Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

gpt 长期记忆功能

Answer

ChatGPT 的长期记忆功能已上线,能够跨聊天记忆用户信息,从而提供更相关和个性化的回答。用户可以控制记忆内容,同时也考虑到了隐私和安全问题。此外,GPTs 也将拥有记忆功能。

然而,GPT 模型在长期记忆方面仍存在一些局限性:

  • 模型的上下文有限,以“无状态”方式运行,没有明显方法教会模型新事实,甚至不清楚其能否执行需要不断发展记忆和上下文的任务,如阅读一本书并理解对先前章节的引用。
  • 缺乏更新自身或适应变化环境的能力,训练完成后固定,没有机制纳入新信息或用户、世界的反馈。虽可在新数据上微调模型,但可能导致性能下降或过拟合,且由于训练周期的潜在滞后,系统容易过时。
  • 在个性化方面,模型没有有效方法将个性化信息纳入响应,除非使用有限且低效的元提示。

相关链接:

Content generated by AI large model, please carefully verify (powered by aily)

References

XiaoHu.AI日报

高保真重现每一个声音细节,创建自定义AI声音。🔗[https://elevenlabs.io/voice-changer](https://elevenlabs.io/voice-changer)🔗[https://x.com/xiaohuggg/status/1757593879468294424?s=20](https://x.com/xiaohuggg/status/1757593879468294424?s=20)5⃣️💬ChatGPT永久记忆功能上线跨聊天记忆用户信息,提供更相关个性化回答。用户控制记忆内容,隐私和安全考虑。GPTs也将拥有记忆功能。🔗[https://openai.com/blog/memory-and-new-controls-for-chatgpt](https://openai.com/blog/memory-and-new-controls-for-chatgpt)🔗[https://x.com/xiaohuggg/status/1757582626372935696?s=20](https://x.com/xiaohuggg/status/1757582626372935696?s=20)6⃣️💻NVIDIA Chat With RTX:本地模型连接个人内容,获得上下文相关答案。利用RAG、TensorRT-LLM和RTX加速技术。

XiaoHu.AI日报

高保真重现每一个声音细节,创建自定义AI声音。🔗[https://elevenlabs.io/voice-changer](https://elevenlabs.io/voice-changer)🔗[https://x.com/xiaohuggg/status/1757593879468294424?s=20](https://x.com/xiaohuggg/status/1757593879468294424?s=20)5⃣️💬ChatGPT永久记忆功能上线跨聊天记忆用户信息,提供更相关个性化回答。用户控制记忆内容,隐私和安全考虑。GPTs也将拥有记忆功能。🔗[https://openai.com/blog/memory-and-new-controls-for-chatgpt](https://openai.com/blog/memory-and-new-controls-for-chatgpt)🔗[https://x.com/xiaohuggg/status/1757582626372935696?s=20](https://x.com/xiaohuggg/status/1757582626372935696?s=20)6⃣️💻NVIDIA Chat With RTX:本地模型连接个人内容,获得上下文相关答案。利用RAG、TensorRT-LLM和RTX加速技术。

报告:GPT-4 通用人工智能的火花

-长期记忆-模型的上下文非常有限,它以「无状态」的方式运行,并没有明显的方法来教会模型新事实。事实上,甚至不清楚模型是否能够执行需要不断发展的记忆和上下文的任务,例如阅读一本书,任务是在阅读过程中跟随情节并理解对先前章节的引用。-持续学习-该模型缺乏更新自身或适应不断变化环境的能力。模型一旦训练完成就是固定的,没有机制将新信息或用户或世界的反馈纳入其中。可以在新数据上微调模型,但这可能会导致性能下降或过拟合。由于训练周期之间的潜在滞后,当事件、信息和知识在最新的训练周期之后出现时,系统往往会过时。-个性化-一些应用需要将模型定制为特定的组织或最终用户。系统可能需要获取有关组织运作或个人偏好的知识。在许多情况下,系统需要根据人和组织的动态以个性化的方式适应一段时间内的特定变化。例如,在教育环境中,人们期望系统能够理解特定的学习风格,并随着时间的推移适应学生的理解和技能进展。该模型没有任何方法将这种个性化的信息纳入其响应中,除非使用元提示,但这种方法既有限又低效。

Others are asking
chatgpt-on-wechat接入企业微信应用的具体操作
以下是 chatgptonwechat 接入企业微信应用的具体操作: 1. 登录宝塔面板,在其中可视化控制云服务器,部署 docker 容器,启动 COW 项目与微信取得关联。 2. 点击“Docker”中的“项目模板”中的“添加”按钮。 3. 项目模板代码示例如下:将编译好的内容复制进来。 4. 在容器中创建容器,选择容器编排,填入模板和名称,确定。 5. 运行成功后,点击容器,可以看到运行的是两个服务。 6. 点击“wcandyaibot”后面的日志按钮,在弹出层中用提前预备好的微信进行扫码。 7. 手动刷新界面,点击“刷新日志”,若看到“WeChat login success”,则成功将 Bot 接入微信中。 此外,还需注意: 1. chatgptonwechat 项目是基于大模型的智能对话机器人,支持微信公众号、企业微信应用、飞书、钉钉接入,可选择多种模型,能处理多种形式的内容,并通过插件访问外部资源,支持基于自有知识库定制企业 AI 应用。 2. 点击“Docker”中的“编排模板”中的“添加”按钮,可参考相关代码示例进行操作。若无法正常启动,可查看文档后面的“常见问题”。
2025-02-21
deepseek深度思考的机制和ChatGPT的深度思考有什么不一样
DeepSeek R1 与 ChatGPT 的深度思考机制存在以下不同: 1. 技术路线:DeepSeek R1 与 OpenAI 现在最先进的模型 o1、o3 一样,同属于基于强化学习 RL 的推理模型。而 ChatGPT4 采用预训练+监督微调(SFT)。 2. 思考方式:在回答用户问题前,DeepSeek R1 会先进行“自问自答”式的推理思考,从用户初始问题出发,唤醒解决该问题所需的推理逻辑与知识,对问题进行多步推导,为最终回答提供更加完备的思考准备。而 ChatGPT 在此方面的表现有所不同。 3. 应用场景:DeepSeek R1 适用于高难度数学和编程问题,但计算成本更高。日常查询中,ChatGPT 更快、更适合简单咨询。 4. 优势特点:DeepSeek R1 更加透明,研究细节可复现,权重可下载。
2025-02-17
DB gpt具备商用化能力了吗?
目前 DB GPT 尚未具备成熟的商用化能力。其在技术、性能、安全性、稳定性等方面可能还存在一些需要进一步完善和优化的地方。商用化需要满足一系列严格的标准和要求,包括但不限于高效的处理能力、准确的结果输出、可靠的安全性保障以及良好的用户体验等。
2025-02-17
chat gpt
ChatGPT 是通过从网络、书籍等来源获取大量人类创作的文本样本,训练神经网络来生成类似的文本。其基本概念简单,由大量简单元素组成的神经网络,基本操作是为每个新单词生成输入并通过元素处理。 ChatGPT 能够从提示开始生成连贯的人类语言文本,遵循提示并利用所读内容,但不总是具有全局意义或对应正确计算,只是根据训练材料中的相似内容生成听起来正确的东西。 ChatGPT 在生成文本方面表现出色,结果接近人类所产生的。其基本人工神经网络结构基于大脑的理想化模型,人类生成语言的许多方面与之相似。 然而,在训练和硬件方面,ChatGPT 与大脑存在不同,需要使用可能不同且效率低于大脑的策略,内部没有循环或重新计算数据,限制了计算能力。 ChatGPT 基于 OpenAI 最先进的语言模型 gpt3.5turbo,使用 OpenAI 的 API 可以构建应用来做很多事情,如起草邮件、写代码、回答文档问题、创建会话代理、提供自然语言接口、辅导学科、语言翻译、假扮角色等。还可以体验 OpenAI 在线编辑器的聊天格式。
2025-02-17
如何高效使用chatgpt
以下是关于高效使用 ChatGPT 的一些方法和建议: 1. 对于产品经理: 步骤 1:进行原 SQL 输入,让 ChatGPT 对需求有初步理解。 步骤 2:将真实的业务需求场景及现存问题输入给 ChatGPT,通过多轮输入输出的讨论,强化其对真实需求的认知,以获取针对性的优化建议,并输出更符合需求的代码。 步骤 3:根据 ChatGPT 给出的结果不断调试和优化,直至生成满足需求的新代码。例如,按照原 SQL 思路更新数据时存在耗时长、资源浪费严重的问题,可参考 ChatGPT 提出的优化建议,如每次更新 1 天而非 30 天的数据、创建中间结果表存储非二次计算的数据等。 2. 对于开发人员: 痛点:在 IDE 和 ChatGPT 两个软件中不断切换、拷贝代码较为麻烦。 解决方案:将 ChatGPT 装进 WebStorm 中,通过右键选中代码,让 ChatGPT 进行优化、找 BUG 等操作,并可在窗口中随时提问。具体操作如下: 第一步:获取 API Keys,可参考文章 第二步:在 WebStorm 中下载 ChatGPT 插件,并将从 OpenAI 开发平台获取到的 API keys 设置进插件的配置中。安装后可实现选中代码找 bug、优化代码、自定义指令等功能,插件底部还有对话框可实时提问,让其解释、重新生成代码等。 此外,ChatGPT 的诞生经历了一系列的研究和改进。OpenAI 团队曾侧重浏览功能,但后来减少了这方面的侧重,将指令型数据和聊天数据混合,创造出既可以处理具体任务又能流畅聊天的模型。GPT4 完成训练后,特别强调指令遵循能力,但仍存在可靠性问题。指令型模型中的某些任务描述不够清晰,增加了模型执行和数据标注的难度,而 ChatGPT 这类聊天模型则更加直观,能更好地理解和处理潜在局限性,展现出更连贯的特征和更稳定的行为。
2025-02-14
豆包、DeepSeek、ChatGPT分别有些什么功能用于解决用户整理对话的需求
以下是豆包、DeepSeek、ChatGPT 在解决用户整理对话需求方面的功能: ChatGPT: 1. 内容生成:可以生成文章、故事、诗歌、歌词等内容。 2. 聊天机器人:作为聊天机器人的后端,提供自然的对话体验。 3. 问答系统:为用户提供准确的答案。 4. 文本摘要:生成文本的摘要或概述。 5. 机器翻译:在这方面有不错的表现。 6. 群聊总结:能够对群聊内容进行总结。 7. 代码生成:生成代码片段,帮助开发者解决编程问题。 8. 教育:帮助学生解答问题或提供学习材料。 9. 浏览器插件:如 webpilot 。 10. PDF 对话:通过相关网站实现与 PDF 的对话。 11. PPT 生成:协助高效制作 PPT 。 12. 音视频提取总结:通过特定网站进行总结。 13. 播客总结:通过特定网站完成总结。 14. 生成脑图:通过相关网站生成。 关于豆包和 DeepSeek 在解决用户整理对话需求方面的功能,上述内容中未提及。
2025-02-13
ai语言模型记忆能力与什么相关,可以拥有人类相当的记忆吗
AI 语言模型的记忆能力主要与以下因素相关: 1. 长期记忆:主要有长文本(持久化)、总结、RAG 等实现方式。长文本处理中的 KV Cache 可通过缓存历史计算的 Key(K)和 Value(V)减少冗余计算,但需额外存储空间,可能导致显存占用增加,未来结合持久化 KV Cache、KV Cache 的压缩技术有望控制成本,从而打造出记忆力超越人类的智能体。 2. 短期记忆:主要存在于模型的上下文中,由对话内容(用户输入、模型输出)和系统提示词组成。 Inworld AI 开发的角色引擎,增加了可配置的安全性、知识、记忆、叙事控制、多模态等功能,其中长期记忆方面,角色能以类似人类的记忆功能操作,从闪存和长期记忆中检索信息。 人类的思维是由自然语言或感官记忆构成的超高维时间序列,而人工智能与人类不同,人类会为事物赋予意义与价值,人工智能则更追求“更准”。强化学习是人工智能的一个重要分支,通过定义状态、动作与奖励等元素,让 AI 求解如何选择动作以获得最大的期望奖励总和。
2025-01-20
词根词缀记忆法哪个背单词app有?
以下是一款具有词根词缀记忆法的背单词 app 推荐:AI 雅思单词书。 这款 app 具有以下特点: 1. 走“质”路线:不以覆盖全部考纲单词为首要目的,而是将扩充词汇量、抓住单词用法置于首位。在呈现词意的同时,展示单词的近义辨析、常用搭配以及范文例句,强化记忆曲线,让使用者真正掌握单词用法,而非单纯记忆中英文含义。 2. 以词块为最小记忆单位:不将英语拆散成单个简单单词,而是以“词块”“语块”形式呈现,避免中式思维翻译和滥用词汇,深度扩充对单词使用的认知,助力在口语和写作中的实际应用提升。 3. 派生词助力一词多记:注重单词的发散联想和近义词辨析,注重延伸词的实用性。通过对某一单词的派生词联想,借助添加或删减不同的词根词缀,实现多个相关词意单词的集中记忆。 4. 巧记法:将趣味与知识性相结合。
2025-01-07
长期记忆设计
关于长期记忆设计,主要包括基础设定和人物背景两方面。 基础设定方面,设计了一些初始属性,如人物生日和星座、MTBI 性格分型(ENFJ)、出生地、职业、聊天习惯等。 人物背景方面,使用 AI 自动扩写了大约 100 条,涵盖了三观、爱好、日常习惯、教育经历、家庭背景、工作经历、恋爱经历等内容。
2024-12-29
现在哪些ai具有记忆功能
以下是一些具有记忆功能的 AI: 1. MemGPT:通过特定指令访问外部存储系统来保存和回调信息,极大地扩展了模型的记忆能力,并增强了其上下文理解能力。 2. ChatGPT 最新版本:可以将对话中的重点内容记录在一个名为“bio”的小本子上,这种内置记忆机制使得它能够在后续对话中利用之前的交流内容来提供更加个性化和相关性更强的回答。 3. OpenAI 的 GPT4:直接用 prompt 调用 bio 这个工具记录需要记忆的内容,每次新的对话开始时,在 prompt 的最后直接加上所有之前的记录的内容。 延伸阅读:MemGPT:Towards LLMs as Operating Systems
2024-12-17
有没有什么辅助初中生学习整理知识点,并能记录错误,反复记忆的AI
目前市面上有一些可以辅助初中生学习整理知识点,并能记录错误、反复记忆的 AI 工具。例如一些智能学习类的 APP,它们可以根据学生的学习情况和错题记录,生成个性化的学习计划和复习资料。但具体的选择还需要根据学生的学科需求、学习习惯等因素来决定。
2024-12-07
(defun 生成记忆卡片 (单词) "生成单词记忆卡片的主函数" (let* ((词根 (分解词根 单词)) (联想 (mapcar #'词根联想 词根)) (故事 (创造生动故事 联想)) (视觉 (设计SVG卡片 单词 词根 故事))) (输出卡片 单词 词根 故事 视觉))) (defun 设计SVG卡片 (单词 词根 故事) "创建SVG记忆卡片" (design_rule "合理使用负空间,整体排版要有呼
以下是关于生成记忆卡片和 SVG 卡片的相关信息: 卡片类的应用被定义为词生卡片,如李继刚的《汉语新解》、一泽的《名片设计》、云中江树的《AI 简历》等,都是通过给大模型优化过的 Prompt,让其生成 HTML 代码或 SVG 代码,再通过浏览器渲染效果。 把提示词丢给 Claude ,如在 Poe 平台上的 Claude 模型,大概率会直接输出 SVG 代码,但对于子步骤是否执行等情况难以知晓。Andrej Karpathy 认为,模型需要 tokens 来思考,如果大语言模型未将思考过程外化,则几乎等于没思考。 甲木介绍了让 Claude 生成古诗词卡片的方法,流程包括输入 Prompt 、用户输入主题和风格,AI 输出最终结果。获取提示词已开源,创作过程主要是根据给定主题和方向生成匹配的中国古诗词,创建设计感强烈、富有中国传统美学的 SVG 卡片展示诗词,并提供相关信息,还支持根据用户提供的主题和方向生成对应语境的 prompt 并配图生成 SVGCard 。但对于“逼格高”的看法因人而异,可将选择权交给 AI 。
2024-11-28
有什么AI相关的笔记软件,既可以记录我的想法、灵感,然后AI也可以直接生成对我所写内容的评价(如可以安抚情绪),并且这个笔记软件的检索功能很好用
以下是一些符合您需求的 AI 相关笔记软件: 1. Notion AI:https://www.notion.so/help/guides/category/ai?ref=indigox.me 随着大语言模型的流行,其在智能化方面表现出色。 2. Mem.ai:https://mem.ai/?ref=indigox.me 一款 AI 驱动的笔记工具。 3. Pile:https://udara.io/pile/ 开源且界面美观,助力日记撰写和记录,集成 OpenAI API,具有 AI 搜索和问题解答功能,保证安全隐私。项目源码:https://github.com/UdaraJay/Pile
2025-02-19
帮我找一些具有文件上传功能的AI智能体或应用的搭建教程
以下是一些具有文件上传功能的 AI 智能体或应用的搭建教程: 使用 Coze 搭建: 方法一:直接使用 Coze 的 API 对接前端 UI 框架,将工作流逻辑集中在工程模板端,实现前后端分离的处理方式。 方法二:直接调用大模型 API,并通过前端代码实现提示词处理和逻辑控制,将交互流程完全放入前端代码中。 实现文件上传:通过 Coze 的,用户可将本地文件上传至 Coze 的云存储。在消息或对话中,文件上传成功后可通过指定 file_id 来直接引用该文件。 Coze 的 API 与工作流执行:关于 API 的使用及工作流执行流程可以参考。 设计界面:搭建 Demo 最简单的方式是首先绘制草图,然后借助多模态 AI 工具(如 GPT/Claude)生成初步的前端结构代码。前端开发语言包括 HTML 用于构建网页基础框架,定义整体页面结构;CSS 负责网页布局样式美化;JavaScript 实现交互逻辑,如信息处理、网络请求及动态交互功能。 Stuart 教学 coze 应用中的“上传图片”: 传递上传图片地址:首先,把工作流的入参设置为 File>Image。然后,注意代码内容,其中 ImageUpload1 部分是可以替换成实际的文件上传组件的组件名称的,一个引号,一个大括号都不能错。 获得图片 URL:接下来就比较简单了,工作流中可以直接用这个 image 变量,也可以用 string 模式输出,它会在工作流中变成图片的 URL。 无企业资质也能 coze 变现: 以 API 形式链接 Zion 和 Coze:同理也可以为 dify、kimi 等给任何大模型&Agent 制作收费前端。参考教程: 自定义配置:变现模版 UI 交互、API、数据库等拓展功能,支持在 Zion 内自由修改,可参考文档配置。相关链接:支付: 微信小程序变现模版正在开发中,不久将会上线。目前实现小程序端可以通过 API 形式搭建。 Zion 支持小程序,Web,AI 行为流全栈搭建,APP 端全栈搭建 2025 上线。
2025-02-16
你是一名电商专家,有没有哪个AI大模型或者智能体可以完成以下功能:输入材质图片,得到经过设计后的成品衣服
目前尚未有成熟的 AI 大模型或智能体能够直接实现输入材质图片就得到经过设计后的成品衣服的功能。但在 AI 领域的不断发展中,可能会有相关的技术和模型在未来出现。
2025-02-16
你是一名电商专家,有没有哪个AI大模型或者智能体可以完成以下功能:输入衣服材质图片,得到经过设计后的材质成品衣服
目前尚未有专门的 AI 大模型或智能体能够直接实现您所描述的输入衣服材质图片就得到经过设计后的材质成品衣服的功能。但随着 AI 技术的不断发展,未来可能会出现相关的应用。
2025-02-16
如何通过智能体实现RPA功能
通过智能体实现 RPA 功能可以从以下几个方面考虑: 1. 借助 LLM 构建更智能的 RPA 系统:利用 LLM 使 RPA 系统能够根据上下文理解输入和操作,并动态调整以创建更强大的解决方案。可能会有针对特定类型自动化任务的垂直化解决方案,如财务的发票处理或客户支持中的服务查询。 2. 结合特定应用场景:在税务工作中,可利用引刀 AP 创建网页实现智能解答税务问题,结合飞书避免信息泄露和实现自动回复。在财务领域,RPA 可用于开票、网银流水下载等。 3. 为智能体赋予内容:一是给智能体封装技能,如发快递、反馈意见等;二是为智能体创建知识库;三是设置兜底回复。 4. 与现有工具结合:将引到 AP 与飞书机器人结合以提升效率。 5. 选择合适的 RPA 产品:如杭州分叉智能公司的 RPA 产品,其可控制桌面软件,实现办公流程自动化,底层语言用 Python,使用界面为全中文。 6. 针对多人多部门使用场景:公司多人多部门使用 RPA 可实现无人化办公专区,提高办公效率,节省人力时间成本。 7. 工作流封装:将工作流问题封装成智能体以应对复杂场景。
2025-02-15
Ai指导长期项目
以下是关于 AI 指导长期项目的相关内容: 负责任的 AI 原则: 2018 年 6 月宣布了七项 AI 原则来指导工作,包括: 1. 人工智能应对社会有益,考虑社会和经济因素,只有在总体收益可能大大超过风险和不利因素时才进行项目。 2. 避免产生或加强不公平的偏见,尤其在种族、民族、性别、国籍、收入、性取向、能力、政治和宗教信仰等敏感特征方面。 3. 构建和测试应确保安全,制定和应用强有力的安全措施以避免意外伤害风险。 4. 对人负责,设计系统为反馈、解释和申诉提供机会。 5. 纳入隐私设计原则,提供通知和同意机会,鼓励隐私保护措施和透明度,控制数据使用。 6. 坚持科学卓越的高标准,与利益相关者合作,分享 AI 知识。 7. 用于符合原则的用途,不追求造成整体危害、用于武器或违反国际规范和人权原则的技术。 AGI 的短期与长期: 短期:AGI 未催生大量“明星 APP”和“变现机器”,只有少数 App 实现用户突破,上层应用 APP 昙花一现,投资人谨慎,公众对 AI 麻木。 长期:技术稳定且加速迭代,如视频生成、音频生成、代理 Agent、记忆能力、模型小型化等虽距离商用有问题,但突破只是时间问题。 AIGC 相关: 对于某些项目,在 AI 技术进一步改进前等待可能更有利,特别是耗时长且 AI 已有合理表现的任务。在构建和维护生产级大型语言模型应用程序中,评估指标很重要,可分为端到端和步骤/组件式评估。语言模型可能出现“幻觉”,可采用高级提示、少样本提示、思维链式提示、数据增强(如检索增强生成、工具集成)等策略缓解。
2025-02-20
有没有AI能长期记住对话内容
AI 能够实现长期记住对话内容。在智能体中,长期记忆主要有长文本(持久化)、总结、RAG 这三种实现方式。长文本(KV Cache)是 Transformer 架构中的一个功能,能通过缓存历史计算的 Key(K)和 Value(V)来减少冗余计算,加速模型的推理过程,但需要额外的存储空间,可能导致显存占用增加,为此有研究者提出多种优化技术。如果未来能结合持久化 KV Cache、KV Cache 的压缩技术,控制成本,就有可能打造出记忆力超越人类的智能体,能回忆更多详细信息,并在服务中展现更高级别的个性化和情感连贯性。 当下比较推荐将临时记忆转换为长期记忆的方式是定期总结+RAG,即定期对上下文对话内容进行总结,然后对总结后的文本进行索引,并将索引后的内容存储到数据库中。整个过程和人记忆内容的过程相似,但要注意避免在归纳和记忆时产生偏见,比如在归纳信息时回顾并整合已有记忆,在推理中加入反思环节,对于同一事物的记忆详细记录每次情况等。
2024-12-17
如何构建一个专属自己的智能体,用于撰写公司新闻稿,我会长期输入公司信息 请选择几家大模型公司的产品,具体说下操作步骤
以下是一些可用于构建专属智能体以撰写公司新闻稿的平台及操作步骤: 1. Coze:这是新一代的一站式 AI Bot 开发平台,适用于构建基于 AI 模型的各类问答 Bot。它集成了丰富的插件工具,能极大地拓展 Bot 的能力边界。 2. Microsoft 的 Copilot Studio:其主要功能包括外挂数据、定义流程、调用 API 和操作,以及将 Copilot 部署到各种渠道。 3. 文心智能体:百度推出的基于文心大模型的智能体平台,支持开发者根据自身需求打造大模型时代的产品能力。 4. MindOS 的 Agent 平台:允许用户定义 Agent 的个性、动机、知识,以及访问第三方数据和服务或执行设计良好的工作流。 5. 斑头雁:2B 基于企业知识库构建专属 AI Agent 的平台,适用于客服、营销、销售等多种场景,提供多种成熟模板,功能强大且开箱即用。 6. 钉钉 AI 超级助理:依托于钉钉强大的场景和数据优势,提供更深入的环境感知和记忆功能,在处理高频工作场景如销售、客服、行程安排等方面表现出色。 在实际构建和应用智能体时,您可以遵循以下准则: 1. 彻底让自己变成一个“懒人”。 2. 能动嘴的不要动手(用嘴说出您想做的事远比打字来的快)。 3. 能动手的尽量用 AI(用 AI 远比您苦哈哈的手敲要来的快)。 4. 把您手上的工作单元切割开,建设属于自己的智能体。 5. 根据结果反馈不断调整自己的智能体。 6. 定期审视自己的工作流程,看哪个部分可以更多的用上 AI。 您可以根据自己的需求选择适合的平台进行进一步探索和应用。
2024-08-09
如何构建一个专属自己的智能体,用于撰写公司新闻稿,我会长期输入公司信息
构建一个用于撰写公司新闻稿的专属智能体,您可以按照以下步骤进行: 1. 明确需求和目标:确定您希望智能体生成的新闻稿的风格、格式、内容重点等方面的要求。 2. 数据收集与整理:长期输入公司的相关信息,包括但不限于公司的发展历程、业务范围、近期重大事件、领导讲话等。确保数据的准确性、完整性和时效性。 3. 选择合适的技术和平台:有许多自然语言处理和机器学习的框架和平台可供选择,例如 TensorFlow、PyTorch 等。 4. 模型训练:使用收集到的数据对模型进行训练,不断调整参数以提高生成效果。 5. 测试与优化:在训练完成后,进行测试,查看生成的新闻稿是否符合预期,并根据测试结果对模型进行优化。 6. 持续学习与更新:随着公司的发展和信息的变化,持续为智能体提供新的数据,使其能够不断学习和改进。 需要注意的是,构建这样一个智能体需要一定的技术知识和实践经验,如果您不具备相关能力,可能需要寻求专业的技术团队或服务提供商的帮助。
2024-08-09