直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

在comfyui中执行k值采样器报错是什么原因

回答

在 ComfyUI 中执行 K 值采样器报错可能有多种原因。以下是一些常见的情况及相关设置步骤:

  1. 首先,在“K 采样器”处,可通过点击“右键”-“新建节点”-“采样器”,选择“K 采样器(高级)”,其会有更多调整参数。
  2. 对于 SDXL,由于需要用到 base 和 refiner 两套模型,所以要将模型节点和采样器节点分别复制一份。
    • 对于第一个 base 模型的采样器,参数设置如下:
      • 添加噪波:enable,确保打开以添加噪声。
      • 步数:30,即迭代的总步数。
      • 结束降噪步数:20,代表前面 20 步采用 base 模型进行运算。
      • 返回噪波:enable,以便将剩下的噪声传递给下一个 refiner 模型。
  3. 建立第一个工作流时,可按以下步骤操作:
    • 清空所有节点,从零开始。先加载一个模型选择器的节点,右键点击空白处,选择【add node】——【loaders】——【load checkpoint】,生成节点后可选择安装好的大模型,且后面有三个连接点可指向下一个模块。
    • 按住 clip 后面的点进行拖拽,点击【CLIPTextEncode】,得到提示词输入框。同理可再加一个提示词框,形成正向和负向提示架构。
    • 为方便管理,可添加组,将相关节点放在组里一起移动。
    • 从提示词节点后面再次拉出一根线,选择【KSampler】,其中有熟悉的参数如种子数、迭代步数、CFG、采样器等。
    • 最后,设置输出图片尺寸,从【latent image】中拉出一个节点,选择【EmptyLatentImage】。

如果您能提供更具体的报错信息,将更有助于准确判断报错原因。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

【ComfyUI】使用ComfyUI玩SDXL的正确打开方式

虽然现在已经有很多大佬分享了自己的工作流,但我还是建议大家能自己先手搓一下,一是为了搞懂SD的工作原理;二是因为自己连的工作流出图的那一刻,这个成就感是无与伦比的。就好像开汽车时,手动挡和自动挡的区别。下图就是我们之前做好的第一个文生图工作流,我们今天就在这个基础上进行改进,创造一个适合SDXL的双模型工作流。首先看到“K采样器”这里,我们点击“右键”-“新建节点”-“采样器”,可以看到有两个选项,今天我们要使用的是“K采样器(高级)”。相比较而言,高级采样器会多一些调整参数,这些参数是我们今天要用到的。因为SDXL需要用到base和refiner两套模型,所以我们要将模型节点和采样器节点分别复制一份下来。我们先来添加第一个base模型的采样器,参数设置如下:添加噪波:enable。确保打开,添加噪声。步数:30。迭代的总步数,比如我们设置为30步。结束降噪步数:20。这个代表的意思就是,前面20步将采用base模型进行运算。返回噪波:enable。这样就可以将剩下的噪声传递给下一个refiner模型。接着,将这个base的采样器传递到下一个refiner的采样器,参数设置如下:

【ComfyUI】本地部署ComfyUI上手指南,我就喜欢连连看

就可以生成这样一个节点,可以选择我们安装好的大模型,并且后面还有三个连接点,可以指向下一个模块。我们按住clip后面的点进行拖拽,点击【CLIPTextEncode】,得到一个提示词输入框。同理,我们可以再加一个提示词框,形成了一个正向提示词和一个负向提示的架构。为了后面更方便使用,我们还可以点击右键,给节点添加颜色。比如,正向提示词为绿色,负向提示词为红色。为了方便管理,我们可以再添加一个组,放在组里的节点可以一起移动,方便了我们后面做一些模组管理。接下来,我们需要使用采样器来给提示词内容添加噪声。从提示词节点后面再次拉出一根线,选择【KSampler】。这里面可以看到我们熟悉的参数:种子数、迭代步数、CFG、采样器等等。我就不做过多解释了,学过webUI的理解起来都很容易。这时,我们就可以将模型和负向提示词全部连上了。接下来,设置输出图片尺寸,从【latent image】中拉出一个节点,选择【EmptyLatentImage】。

其他人在问
在comfyui中执行k值采样器报错是什么原因 ror occurred when executing KSamplerAdvanced:
在 ComfyUI 中执行 K 值采样器报错,可能由多种原因导致。但仅根据您提供的“”内容,难以确切判断具体原因。常见的可能因素包括: 1. 模型配置问题:模型的参数设置不正确,或者与 K 值采样器的要求不匹配。 2. 输入数据格式错误:输入给采样器的数据格式不符合要求,例如数据类型、维度等。 3. 软件版本不兼容:ComfyUI 本身的版本与 K 值采样器存在兼容性问题。 4. 计算资源不足:系统的内存、GPU 等计算资源不足以支持 K 值采样器的运行。 要准确诊断问题,还需要更多的错误提示信息、相关配置和操作的详细描述。
2024-08-14
sd采样器推荐
在稳定扩散模型中,采样器扮演着重要的角色,它决定了生成图像的质量和多样性。以下是一些常用和推荐的采样器: 1. DDIM 这是稳定扩散模型默认使用的采样器 能生成较高质量和细节的图像 但计算开销较大,生成速度较慢 2. PLMS 一种新型的采样器,相比DDIM,计算效率更高 能生成清晰细节的图像,同时保持良好的多样性 常用于一些需要较高采样步数的任务,如超分辨率 3. Euler a 一种较为经典的采样器 计算开销小,生成速度快 但图像质量相对稍差,细节较少 4. Euler 附属扩散 在 Euler 采样器的基础上进行改进 能生成更好的质量和细节,同时保持较快的速度 5. DPM 采样器 一种质量和样本多样性之间权衡较好的采样器 在采样步数较大时,生成质量可与DDIM媲美 6. DPM++ 对DPM采样器的改进版 进一步提升了生成质量和效率 除了上述采样器,还有一些新兴或实验性的采样器,如DDPM等。 不同的采样器在生成质量、速度、样本多样性等方面有不同的取舍。选择合适的采样器需要根据具体任务需求,在质量、速度和多样性之间进行权衡。同时,不同采样器的参数设置也会影响最终效果,需要进行调试和优化。
2024-04-23
训练loro时报错什么原因吗:f"NaN detected in latents: {info.absolute_path}"
在 Comfy UI 中训练 LoRA 模型时,出现“f"NaN detected in latents: {info.absolute_path}"的报错,可能有以下原因: 1. 数据方面:图像必须放在以“”命名的文件夹中,数字应较小,如 5,且必须有下划线。对于 data_path,需写入包含数据库文件夹的文件夹路径。 2. 参数方面:在第一行可从 checkpoint 文件夹中选择任何模型,但据说进行 LoRA 训练最好选择一个基本模型。可选择一个名称为 LoRA 的模型,若默认值不合适可更改,epochs 数应接近 40。 3. 环境方面:按 Enter 键安装所有所需依赖项使其与 ComfyUI 兼容。若为 Comfy 使用了虚拟环境,必须首先激活它。Python 中需要斜杠,但节点会自动将反斜杠转换为斜杠,文件夹名称中的空格不是问题。 您可以根据上述情况检查和调整您的训练设置,以解决报错问题。
2024-10-15
comfyui 报错提示
以下是关于 ComfyUI 报错提示的一些常见情况及解决方法: 1. 如果报错提示“图片里面没有检查到面部”,这可能是在第一次运行时比较慢,也可能是网络环境没有下载 insightface。 2. 若节点报错显示“ERROR: Could not install packages due to an OSError: 拒绝访问。”,在命令后面输入“user”即可。 3. 本地安装 ComfyUI 时,如果终端显示某个模块下载失败或无法下载,可能是因为网络没有做到终端 FanQiang,需要配置好代理。具体端口要根据自己的 FanQiang 服务来看,最好把配置添加到默认的终端启动项里,如:export https_proxy=http://127.0.0.1:7890 http_proxy=http://127.0.0.1:7890 all_proxy=socks5://127.0.0.1:7890。或者考虑使用第三方镜像站下载,如 TUNA(https://pypi.tuna.tsinghua.edu.cn/simple)、网易(https://mirrors.163.com/pypi/)。 4. 终端显示“ERROR:Could not find a version that satisfies the requirement pyyaml”,这是因为缺少 pyyaml,可以运行相关命令完成安装后,再继续安装 ComfyUI。
2024-08-20
我在MacBook用docker安装的dify,以app形式安装的ollama,但在dify设置ollama的api时候,总是报错。如何解决
根据搜索结果,解决 dify 设置 ollama API 时报错的方法如下: 1. 检查 IP 地址和 URL 是否正确 有用户反映,通过修改 IP 地址和 URL 格式解决了类似的问题 确保使用了正确的 IP 地址和完整的 URL 格式 2. 尝试使用 LiteLLM 与 Ollama 有用户建议使用 LiteLLM 与 Ollama 的组合,这似乎是一个可行的解决方案 3. 检查 Ollama 的版本兼容性 有用户提到,Ollama 可能升级了客户端,需要检查与 Dify 的版本兼容性 4. 检查 OpenAI 账户类型和模型权限 确保 OpenAI 账户类型和所选模型(如 GPT4)是否有访问权限 5. 尝试禁用流式传输模式 有用户反映,流式传输可能会导致错误,可以尝试禁用该功能 总之,解决这个问题的关键是确保 Ollama 的 IP 地址、URL 格式、版本兼容性以及 OpenAI 账户权限等都设置正确。如果还有其他问题,可以继续在 Dify 的 GitHub 仓库中寻找相关的讨论和解决方案。
2024-04-19
comfyUI
ComfyUI 是一个基于节点流程式的 stable diffusion AI 绘图工具 WebUI,以下是关于它的详细介绍: 简介:可以想象成集成了 stable diffusion 功能的 substance designer,通过将 stable diffusion 的流程拆分成节点,实现更精准的工作流定制和完善的可复现性。 优劣势: 优势: 对显存要求相对较低,启动速度快,出图速度快。 具有更高的生成自由度。 可以和 webui 共享环境和模型。 可以搭建自己的工作流程,可以导出流程并分享给别人,报错时能清晰发现错误所在步骤。 生成的图片拖进后会还原整个工作流程,模型也会选择好。 劣势: 操作门槛高,需要有清晰的逻辑。 生态没有 webui 多(常用的都有),但也有一些针对 Comfyui 开发的有趣插件。 官方链接:从 github 上下载作者部署好环境和依赖的整合包,按照官方文档安装即可:https://github.com/comfyanonymous/ComfyUI 安装部署: 电脑硬件要求: 系统:Windows7 以上。 显卡要求:NVDIA 独立显卡且显存至少 4G 起步。 硬盘留有足够的空间,最低 100G 起步(包括模型)。 注:mac 系统,AMD 显卡,低显卡的情况也可以安装使用,但功能不全,出错率偏高,严重影响使用体验,个人建议升级设备或者采用云服务器玩耍。 下载并安装所需要环境: 依次下载并安装 python、Git、VSCode,安装过程中一直点击勾选对应选项,一直下一步。 安装 Python:https://www.python.org/downloads/release/python3119/ ,安装时选中“将 Python 添加到系统变量”。 安装 VSCode:https://code.visualstudio.com/Download 。 安装 Git:https://gitscm.com/download/win 。 安装 CUDA:https://developer.nvidia.com/cuda1220downloadarchive?target_os=Windows&target_arch=x86_64&target_version=11&target_type=exe_network 。 安装步骤: 地址:https://github.com/comfyanonymous/ComfyUI ,可以下载安装包也可以直接 Git clone https://github.com/comfyanonymous/ComfyUI.git ,或者下载安装包 file:ComfyUI.zip ,https://github.com/comfyanonymous/ComfyUI ,下载安装包或者点击链接下载并解压至本地除 C 盘外的任意盘。然后找到文件名称为 run_nvidia_gpu 的文件双击并启动。启动完成即进入基础界面。 节点存放目录:comfyUI 的节点包括后面安装的拓展节点都存放在本目录下 D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\custom_nodes 。 模型存放目录: 大模型:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\checkpoints 。 Lora:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\loras 。 Vae:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\vae 。 模型共用:已经安装了 SDWebUI 的同学可以通过修改文件路径和 WebUI 共用一套模型即可,这样就不用重复下载模型了。找到已安装好的 ComfyUI 目录文件下的 extra_model_paths.yaml.example 文件,将后缀.example 删除,然后右键用记事本打开。 快捷键:暂未提及。
2024-11-09
comfyui做视频
以下是关于 comfyui 做视频的相关信息: 一些人员在相关领域的情况: 德方:18600081286,从事设计、建模、绘图、效果图、视频工作。 谌峰:13925911177,从事视频,人物,室内设计工作。 陈铭生:18861511571,利用 comfyUI 做 AI 视频,掌握 comfy 工作流设计,给一些公司定制 comfy 流程。 郑路:18868755172,进行出图、短视频创作。 塵:从事绘图与视频工作。 阿牛:13720121256,掌握 comfy 工作流。 Stable Video Diffusion 模型核心内容与部署实战中 ComfyUI 部署实战的相关步骤: 运行 ComfyUI 并加载工作流。在命令行终端操作,在浏览器输入相应地址,出现界面。默认的 ComfyUI 版本存在一些问题,需安装 ComfyUI Manager 插件。再次运行 python main.py 出现 Manager 菜单,可跑文生视频的工作流。工作流可从指定途径获取,使用 ComfyUI 菜单的 load 功能加载,点击菜单栏「Queue Prompt」开始视频生成,通过工作流上的绿色框查看运行进度,在 ComfyUI 目录下的 output 文件夹查看生成好的视频。若生成视频时出现显存溢出问题,有相应解决办法。 关于 ComfyUI 的介绍:现在甚至可以生成视频等,包括写真、表情包、换脸、换装等,只需要一个工作流一键完成,后续会一一讲解介绍如何使用。如何启动搭建 Comfyui 界面的部分简单带过。
2024-11-09
comfyui教程
以下是为您提供的 ComfyUI 教程相关信息: 有几个网站提供了关于 ComfyUI 的学习教程: ComfyUI 官方文档:提供了使用手册和安装指南,适合初学者和有经验的用户。网址:https://www.comfyuidoc.com/zh/ 优设网:提供了详细的入门教程,适合初学者,介绍了特点、安装方法及生成图像等内容。网址:https://www.uisdc.com/comfyui3 知乎:有用户分享了部署教程和使用说明,适合有一定基础并希望进一步了解的用户。网址:https://zhuanlan.zhihu.com/p/662041596 Bilibili:提供了从新手入门到精通各个阶段的系列视频教程。网址:https://www.bilibili.com/video/BV14r4y1d7r8/ 全面的 ComfyUI 教程:https://www.comflowy.com/zhCN 超有意思的 ComfyUI 教程:https://comfyanonymous.github.io/ComfyUI_tutorial_vn/ 此外,ComfyUI 基础教程中关于 KSampler 的部分: KSampler 即采样器,包含以下参数: seed:随机种子,用于控制潜空间的初始噪声,若要重复生成相同图片,需种子和 Prompt 相同。 control_after_generate:设置每次生成完图片后 seed 数字的变化规则,有 randomize(随机)、increment(递增 1)、decrement(递减 1)、fixed(固定)。 step:采样的步数,一般步数越大效果越好,但与使用的模型和采样器有关。 cfg:一般设置为 6 8 之间较好。 sampler_name:可设置采样器算法。 scheduler:控制每个步骤中去噪的过程,可选择不同的调度算法。 denoise:表示要增加的初始噪声,文生图一般默认设置成 1。 内容由 AI 大模型生成,请仔细甄别。
2024-11-09
comfyui
ComfyUI 是一个基于节点流程式的 stable diffusion AI 绘图工具 WebUI,以下是关于它的详细介绍: 简介:可以想象成集成了 stable diffusion 功能的 substance designer,通过将 stable diffusion 的流程拆分成节点,实现更精准的工作流定制和完善的可复现性。 优劣势: 优势: 对显存要求相对较低,启动速度快,出图速度快。 具有更高的生成自由度。 可以和 webui 共享环境和模型。 可以搭建自己的工作流程,可以导出流程并分享给别人,报错时能清晰发现错误所在步骤。 生成的图片拖进后会还原整个工作流程,模型也会选择好。 劣势: 操作门槛高,需要有清晰的逻辑。 生态没有 webui 多(常用的都有),但也有一些针对 Comfyui 开发的有趣插件。 官方链接:从 github 上下载作者部署好环境和依赖的整合包,按照官方文档安装即可:https://github.com/comfyanonymous/ComfyUI 安装部署: 电脑硬件要求: 系统:Windows7 以上。 显卡要求:NVDIA 独立显卡且显存至少 4G 起步。 硬盘留有足够的空间,最低 100G 起步(包括模型)。 注:mac 系统,AMD 显卡,低显卡的情况也可以安装使用,但功能不全,出错率偏高,严重影响使用体验,个人建议升级设备或者采用云服务器玩耍。 下载并安装所需要环境: 依次下载并安装 python、Git、VSCode,安装过程中一直点击勾选对应选项,一直下一步。 安装 Python:https://www.python.org/downloads/release/python3119/ ,安装时选中“将 Python 添加到系统变量”。 安装 VSCode:https://code.visualstudio.com/Download 。 安装 Git:https://gitscm.com/download/win 。 安装 CUDA:https://developer.nvidia.com/cuda1220downloadarchive?target_os=Windows&target_arch=x86_64&target_version=11&target_type=exe_network 。 安装步骤: 地址:https://github.com/comfyanonymous/ComfyUI ,可以下载安装包也可以直接 Git clone https://github.com/comfyanonymous/ComfyUI.git ,或者下载安装包 file:ComfyUI.zip ,https://github.com/comfyanonymous/ComfyUI ,下载安装包或者点击链接下载并解压至本地除 C 盘外的任意盘。然后找到文件名称为 run_nvidia_gpu 的文件双击并启动。启动完成即进入基础界面。 节点存放目录:comfyUI 的节点包括后面安装的拓展节点都存放在本目录下 D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\custom_nodes 。 模型存放目录: 大模型:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\checkpoints 。 Lora:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\loras 。 Vae:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\vae 。 模型共用:已经安装了 SDWebUI 的同学可以通过修改文件路径和 WebUI 共用一套模型即可,这样就不用重复下载模型了。找到已安装好的 ComfyUI 目录文件下的 extra_model_paths.yaml.example 文件,将后缀.example 删除,然后右键用记事本打开。
2024-11-09
ComfyUI是什么
ComfyUI 是一个基于节点流程式的 stable diffusion AI 绘图工具 WebUI,您可以将其视为集成了 stable diffusion 功能的 substance designer。通过把 stable diffusion 的流程拆分成节点,实现了更精准的工作流定制和良好的可复现性。 其具有以下优劣势: 优势: 1. 对显存要求相对较低,启动速度快,出图速度快。 2. 具有更高的生成自由度。 3. 可以和 webui 共享环境和模型。 4. 可以搭建自己的工作流程,可以导出流程并分享给别人,报错时能清晰发现错误所在步骤。 5. 生成的图片拖进后会还原整个工作流程,模型也会选择好。 劣势: 1. 操作门槛高,需要有清晰的逻辑。 2. 生态没有 webui 多(但常用的都有),也有一些针对 Comfyui 开发的有趣插件。 ComfyUI 是一个开源的图形用户界面,主要基于 Stable Diffusion 等扩散模型。其工作原理包括: 1. Pixel Space(像素空间):图的左边表示输入图像的像素空间,在 ComfyUI 中,对应于可能通过“图像输入”模块或直接从文本提示生成的随机噪声图像。生成过程结束时,系统会将处理后的潜在表示转换回像素空间,生成最终的图像。 2. Latent Space(潜在空间):ComfyUI 中的许多操作都在潜在空间中进行,如 KSampler 节点就是在这个空间中执行采样过程。图像被映射到潜在空间后,扩散过程在这个空间中进行。在 ComfyUI 中,您可以通过节点调整对潜在空间的操作,如噪声添加、去噪步数等。 3. 扩散过程(Diffusion Process):噪声的生成和逐步还原。扩散过程表示从噪声生成图像的过程。在 ComfyUI 中,通常通过调度器(Schedulers)控制,典型的调度器有 Normal、Karras 等,它们会根据不同的采样策略逐步将噪声还原为图像。您可以通过 ComfyUI 中的“采样器”节点选择不同的调度器,来控制如何在潜在空间中处理噪声,以及如何逐步去噪回归到最终图像。时间步数:在生成图像时,扩散模型会进行多个去噪步。 您可以从 github 上下载作者部署好环境和依赖的整合包,按照官方文档安装即可,官方链接为:https://github.com/comfyanonymous/ComfyUI 。 此外,开源项目作者 ailm 在 ComfyUI 上搭建了一个可以接入飞书的 AI 女友麦洛薇(mylover),实现了稳定人设,无限上下文,永久记忆,无缝联动 SD 绘图等功能,适合完全没有代码基础的小伙伴们复现并且按自己的想法修改。
2024-11-06
ComfyUI 工作流
ComfyUI 的工作流是其核心部分,指的是节点结构及数据流运转过程。以下为您介绍一些相关内容: 推荐工作流网站: “老牌” workflow 网站 Openart.ai:https://openart.ai/workflows/ 。流量较高,支持上传、下载、在线生成,免费账户有 50 个积分,加入 Discord 可再加 100 积分,开通最低每月 6 美元的套餐后,每月有 5000 积分。 ComfyWorkflows 网站:https://comfyworkflows.com/cloud 。支持在线运行工作流,从实际下载量和访问量来看,略少于 openart。 Flowt.ai:https://flowt.ai/community 工作流设计方面: ComfyUI 将开源绘画模型 Stable Diffusion 进行工作流化操作,用户在流程编辑器中配置 pipeline,通过节点和连线完成模型操作和图片生成,提高流程可复用性,降低时间成本,其 DSL 配置文件支持导出导入。 Dify.AI 的工作流设计语言与 ComfyUI 有相似之处,都定义了标准化的 DSL 语言,方便导入导出复用工作流。 模仿式工作流是一种快速学习方法,Large Action Model 采用“通过演示进行模仿”的技术,从用户示例中学习。 但 Agentic Workflow 存在使用用户较少、在复杂流程开发上不够稳定可靠等问题。 动画工作流示例: :https://bytedance.feishu.cn/space/api/box/stream/download/all/GCSQbdL1oolBiUxV0lRcjJeznYe?allow_redirect=1 :https://bytedance.feishu.cn/space/api/box/stream/download/all/LcYfbgXb4oZaTCxWMnacJuvbnJf?allow_redirect=1 :https://bytedance.feishu.cn/space/api/box/stream/download/all/WGdJbouveo6b9Pxg3y8cZpXQnDg?allow_redirect=1 :https://bytedance.feishu.cn/space/api/box/stream/download/all/KZjObxCpSoF1WuxQ2lccu9oinVb?allow_redirect=1 :https://bytedance.feishu.cn/space/api/box/stream/download/all/EVdUbp7kvojwH4xJEJ3cuEp0nPv?allow_redirect=1 :https://bytedance.feishu.cn/space/api/box/stream/download/all/TnwFbAx3FoU617x8iabcOSYcnXe?allow_redirect=1 :https://bytedance.feishu.cn/space/api/box/stream/download/all/TWwCbnVOtoyMpyxpGBqcUECLnNc?allow_redirect=1
2024-11-04
给出指令,让AI帮我执行的网页,app,大模型,小程序
以下为一些可以给出指令让 AI 帮您执行的网页、app、大模型和小程序: 1. Midjourney:在生成 UI 界面方面表现出色。如果想指定生成某个页面(如首页、登录页等),只需添加页面指令描述,例如“landing page”(社交平台登录页)、“Profile Page”(人力资源类产品的个人资料页)。其产出的设计图视觉效果不错,适合在 APP 设计的初始阶段提供灵感和创意,但目前直接用于落地开发仍有距离。 2. 很多 AI 网站可以创建“智能体”,例如您可以为其配置提示词、知识库、能力配置等,让其为您工作,如出试题、找资料、画插图、专业翻译等。 3. 在使用生成式人工智能时,要把大模型当作大学生而非专家,“实习生”只能执行任务,需要您指明方向、拆解任务、教其一步步操作,像导演一样编排具体流程、检查结果、修改流程并反复迭代。提示语的核心是逻辑,要将复杂任务拆分成科学合理的步骤,且确保每个步骤的结果能为后续步骤提供基础。同时,即使在 Prompt 里指明了步骤,如果没有打印出来,也无法达到理想效果。
2024-11-13
可以实现测试用例设计、测试脚本、测试执行、测试报告 的AI 有哪些?
以下是一些可以实现测试用例设计、测试脚本、测试执行和测试报告的 AI 工具和方法: 1. 基于规则的测试生成: 测试用例生成工具: Randoop:基于代码路径和规则生成测试用例,适用于 Java 应用程序。 Pex:微软开发的智能测试生成工具,自动生成高覆盖率的单元测试,适用于.NET 应用。 模式识别: Clang Static Analyzer:利用静态分析技术识别代码模式和潜在缺陷,生成相应的测试用例。 Infer:Facebook 开发的静态分析工具,自动生成测试用例,帮助发现和修复潜在错误。 2. 基于机器学习的测试生成: 深度学习模型: DeepTest:利用深度学习模型生成自动驾驶系统的测试用例,模拟不同驾驶场景,评估系统性能。 DiffTest:基于对抗生成网络(GAN)生成测试用例,检测系统的脆弱性。 强化学习: RLTest:利用强化学习生成测试用例,通过与环境交互学习最优测试策略,提高测试效率和覆盖率。 A3C:基于强化学习的测试生成工具,通过策略梯度方法生成高质量测试用例。 3. 基于自然语言处理(NLP)的测试生成: 文档驱动测试生成: Testim:AI 驱动的测试平台,通过分析文档和用户故事自动生成测试用例,减少人工编写时间。 Test.ai:利用 NLP 技术从需求文档中提取测试用例,确保测试覆盖业务需求。 自动化测试脚本生成: Selenium IDE + NLP:结合 NLP 技术扩展 Selenium IDE,从自然语言描述中生成自动化测试脚本。 Cucumber:使用 Gherkin 语言编写的行为驱动开发(BDD)框架,通过解析自然语言描述生成测试用例。 4. 基于模型的测试生成: 状态模型: GraphWalker:基于状态模型生成测试用例,适用于复杂系统的行为测试。 Spec Explorer:微软开发的模型驱动测试工具,通过探索状态模型生成测试用例。 场景模拟: Modelbased Testing:基于系统模型自动生成测试用例,覆盖各种可能的操作场景和状态转换。 Tosca Testsuite:基于模型的测试工具,自动生成和执行测试用例,适用于复杂应用的端到端测试。 5. 实践中的应用示例: Web 应用测试:使用 Testim 分析用户行为和日志数据,自动生成高覆盖率的测试用例,检测不同浏览器和设备上的兼容性问题。 移动应用测试:利用 Test.ai 从需求文档中提取测试用例,确保覆盖关键功能和用户路径,提高测试效率和质量。 复杂系统测试:采用 GraphWalker 基于系统状态模型生成测试用例,确保覆盖所有可能的状态和操作场景,检测系统的边界情况和异常处理能力。 相关工具和平台: Testim:AI 驱动的自动化测试平台,生成和管理测试用例。 Test.ai:基于 NLP 技术的测试用例生成工具,适用于移动应用和 Web 应用。 DeepTest:利用深度学习生成自动驾驶系统测试用例。 GraphWalker:基于状态模型生成测试用例,适用于复杂系统的行为测试。 Pex:微软开发的智能测试生成工具,自动生成高覆盖率的单元测试。
2024-10-24