Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

在comfyui中执行k值采样器报错是什么原因 ror occurred when executing KSamplerAdvanced:

Answer

在 ComfyUI 中执行 K 值采样器报错,可能由多种原因导致。但仅根据您提供的“[]”内容,难以确切判断具体原因。常见的可能因素包括:

  1. 模型配置问题:模型的参数设置不正确,或者与 K 值采样器的要求不匹配。
  2. 输入数据格式错误:输入给采样器的数据格式不符合要求,例如数据类型、维度等。
  3. 软件版本不兼容:ComfyUI 本身的版本与 K 值采样器存在兼容性问题。
  4. 计算资源不足:系统的内存、GPU 等计算资源不足以支持 K 值采样器的运行。

要准确诊断问题,还需要更多的错误提示信息、相关配置和操作的详细描述。

Content generated by AI large model, please carefully verify (powered by aily)
Others are asking
自定义采样器(高级) Expected all tensors to be on the same device,but found at least two devices,cuda:0 and cpu!(when checking argument for argument mat2 in method wrapper_CUDA_mm)
以下是关于“自定义采样器(高级)”中“Expected all tensors to be on the same device,but found at least two devices,cuda:0 and cpu!(when checking argument for argument mat2 in method wrapper\_CUDA\_mm)”错误的解决办法: 错误原因:Expected all tensors to be on the same device,but found at least two devices,cuda:0 and cpu! 对应插件地址:https://github.com/sipie800/ComfyUIPuLIDFluxEnhanced 资料链接: 百度网盘:通过网盘分享的文件:ComfyUI_PuLID_Flux_ll 链接:https://pan.baidu.com/s/1dMLAb4s0vroO9Zk6ecKb7Q?pwd=cycy 提取码:cycy 来自百度网盘超级会员 v5 的分享 说明文档:https://www.xiaobot.net/post/b98d55699a754b9baac242a3e285be94 由于 AI 技术更新迭代,请以文档更新为准 更多内容收录在:https://xiaobot.net/p/GoToComfyUI 网盘:https://pan.quark.cn/s/129886bbcc61 相关链接: ComfyUI_PuLID_Flux_ll :https://github.com/lldacing/ComfyUI_PuLID_Flux_ll?tab=readmeovfile guozinan/PuLID 模型:https://huggingface.co/guozinan/PuLID/tree/main
2025-02-03
K采样器报错
在 ComfyUI 中处理 K 采样器报错问题,您可以参考以下步骤: 1. 首先,在“K 采样器”处点击“右键”“新建节点”“采样器”,选择“K 采样器(高级)”。因为 SDXL 需要用到 base 和 refiner 两套模型,所以要将模型节点和采样器节点分别复制一份。 2. 为第一个 base 模型的采样器设置参数:添加噪波为 enable,确保打开以添加噪声;步数设置为 30,即迭代的总步数;结束降噪步数设为 20,表示前面 20 步将采用 base 模型进行运算;返回噪波设为 enable,以便将剩下的噪声传递给下一个 refiner 模型。 3. 将这个 base 的采样器传递到下一个 refiner 的采样器,并设置参数:添加噪波为 disable,因为是继承上一个采样器,所以不需要再添加噪声;运行后操作为 fixed,相当于锁定随机种子;步数同样设为 30;开始降噪步数设为 20;结束降噪步数设为 30,也可保持默认;返回噪波设为 disable,到这一步已结束。
2025-02-02
在comfyui中执行k值采样器报错是什么原因
在 ComfyUI 中执行 K 值采样器报错可能有多种原因。以下是一些常见的情况及相关设置步骤: 1. 首先,在“K 采样器”处,可通过点击“右键”“新建节点”“采样器”,选择“K 采样器(高级)”,其会有更多调整参数。 2. 对于 SDXL,由于需要用到 base 和 refiner 两套模型,所以要将模型节点和采样器节点分别复制一份。 对于第一个 base 模型的采样器,参数设置如下: 添加噪波:enable,确保打开以添加噪声。 步数:30,即迭代的总步数。 结束降噪步数:20,代表前面 20 步采用 base 模型进行运算。 返回噪波:enable,以便将剩下的噪声传递给下一个 refiner 模型。 3. 建立第一个工作流时,可按以下步骤操作: 清空所有节点,从零开始。先加载一个模型选择器的节点,右键点击空白处,选择【add node】——【loaders】——【load checkpoint】,生成节点后可选择安装好的大模型,且后面有三个连接点可指向下一个模块。 按住 clip 后面的点进行拖拽,点击【CLIPTextEncode】,得到提示词输入框。同理可再加一个提示词框,形成正向和负向提示架构。 为方便管理,可添加组,将相关节点放在组里一起移动。 从提示词节点后面再次拉出一根线,选择【KSampler】,其中有熟悉的参数如种子数、迭代步数、CFG、采样器等。 最后,设置输出图片尺寸,从【latent image】中拉出一个节点,选择【EmptyLatentImage】。 如果您能提供更具体的报错信息,将更有助于准确判断报错原因。
2024-08-14
sd采样器推荐
在稳定扩散模型中,采样器扮演着重要的角色,它决定了生成图像的质量和多样性。以下是一些常用和推荐的采样器: 1. DDIM 这是稳定扩散模型默认使用的采样器 能生成较高质量和细节的图像 但计算开销较大,生成速度较慢 2. PLMS 一种新型的采样器,相比DDIM,计算效率更高 能生成清晰细节的图像,同时保持良好的多样性 常用于一些需要较高采样步数的任务,如超分辨率 3. Euler a 一种较为经典的采样器 计算开销小,生成速度快 但图像质量相对稍差,细节较少 4. Euler 附属扩散 在 Euler 采样器的基础上进行改进 能生成更好的质量和细节,同时保持较快的速度 5. DPM 采样器 一种质量和样本多样性之间权衡较好的采样器 在采样步数较大时,生成质量可与DDIM媲美 6. DPM++ 对DPM采样器的改进版 进一步提升了生成质量和效率 除了上述采样器,还有一些新兴或实验性的采样器,如DDPM等。 不同的采样器在生成质量、速度、样本多样性等方面有不同的取舍。选择合适的采样器需要根据具体任务需求,在质量、速度和多样性之间进行权衡。同时,不同采样器的参数设置也会影响最终效果,需要进行调试和优化。
2024-04-23
注意Cursor 相关报错原因,如重复安装依赖项、重新创建文件
以下是关于 Cursor 相关报错原因及实践的一些内容: 报错原因: 重复安装依赖项。 重新创建文件。 导入的路径不对。 错误导入已经废弃的文件。 突破 AI 记忆的东西。 Cursor 缓存未更新。 实践经验: 前期描述好需求,在设置里注意 Rules for AI 的提示词。 按照功能模块单独建立实现文档,包括深入理解需求、技术实现、测试等。 学会看代码,了解每一步文件的作用,有助于提升技术理解。 分阶段实现需求,效率更高,只考虑本阶段需求。 主动思考,大语言模型有局限性,如在 Cursor 中可能出现报错排查指引错误的情况,需要人工强介入。 注意细节操作,每次修改完代码要保存再运行,整体修改慎用,新增功能可新开对话,每个项目新建文件夹并将相关文件放在里面,代码中多带日志方便报错调试。 进行单元测试时可能遇到安装缺失库进度慢、Cursor 工作位置错误导致关键文档放错位置和创建垃圾文件等问题。
2025-01-16
instant-id预处理报错
以下是关于 InstantID 预处理报错的一些常见问题及解决方法: 1. 安装后出现报错问题:请查看。 2. 如果是 MacBook Pro M1 出现 InstantID 依赖的 onnxruntimegpu 无法安装的情况,因为 M1 没有 GPU,不能用 onnxruntimegpu 版本,silicon 是适配 M1 的加速版本。在文件路径 ComfyUI/custom_nodes/ComfyUI_InstantID 的 requirements.txt 文件中,把 onnxruntimegpu 替换为 onnxruntimesilicon 即可。双击用文本编辑器打开,替换保存。 3. 如果出现 Import failed:ComfyUIergouzinodes 的情况,在终端中输入 pip3 install colorama 即可。colorama 是一个用于在命令行界面中生成彩色文本和格式化输出的 Python 库。 4. 如果出现 Import failed:LayerMask:SegmentAnythingUltra V2 的情况,可在 GitHub 上给作者提,说明硬件和软件环境,按照作者回复下载最新的包重新安装。 5. 如果是在 macOS 系统中,二狗子的工作流 json 文件中用的文件路径分隔符是反斜杠\\,macOS 系统无法识别,需要全部替换为正斜杠/,不然无法调用模型。
2025-01-01
instantid预处理报错
以下是关于 InstantID 预处理报错的一些常见问题及解决办法: 1. 安装后出现报错问题:请查看。 2. 如果是 MacBook Pro M1 出现 InstantID 依赖的 onnxruntimegpu 无法安装的情况,由于 M1 没有 GPU,不能用 onnxruntimegpu 版本,silicon 是适配 M1 的加速版本。在文件路径 ComfyUI/custom_nodes/ComfyUI_InstantID 的 requirements.txt 文件中,把 onnxruntimegpu 替换为 onnxruntimesilicon 即可。双击用文本编辑器打开,替换保存。 3. 如果出现 Import failed:ComfyUIergouzinodes 的情况,在终端中输入 pip3 install colorama 即可。colorama 是一个用于在命令行界面中生成彩色文本和格式化输出的 Python 库。 4. 如果出现 Import failed:LayerMask:SegmentAnythingUltra V2 的情况,可在 GitHub 上给作者提,说明硬件和软件环境,按照作者回复下载最新的包重新安装。 5. 在 windows 系统和 macOS 系统中,二狗子的工作流 json 文件中,用的文件路径分隔符是反斜杠\\,macOS 系统无法识别,需要全部替换为正斜杠/,不然无法调用模型。
2025-01-01
coze搭建工作流老是报错
搭建 Coze 工作流老是报错可能有以下原因和解决方法: 循环查询文章是否推送过: 循环体内部的数据库节点:用于在数据库中查询文章是否推送过,输入项为文章的 url 和用户的唯一标识 suid。SQL 语句可直接复制。记得设置输出项“combined_output”。同时,Coze 平台要求使用数据库功能时,需在 bot 中设置相同名称和数据结构的数据库进行绑定,具体设置方法参见“相关资源”。 循环体内容的选择器:判断数据库查询内容是否为空,若为空则使用“文本处理”节点拼接文章完整信息。右下方的“文本处理”节点主要是为处理数据库查询到已推送情况的占位项,否则工作流会报错。设置循环节点输出项,选择循环体中“输出新文章内容”拼接后的字符串。 外层 bot 封装与调试: 封装过程包括创建 Bot、填写 Bot 介绍、切换 Bot 模式为“单 Agent(工作流模式)”、添加配置好的工作流、填写开场白并关闭开场白预置问题。 完成封装后在“预览与调试”区进行最终体验与调试。目前外层 bot 可能存在未知 bug,同一段 USER_INPUT 在工作流编辑面板中试运行正常,但在外层 bot 运行时容易报错,暂时无法确定原因,猜测可能是外层 bot 的并发不够稳定,可直接在工作流编辑面板中获取精度结果。若自行实验时多次报错且无法定位原因,不要急于责怪自己,相关 bug 已提交给 Coze 团队等待优化。
2024-12-05
那为什么使用from matplotlib报错
很抱歉,目前没有关于“使用 from matplotlib 报错”的相关内容。可能导致这种报错的原因有很多,比如 matplotlib 库未正确安装、版本不兼容、代码中其他部分的冲突等。您可以检查一下 matplotlib 库的安装情况,确认是否与您当前使用的环境和其他依赖项相匹配。同时,查看报错信息中的具体提示,这通常能为您找到问题的线索。
2024-12-05
comfyui 官网
ComfyUI 是一个基于节点流程式的 stable diffusion AI 绘图工具 WebUI,您可以把它想象成集成了 stable diffusion 功能的 substance designer,通过将 stable diffusion 的流程拆分成节点,实现了更加精准的工作流定制和完善的可复现性。 其优势包括: 1. 对显存要求相对较低,启动速度快,出图速度快。 2. 具有更高的生成自由度。 3. 可以和 webui 共享环境和模型。 4. 可以搭建自己的工作流程,可以导出流程并分享给别人,报错的时候也能清晰的发现错误出在哪一步。 5. 生成的图片拖进后会还原整个工作流程,模型也会选择好。 劣势在于: 1. 操作门槛高,需要有清晰的逻辑。 2. 生态没有 webui 多(常用的都有),也有一些针对 Comfyui 开发的有趣插件。 ComfyUI 的官方链接为:https://github.com/comfyanonymous/ComfyUI 。 关于 ComfyUI 的学习资料,有以下几个网站提供相关教程: 1. ComfyUI 官方文档:提供了使用手册和安装指南,适合初学者和有经验的用户。网站为:https://www.comfyuidoc.com/zh/ 。 2. 优设网:提供了详细的入门教程,适合初学者。教程地址是:https://www.uisdc.com/comfyui3 。 3. 知乎:有用户分享了部署教程和使用说明,适合有一定基础并希望进一步了解的用户。地址:https://zhuanlan.zhihu.com/p/662041596 。 4. Bilibili:提供了一系列从新手入门到精通的视频教程。地址:https://www.bilibili.com/video/BV14r4y1d7r8/ 。 此外,在知乎的“深入浅出完整解析 Stable Diffusion(SD)核心基础知识”中,也有关于零基础使用 ComfyUI 搭建 Stable Diffusion 推理流的内容。
2025-01-23
comfyui
ComfyUI 是一个基于节点流程式的 stable diffusion AI 绘图工具 WebUI,以下是关于它的详细介绍: 简介:可以想象成集成了 stable diffusion 功能的 substance designer,通过将 stable diffusion 的流程拆分成节点,实现更精准的工作流定制和完善的可复现性。 优劣势: 优势: 对显存要求相对较低,启动速度快,出图速度快。 具有更高的生成自由度。 可以和 webui 共享环境和模型。 可以搭建自己的工作流程,可以导出流程并分享给别人,报错时能清晰发现错误所在步骤。 生成的图片拖进后会还原整个工作流程,模型也会选择好。 劣势:操作门槛高,需要有清晰的逻辑;生态没有 webui 多(常用的都有),也有一些针对 Comfyui 开发的有趣插件。 官方链接:从 github 上下载作者部署好环境和依赖的整合包,按照官方文档按照即可:https://github.com/comfyanonymous/ComfyUI 安装部署: 电脑硬件要求: 系统:Windows7 以上。 显卡要求:NVDIA 独立显卡且显存至少 4G 起步。 硬盘留有足够的空间,最低 100G 起步(包括模型)。 注:mac 系统,AMD 显卡,低显卡的情况也可以安装使用,功能不全,出错率偏高,严重影响使用体验个人建议升级设备或者采用云服务器玩耍。 下载并安装所需要环境:依次下载并安装 python、Git、VSCode,安装过程中一直点击勾选对应选项,一直下一步。 安装 Python:https://www.python.org/downloads/release/python3119/ ,安装的时候选中“将 Python 添加到系统变量”。 安装 VSCode:https://code.visualstudio.com/Download 。 安装 Git:https://gitscm.com/download/win 。 安装 CUDA:https://developer.nvidia.com/cuda1220downloadarchive?target_os=Windows&target_arch=x86_64&target_version=11&target_type=exe_network 。 地址:https://github.com/comfyanonymous/ComfyUI ,可以下载安装包也可以直接 Git clone https://github.com/comfyanonymous/ComfyUI.git ,或者下载安装包 file:ComfyUI.zip ,下载安装包或者点击链接下载并解压至本地除 C 盘外的任意盘。然后找到文件名称为 run_nvidia_gpu 的文件双击并启动。启动完成即进入基础界面。 节点存放目录:comfyUI 的节点包括后面安装的拓展节点都存放在本目录下 D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\custom_nodes 。 模型存放目录: 大模型:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\checkpoints 。 Lora:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\loras 。 Vae:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\vae 。 模型共用:已经安装了 SDWebUI 的同学可以通过修改文件路径和 WebUI 共用一套模型即可,这样就不用重复下载模型了。找到已安装好的 ComfyUI 目录文件下的 extra_model_paths.yaml.example 文件,将后缀.example 删除,然后右键用记事本打开。
2025-01-23
comfyui
ComfyUI 是一个基于节点流程式的 stable diffusion AI 绘图工具 WebUI,以下是关于它的详细信息: 简介:可以想象成集成了 stable diffusion 功能的 substance designer,通过将 stable diffusion 的流程拆分成节点,实现更精准的工作流定制和完善的可复现性。 优劣势: 优势: 对显存要求相对较低,启动速度快,出图速度快。 具有更高的生成自由度。 可以和 webui 共享环境和模型。 可以搭建自己的工作流程,可以导出流程并分享给别人,报错时能清晰发现错误所在步骤。 生成的图片拖进后会还原整个工作流程,模型也会选择好。 劣势:操作门槛高,需要有清晰的逻辑;生态没有 webui 多(常用的都有),也有一些针对 Comfyui 开发的有趣插件。 官方链接:从 github 上下载作者部署好环境和依赖的整合包,按照官方文档按照即可:https://github.com/comfyanonymous/ComfyUI 安装部署: 电脑硬件要求: 系统:Windows7 以上。 显卡要求:NVDIA 独立显卡且显存至少 4G 起步。 硬盘留有足够的空间,最低 100G 起步(包括模型)。 注:mac 系统,AMD 显卡,低显卡的情况也可以安装使用,功能不全,出错率偏高,严重影响使用体验个人建议升级设备或者采用云服务器玩耍。 下载并安装所需要环境: 依次下载并安装 python、Git、VSCode,安装过程中一直点击勾选对应选项,一直下一步。 安装 Python:https://www.python.org/downloads/release/python3119/ ,安装的时候选中“将 Python 添加到系统变量”。 安装 VSCode:https://code.visualstudio.com/Download 。 安装 Git:https://gitscm.com/download/win 。 安装 CUDA:https://developer.nvidia.com/cuda1220downloadarchive?target_os=Windows&target_arch=x86_64&target_version=11&target_type=exe_network 。 安装地址:https://github.com/comfyanonymous/ComfyUI ,可以下载安装包也可以直接 Git clone https://github.com/comfyanonymous/ComfyUI.git ,或者下载安装包 file:ComfyUI.zip ,下载安装包或者点击链接下载并解压至本地除 C 盘外的任意盘。然后找到文件名称为 run_nvidia_gpu 的文件双击并启动。启动完成即进入基础界面。 节点存放目录:comfyUI 的节点包括后面安装的拓展节点都存放在本目录下 D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\custom_nodes 。 模型存放目录: 大模型:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\checkpoints 。 Lora:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\loras 。 Vae:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\vae 。 模型共用:已经安装了 SDWebUI 的同学可以通过修改文件路径和 WebUI 共用一套模型即可,这样就不用重复下载模型了。找到已安装好的 ComfyUI 目录文件下的 extra_model_paths.yaml.example 文件,将后缀.example 删除,然后右键用记事本打开。
2025-01-23
如何学习comfyui
以下是一些学习 ComfyUI 的途径和资源: 1. 官方文档:ComfyUI 官方文档提供了使用手册和安装指南,适合初学者和有经验的用户,可在获取相关信息。 2. 优设网:有一篇详细的 ComfyUI 入门教程,适合初学者,详细介绍了其特点、安装方法及生成图像等内容,教程地址是。 3. 知乎:有用户分享了 ComfyUI 的部署教程和使用说明,适合有一定基础并希望进一步了解的用户,可在找到相关教程。 4. Bilibili:提供了一系列涵盖从新手入门到精通各个阶段的视频教程,可在找到。 此外,还有 ComfyUI 共学快闪的飞书学习群,其中包含了众多如 Stuart 风格迁移、红泥小火炉基础课程等各类课程和讲解,如郑个小目标针对于某个插件的深入讲解、波风若川报错解决等。 另外,有人因为以下原因学习使用 ComfyUI:更接近 SD 的底层工作原理;自动化工作流,消灭重复性工作;作为强大的可视化后端工具,可实现 SD 之外的功能,还能根据定制需求开发节点或模块。例如,有人为了工作室获取抠图素材的需求,基于创建了工作流,不仅能用于绿幕素材抠图,还能自动生成定制需求的抠图素材,全程仅需几秒。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-01-23
ComfyUI_LayerStyle
ComfyUI_LayerStyle 相关内容如下: 加载模型部分: 下好工作流中的所需三张图片“SeasonYou_Reference、BG、MASK”以及上传自己所需的照片到 Input 部分。右上角放自己的人像图片(非人像会报错提示“no face detected”)。 对于 vae 加载器部分,选择 xl 版本(因为大模型用的 xl)的 vae 即可。 对于 ipadater 部分,倘若加载器部分报错说 model 不存在,将文中画圈部分修改调整到不报错。 Pulid 部分,除了下载好对应的节点以及参考官方网站最下面的安装对应要求外,还要注意对应安装一些内容,具体要求可查看云盘中命名为“pulid 插件模型位置.png”及对应的云盘链接:PulID 全套模型 链接:https://pan.baidu.com/s/1ami4FA4w9mjuAsPK49kMAw?pwd=y6hb 提取码:y6hb ,否则将会报错。 爆肝博主 ZHO 的更新记录: 3 月 7 日:ComfyUI 支持 Stable Cascade 的 Inpainting ControlNet,ComfyUI 作者在示例页面给出了说明和工作流:https://comfyanonymous.github.io/ComfyUI_examples/stable_cascade/ ,博主自己也整理了一版,分享在:https://github.com/ZHOZHOZHO/ComfyUIWorkflowsZHO ,说明第二个 inpainting+composite 是将原图帖回到重绘之后的效果,是非必要项,按需使用。 3 月 6 日:国内作者把 ps 很多功能都迁移到了 ComfyUI 里,项目是:https://github.com/chflame163/ComfyUI_LayerStyle 。最新版 ComfyUI 支持了一系列图像形态学处理,包括 erode 腐蚀(去除小噪点/分离相邻对象)、dilate 膨胀(填补小洞/连接临近对象)、open 开(先腐蚀后膨胀)、close 闭(先膨胀后腐蚀)、gradient 梯度(膨胀与腐蚀之差)、top_hat 顶帽(原图与开之差)、bottom_hat 底帽(原图与闭之差)。使用方法为:1)更新 ComfyUI;2)右键 image/postprocessing/ImageMorphology;3)接上图像输入和输出即可。
2025-01-15
在comfyUI中可以接入哪些api,又和3D相关的吗
在 ComfyUI 中可以接入以下与 3D 相关的 API: 1. @CSM_ai:可以将文本、图像或草图转换为 3D 素材,并直接应用于游戏中,无需后期处理。体验地址:https://cube.csm.ai ,https://x.com/xiaohuggg/status/1763758877999587757?s=20 2. Move AI 推出的 Move API:可以从 2D 视频生成 3D 运动数据,支持多种 3D 文件格式导出,为 AR 应用、游戏开发等提供高质量 3D 运动数据。链接:https://move.ai/api ,https://x.com/xiaohuggg/status/1761590288576061573?s=20 3. ComfyUI 3D Pack 引入 3D 图像处理:可以快速将图片转换为 3D 模型,支持多角度查看,使用 3D 高斯扩散技术提升模型质量,支持多种格式导出,集成先进 3D 处理算法。链接:https://github.com/MrForExample/ComfyUI3DPack/tree/main ,https://x.com/xiaohuggg/status/1755824687811346514?s=20 此外,ZHO 博主有关于 ComfyUI 的更新记录: 1. 4 月 18 日,ComfyUI Stable Diffusion 3 API 已更新为 V1.5 版,图生图和 SD3 Turbo 都可以正常使用,但 SD3 图生图模式不支持选择比例,SD3 Turbo 模型不支持负面提示词。使用方法是先申请 API,然后填入 config.json 文件即可(每账户 25 免费积分),SD3 每张图 6.5 积分(比较贵)。项目地址:https://github.com/ZHOZHOZHO/ComfyUIStableDiffusion3API ,SD3 API ComfyUI 节点测试成功。 2. 4 月 17 日,Stability AI 刚刚发布了 Stable Diffusion 3 和 Stable Diffusion 3 Turbo,现在已经可通过 Stability AI 开发者平台 API 使用,SAI 计划在不久的将来通过会员资格提供模型权重。详情:https://bit.ly/3W43FjY
2025-01-14
Error occurred when executing IPAdapterAdvanced: insightface model is required for FaceID models File "D:\AI\comfyui_20240421\execution.py", line 151, in recursive_execute output_data, output_ui = get_output_data(obj, input_data_all) File "D:\AI\co
以下是针对您所遇到的报错问题的一些解决建议: 1. 对于 ipadater 部分报错说 model 不存在的情况,将文中画圈部分修改调整到不报错。Pulid 部分,除了下载好对应的节点以及参考官方网站最下面的安装对应要求外,还要注意上图中的第二要点,对应安装一些内容,具体要求可查看云盘中命名为“pulid 插件模型位置.png”的文件及对应的云盘链接:PulID 全套模型,链接:https://pan.baidu.com/s/1ami4FA4w9mjuAsPK49kMAw?pwd=y6hb,提取码:y6hb。否则将会遇到报错:Error occurred when executing PulidEvaClipLoader。 2. 对于 Ollama 大模型部分,为了应对没下载大模型带来的报错,需要下载大模型。首先,下载 ollama,网站: 。 3. 如果缺少 ipadapter 的模型,可去这个网址下载:https://github.com/cubiq/ComfyUI_IPAdapter_plus 。如果遇到“Error occurred when executing IPAdapterUnifiedLoader:ClipVision model not found.......”类似的报错,可在这个网址里找到多个关于 IPAdapter 报错的解决办法:https://github.com/cubiq/ComfyUI_IPAdapter_plus/issues/313 。 另外,换脸工作流的核心组件是 Apply InstantID Advanced 节点,这个节点的作用就是将源人脸替换到目标图像中。其中,instantID 模型擅长提取图片的高层次特征,包括面部的纹理信息、几何结构、风格特征等,在图中例子是 IPAdpater,用于识别和保留目标图像 image_kps 的风格并迁移到生成图像中。instantID Face Analysis 节点用于提取人脸五官的特征向量,作用是使生成图像时,人脸的眼睛、鼻子、嘴巴等样子仍然符合源人脸 image 的特征。controlnet 模型的作用是识别目标图像 image_kps 的低层次特征,包括骨架、姿势、边缘、结构。controlnet 模型和 instantID 模型起到不同的控制作用,结合使用可以达到将源人脸的五官替换目标图像中五官的效果。
2024-09-03