空间):ComfyUI 中的许多操作都在潜在空间中进行,如 KSampler 节点就是在这个空间中执行采样过程。图像被映射到潜在空间后,扩散过程在这个空间中进行。在 ComfyUI 中,您可以通过节点调整对潜在空间的操作,如噪声添加、去噪步数等。 3. 扩散过程(Diffusion Process):噪声的生成和逐步还原。扩散过程表示从噪声生成图像的过程。在 ComfyUI 中,通常通过调度器(Schedulers)控制,典型的调度器有 Normal、Karras 等,它们会根据不同的采样策略逐步将噪声还原为图像。您可以通过 ComfyUI 中的“采样器”节点选择不同的调度器,来控制如何在潜在空间中处理噪声,以及如何逐步去噪回归到最终图像。时间步数:在生成图像时,扩散模型会进行多个去噪步。 您可以从 github 上下载作者部署好环境和依赖的整合包,按照官方文档安装即可,官方链接为:https://github.com/comfyanonymous/ComfyUI 。 此外,开源项目作者 ailm 在 ComfyUI 上搭建了一个可以接入飞书的 AI 女友麦洛薇(mylover),实现了稳定人设,无限上下文,永久记忆,无缝联动 SD 绘图等功能,适合完全没有代码基础的小伙伴们复现并且按自己的想法修改。
2024-11-06
COMFYUI的好处
ComfyUI 具有以下好处: 1. 对显存要求相对较低,启动速度快,出图速度快。 2. 具有更高的生成自由度。 3. 可以和 webui 共享环境和模型。 4. 可以搭建自己的工作流程,可以导出流程并分享给别人,报错的时候也能清晰的发现错误出在哪一步。 5. 生成的图片拖进后会还原整个工作流程,模型也会选择好。 此外,ComfyUI 采用连线的方式具有独特优势: 1. 可以根据自己的需求搭建适合自己的工作流,而不需要依赖开发者。 2. 可以根据自己的需求,去开发并改造某个节点。 选择 ComfyUI 最核心的原因在于它的自由和拓展,能够让用户自己调整从而切合工作流,甚至改造工作流。在 AI 发展迅猛的时代,保持灵活是其重要特点。
2024-11-04
设定好程序,在没有人工干预的情况下,AI能保持多久的工作效率。
AI 在没有人工干预的情况下能保持的工作效率时长难以给出确切的固定值,其受到多种因素的影响。 一方面,AI 系统的设计和训练质量会对其持续工作效率产生重要影响。如果系统经过良好的设计和充分的训练,具备应对各种情况的能力,可能在较长时间内保持较高的工作效率。 另一方面,运行环境和所处理任务的复杂性也起着关键作用。例如,处理简单、重复性高且规则明确的任务时,AI 可能在较长时间内保持稳定的效率。但对于复杂多变、需要不断适应新情况的任务,其效率可能会随着时间有所波动。 在实际应用中,一些案例显示,如产品经理使用 GPT 解决性能问题,SQL 执行时间大幅缩短,效率显著提升。但也有观点认为,对于某些工作场景,AI 带来的效率提升有限。 此外,政策层面,如拜登签署的 AI 行政命令中,也强调了在医疗、教育等领域推进 AI 的合理使用,并关注其对劳动力市场的影响,采取措施支持工人等。 总之,AI 无人工干预下的工作效率保持时间因多种因素而异,需要综合考虑系统本身、任务特点等多方面因素。
2024-11-13
用100字概括AI如何改变普通人的工作和生活
AI 正在改变普通人的工作和生活。在工作方面,如制造业可实现预测性维护、质量控制等;金融领域能进行风控和信用评估。在生活中,教育有了数字教师和个性化学习计划,医疗能辅助诊断和研发药物,电商提供个性化推荐,还能有个性化的 AI 助手等。
2024-11-13
AI如何在平面设计工作流中提高效率,具体的步骤有哪些
以下是 AI 在平面设计工作流中提高效率的具体步骤和相关信息: 1. 工具选择 主要工具:Midjourney 和 Stabel Diffusion。 辅助工具:RUNWAY 和 PS beta 等。 2. 工作流效果 创意多样:设计解决方案更为多样和创新,项目中不同创意概念的提出数量增加了 150%。 执行加速:AI 生成的设计灵感和概念显著缩短了创意阶段所需时间,设计师在创意生成阶段的时间缩短了平均 60%。 整体提效:在整体项目的设计时间减少了 18%。 3. 提升能力的方法 建立针对性的 AI 工作流:使用 lora 模型训练的方式,生成特定的形象及 KV 风格,建立包含品牌形象、风格视觉 DNA 的模型,并根据实用场景进行分类。 实用的模型训练:在营销活动期间,根据市场环境和消费者偏好的变化迅速调整 lora 模型。 AI 设计资产储备:建立和管理 AI 设计资产,沉淀相关知识、技能、工具,促进团队内部的知识积累和提升。 此外,对于建筑设计师审核规划平面图,以下是一些可用的 AI 工具: HDAidMaster:云端工具,在建筑、室内和景观设计领域表现出色,搭载自主训练的建筑大模型 ArchiMaster。 Maket.ai:面向住宅行业,在户型和室内软装设计方面有探索,能根据输入需求自动生成户型图。 ARCHITEChTURES:AI 驱动的三维建筑设计软件,在住宅设计早期可引入标准和规范约束设计结果。 Fast AI 人工智能审图平台:形成全自动智能审图流程,实现数据的汇总与管理。 但每个工具都有其特定应用场景和功能,建议根据具体需求选择合适的工具。
2024-11-12
自动化工作流
以下是关于自动化工作流的相关内容: ComfyUI 自动生成抠图素材: 学习使用 ComfyUI 的原因:更接近 SD 的底层工作原理,符合 AI 精神,可消灭重复性工作,作为强大的可视化后端工具能实现 SD 之外的功能,还可根据定制需求开发节点或模块。 制作动机:工作室经常需要抠图素材,传统途径存在问题,在 github 上看到相关项目后创建了工作流,可自动生成定制需求的抠图素材,全程只需几秒。 效果展示及分享:将分享创建工作流的思路和详细步骤。 AIGC 落地应用中的自动化工作流: 推荐产品:Auto GPT/Agent/Baby AGI,它们是基于 GPT4 语言模型的开源应用程序。 核心特征:用户输入目标后可自主执行任务、递归开发和调试代码,包括分解任务、选择工具、执行任务和整合结果。 应用场景:自动化任务、创建自主的 AI 代理、完成各种任务、增强 IDE 的补全功能等。 访问地址: 。 【拔刀刘】自动总结公众号内容并定时推送到微信的工作流: 工作流全貌:双击画板查看高清大图,结合具体细节反复查看。 开始节点:用户在开始节点输入 server 酱的 sendkey 和 rss 列表,key 为 server 酱的 sendkey,获取方式参看文档「相关资源」部分;rss_list 为 rss 列表,可先使用提供的测试数据。 分割 RSS 列表:使用「文本处理」节点,将输入的 rss 列表处理为一行一个,输出为数组,方便后续节点批处理。 读取 RSS 内容:在插件中找到链接读取节点,配置批处理,输入参数选择「分割 rss 列表」的 output,下方输入参数中 url 选择当前节点中的 item1。 汇总 RSS 中所有文章内容:承接上一步文章内容并格式化输出,使用「代码」节点,选择 Python 输入相关代码,配置输出项为类型选择「Array<Object>」,分别输出 title、url、author。一个正常公众号每天推送文章数量不超过 3 篇,因此代码只抓取每个公众号最近三篇的内容以提升工作流运行效率。
2024-11-10
自动工作流
以下是关于自动工作流的相关内容: ComfyUI 自动生成抠图素材: 学习使用 ComfyUI 的原因:更接近 SD 的底层工作原理,符合 AI 精神,可消灭重复性工作,作为强大的可视化后端工具能实现 SD 之外的功能,还可根据定制需求开发节点或模块。 制作动机:工作室经常需要抠图素材,传统途径存在问题,在 github 上看到相关项目后创建了 ComfyUI 工作流,可自动生成定制需求的抠图素材,速度快。 会分享创建工作流的思路和详细步骤讲解。 Inhai:Agentic Workflow: 完成了自己的工作流重塑,分享了关于个人在使用 AI Agent Workflow 上的思考、AINative 应用「Pailido|AI 拍立得」创建的初衷和实现流程,以及在个人工作流重塑上的体悟。 分享大纲围绕 AI Agent 和 Agentic Workflow 从“认识、定义、应用、偏见、实践以及延伸”展开。 介绍了吴恩达老师提出的 4 种主要的 Agentic Workflow 设计模式,包括 Reflection(反思)、Tool Use(工具)、Planning(规划)、Multiagent Collaboration(多智能体协同)。 反思本质上是博弈过程,可让两个 Agent 分别负责 Coding 和 Code Review 以获得更好效果。 提到行业的 Knowhow 是短期内个人不可被替代的固有知识资产,AGI 的时代会越来越近。
2024-11-10
怎么用ai写体制内工作总结
以下是关于使用 AI 写体制内工作总结的一些建议和相关资源: 1. 对于体制内工作总结,您可以参考以下类似的 AI 办公应用案例: 办公:会议总结,涵盖会议主题、参与人员、讨论议题、关键观点、决策、时间、地点、修改要求、文本格式、语言风格、列表、段落等方面。 办公:写邮件,例如写一封关于未及时提供数据的中等大长度的摘要邮件,并列出必须在邮件中解决的问题的项目清单。 2. 有许多 AI 工具可以帮助您编写相关内容,例如: Kickresume 的 AI 简历写作器:使用 OpenAI 的 GPT4 语言模型自动生成简历,包括为简历摘要、工作经验和教育等专业部分编写内容,并保持一致语调。 Rezi:受到超过 200 万用户信任的领先 AI 简历构建平台,使用先进的 AI 技术自动化创建可雇佣简历的每个方面,包括写作、编辑、格式化和优化。 Huntr 的 AI 简历构建器:提供免费的简历模板,以及 AI 生成的总结/技能/成就生成器和 AI 驱动的简历工作匹配。更多 AI 简历产品,还可以查看这里:https://www.waytoagi.com/category/79 。 3. 除了上述内容,AI 还可以帮助您快速总结群聊消息、文章和 B 站视频等。例如总结文章时,可直接复制粘贴给 GPTs 让其总结。对于有字幕的 B 站视频,可通过安装油猴脚本 提取字幕,然后发送给 GPTs 总结。总结完后还可继续提问或探讨。
2024-11-06