直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

如何构建一个专属自己的智能体,用于撰写公司新闻稿,我会长期输入公司信息

回答

构建一个用于撰写公司新闻稿的专属智能体,您可以按照以下步骤进行:

  1. 明确需求和目标:确定您希望智能体生成的新闻稿的风格、格式、内容重点等方面的要求。
  2. 数据收集与整理:长期输入公司的相关信息,包括但不限于公司的发展历程、业务范围、近期重大事件、领导讲话等。确保数据的准确性、完整性和时效性。
  3. 选择合适的技术和平台:有许多自然语言处理和机器学习的框架和平台可供选择,例如 TensorFlow、PyTorch 等。
  4. 模型训练:使用收集到的数据对模型进行训练,不断调整参数以提高生成效果。
  5. 测试与优化:在训练完成后,进行测试,查看生成的新闻稿是否符合预期,并根据测试结果对模型进行优化。
  6. 持续学习与更新:随着公司的发展和信息的变化,持续为智能体提供新的数据,使其能够不断学习和改进。

需要注意的是,构建这样一个智能体需要一定的技术知识和实践经验,如果您不具备相关能力,可能需要寻求专业的技术团队或服务提供商的帮助。

内容由 AI 大模型生成,请仔细甄别(powered by aily)
其他人在问
怎么让chagpt帮助我产出更好的润色新闻稿
以下是一些让 ChatGPT 帮助您产出更好的润色新闻稿的方法和相关信息: 1. 运用逆向提示词工程: 逆向提示词工程在写作领域具有广泛的应用性,运用这一技术,您创作出的文章会显得更自然,不会有那种明显的“由机器生成”的感觉。 对于润色新闻稿,您可以使用官方新闻风格的提示词:请以{文章摘要}为背景,写一篇 2000 字的新闻稿。写作要求包括以权威人物的观点或引用开头、描述当前政策或事件并提供日期和实际行动、插入专家观点或数据支持、使用中等长度的段落和复合句、保持中立的语气以正式和客观的风格进行、在句间使用转折或并列连接词、结尾时重回初始观点或引用并总结全文。例如,文章摘要为“周杰伦演唱会上受伤”。 2. 常见的文章润色 AI 工具: Wordvice AI:集校对、改写转述和翻译等功能于一体的 AI 写作助手,基于大型语言模型提供全面的英文论文润色服务。 ChatGPT:由 OpenAI 开发的大型语言模型,可用于学生和写作人员的多方面写作辅助。 Quillbot:人工智能文本摘要和改写工具,可用于快速筛选和改写文献资料。 HyperWrite:基于 AI 的写作助手和大纲生成器,可帮助用户在写作前进行头脑风暴和大纲规划。 Wordtune:AI 驱动的文本改写和润色工具,可以帮助用户优化文章的语言表达。 Smodin:提供 AI 驱动的论文撰写功能,可以根据输入生成符合要求的学术论文。 总的来说,这些 AI 工具涵盖了文章润色的各个环节,包括校对、改写、大纲生成、内容生成等,可以有效提高写作效率和质量。科研人员和学生可以根据自身需求选择合适的工具进行使用。
2024-11-04
如何构建一个专属自己的智能体,用于撰写公司新闻稿,我会长期输入公司信息 请选择几家大模型公司的产品,具体说下操作步骤
以下是一些可用于构建专属智能体以撰写公司新闻稿的平台及操作步骤: 1. Coze:这是新一代的一站式 AI Bot 开发平台,适用于构建基于 AI 模型的各类问答 Bot。它集成了丰富的插件工具,能极大地拓展 Bot 的能力边界。 2. Microsoft 的 Copilot Studio:其主要功能包括外挂数据、定义流程、调用 API 和操作,以及将 Copilot 部署到各种渠道。 3. 文心智能体:百度推出的基于文心大模型的智能体平台,支持开发者根据自身需求打造大模型时代的产品能力。 4. MindOS 的 Agent 平台:允许用户定义 Agent 的个性、动机、知识,以及访问第三方数据和服务或执行设计良好的工作流。 5. 斑头雁:2B 基于企业知识库构建专属 AI Agent 的平台,适用于客服、营销、销售等多种场景,提供多种成熟模板,功能强大且开箱即用。 6. 钉钉 AI 超级助理:依托于钉钉强大的场景和数据优势,提供更深入的环境感知和记忆功能,在处理高频工作场景如销售、客服、行程安排等方面表现出色。 在实际构建和应用智能体时,您可以遵循以下准则: 1. 彻底让自己变成一个“懒人”。 2. 能动嘴的不要动手(用嘴说出您想做的事远比打字来的快)。 3. 能动手的尽量用 AI(用 AI 远比您苦哈哈的手敲要来的快)。 4. 把您手上的工作单元切割开,建设属于自己的智能体。 5. 根据结果反馈不断调整自己的智能体。 6. 定期审视自己的工作流程,看哪个部分可以更多的用上 AI。 您可以根据自己的需求选择适合的平台进行进一步探索和应用。
2024-08-09
如何创建个人专属知识库
以下是创建个人专属知识库的相关内容: 私人知识库中的内容通常包括从互联网收集的优质信息以及个人日常的思考和分享。 基于私人知识库打造个人专属的 ChatGPT 常见有两种技术方案: 训练专有大模型:可以使用个人知识库训练专有大模型,但此方案并非当下主流,存在高成本、更新难度大等缺陷。 利用 RAG(检索增强生成)技术:先将文本拆分成若干小文本块并转换为 embeddings 向量,保存在向量储存库中。当用户提出问题时,将问题转换为向量与储存库中的向量比对,提取关联度高的文本块与问题组合成新的 prompt 发送给 GPT API。 搭建基于 GPT API 的定制化知识库时,由于 GPT3.5 一次交互支持的 Token 有限,OpenAI 提供了 embedding API 解决方案。embeddings 是一个浮点数字的向量,向量之间的距离衡量关联性,小距离表示高关联度。
2024-11-16
如何制作一个专属的工作机器人
以下是制作专属工作机器人的两种方式: 基于 GitHub 开源项目 chatgptonwechat 实现 chatgptonwechat项目是使用 ChatGPT 搭建的智能聊天机器人,在 GPT3.5/4.0 API 及 itchat 框架的基础上实现,支持个人微信、公众号、企业微信部署,能生成文本、语音和图片,访问操作系统和互联网。项目地址:https://github.com/zhayujie/chatgptonwechat 。 基于 Coze 直聘的职业助手 Bot 实现 1. 职业助手 Bot 是一个专为帮助用户找到理想工作而设计的智能机器人。只需输入求职信息和偏好,就能迅速匹配适合的工作机会,并提供全面的求职支持。 2. 设计理念:旨在通过智能化和个性化的服务,帮助求职者更快、更精准地找到理想工作。 高效匹配:利用先进的算法和大数据分析,迅速从海量招聘信息中筛选出最适合用户的职位,节省时间,提高求职效率。 实时更新:持续跟踪最新招聘信息,通过即时通知功能让用户掌握最新求职动态。 个性化推荐:根据用户的职业目标、工作经验、技能、地域偏好等信息提供高度个性化的职位推荐服务。 数据安全:重视用户数据的安全与隐私,采用最先进的安全技术确保用户个人信息和求职数据不被泄露。 3. 创建 Bot: 在 Coze 的主页创建 Bot。 输入 Bot 名称与 Bot 介绍,并使用 AI 功能生成图标(也可上传自己喜欢的图标)。 4. 人设与回复逻辑:简单描述 Bot 的人设与逻辑,然后使用 AI 助手进行优化。例如:角色为一个专业的职业助手 Bot,能够根据用户输入信息为用户精准提供匹配的职位推荐。 5. 技能:为 Bot 增加一些技能。 6. 插件:增加一个新闻类插件,来捕捉行业相关的动态。
2024-10-31
我想做一个知识库管理,用于用户累计只是,在此基础上打造属于用户个人的知识库,通过ai生成用户专属的答案。但是我不知道应该怎么设计这个软件,请为我建议
设计一个用于用户知识累计和生成专属答案的知识库管理软件,您可以考虑以下几个关键方面: 1. 数据存储与架构 选择合适的数据库系统,如关系型数据库(如 MySQL、PostgreSQL)或非关系型数据库(如 MongoDB、Cassandra),以有效存储用户的知识数据。 设计合理的数据表结构,包括用户信息表、知识条目表、知识分类表等,确保数据的组织和关联清晰。 2. 知识录入与编辑 提供直观的用户界面,方便用户录入知识,支持多种格式,如文本、图片、音频、视频等。 具备知识编辑功能,允许用户修改、更新和完善已录入的知识。 3. 知识分类与标签 建立灵活的知识分类体系,让用户能够将知识分类存放,便于查找和管理。 支持用户为知识添加自定义标签,提高知识检索的准确性。 4. 搜索与检索功能 实现强大的搜索功能,支持全文搜索、关键词搜索、模糊搜索等多种搜索方式。 优化搜索算法,确保快速返回准确的搜索结果。 5. AI 模型集成 选择适合的 AI 模型,如自然语言处理模型,用于理解用户的问题和生成答案。 对 AI 模型进行训练和优化,使其能够基于用户的知识库提供准确和有用的回答。 6. 用户权限管理 设定不同的用户权限级别,如管理员、普通用户等,控制用户对知识库的操作权限,保障数据安全。 7. 数据备份与恢复 定期自动备份知识库数据,以防止数据丢失。 提供数据恢复功能,确保在意外情况下能够快速恢复知识库。 8. 界面设计 设计简洁、美观、易用的界面,提高用户体验。 遵循用户习惯和人机交互原则,使操作流程简单直观。 9. 性能优化 对软件进行性能优化,确保在处理大量知识数据时仍能保持高效运行。 10. 测试与迭代 进行充分的测试,包括功能测试、性能测试、用户体验测试等。 根据用户反馈和实际使用情况,不断迭代优化软件功能。 希望以上建议对您有所帮助,祝您成功设计出满足需求的知识库管理软件!
2024-10-29
怎们架构专属自己企业的AI系统
要架构专属自己企业的 AI 系统,可以参考以下步骤: 一、逐步搭建 AI 智能体 1. 搭建整理入库工作流 新建工作流「url2table」,根据弹窗要求自定义工作流信息。 工作流全局流程设置需根据实际需求进行。 2. 在外层 bot 中封装工作流,完成整体配置 创建 Bot。 填写 Bot 介绍。 切换模型为“通义千问”,测试下来通义对提示词理解和执行效果较好。 把配置好的工作流添加到 Bot 中。 新增变量{{app_token}}。 添加外层 bot 提示词(可按需求和实际效果优化调整)。 二、相关术语 以下是一些在 AI 系统架构中可能涉及的术语: 1. AI 或 AI 系统或 AI 技术:具有“适应性”和“自主性”的产品和服务,如在定义的第 3.2.1 节中所述。 2. AI 供应商:在 AI 系统的研究、开发、培训、实施、部署、维护、提供或销售中发挥作用的任何组织或个人。 3. AI 用户:使用 AI 产品的任何个人或组织。 4. AI 生命周期:与 AI 系统的寿命相关的所有事件和过程,从开始到退役,包括其设计、研究、培训、开发、部署、集成、操作、维护、销售、使用和治理。 5. AI 生态系统:在 AI 生命周期中实现 AI 使用和供应的复杂网络,包括供应链、市场和治理机制。 6. 基础模型:在大量数据上训练的一种 AI 模型,可适用于广泛的任务,可作为构建更具体 AI 模型的基础。 经过上述配置,您可以在「预览与调试」窗口与 AI 智能体对话并使用全部功能。
2024-09-11
如何训练专属我的问答机器人
要训练专属您的问答机器人,基于飞书能力开发时,首先需要了解问答机器人的底层原理——RAG 技术。 RAG 的基本流程如下: 1. 当接收到用户的输入,比如一个问题或一个话题,RAG 会从数据源(如网页、文档或数据库记录)中检索出与之相关的文本片段,这些文本片段被称为上下文。 2. 接着,RAG 会将用户的输入和检索到的上下文拼接成一个完整的输入,并传递给大语言模型(例如 GPT)。这个输入通常会包含一些提示,用于指导模型生成期望的输出,比如一个答案或一个摘要。 3. 最后,RAG 会从大语言模型的输出中提取或格式化所需的信息,再返回给用户。
2024-08-19
撰写内容概要:以ai换脸诈骗和声音合成诈骗为蓝本查阅网站、文献期刊等专家在相关方面的研究进展及其成果,并进行汇总评述。(1)表述收集资料的来源情况、收集资料的数量情况;(2)将所收集的资料进行分类,按照几个分类方面逐一进行表述,表述涵盖专家的观点、结论、思路、方案等;(3)小组综合性的对所收集到的资料进行评述,描述当前的进展情况、优劣点、未来发展等。)
以下是根据您提供的资料进行的汇总评述: 一、收集资料的情况 1. 来源情况:资料来源于陶力文律师的相关论述、关于 AI 音乐的论文、质朴发言的研究报告等。 2. 数量情况:共收集到 3 份相关资料。 二、资料分类及专家观点 1. 关于律师如何写好提示词用好 AI 观点:强调结构化内容组织、规定概述内容解读结语结构、案例和挑战结合、结合法规和实际操作、使用商业术语等。 结论:通过多种方式提升文章的专业性和针对性。 思路:从标题、文章结构等方面进行规划。 方案:按照特定的结构和要求进行写作。 2. 基于频谱图的音乐录音中自动调谐人声检测 观点:聚焦音乐中人声音高的自动调音检测,提出数据驱动的检测方法。 结论:所提方法在检测上表现出较高的精确度和准确率。 思路:包括音频预处理、特征提取和分类等步骤。 方案:创建新数据集,进行全面评估。 3. 文生图/文生视频技术发展路径与应用场景 观点:从横向和纵向梳理文生图技术发展脉络,分析主流路径和模型核心原理。 结论:揭示技术的优势、局限性和未来发展方向。 思路:探讨技术在实际应用中的潜力和挑战。 方案:预测未来发展趋势,提供全面深入的视角。 三、综合性评述 当前在这些领域的研究取得了一定的进展,如在音乐自动调音检测方面提出了新的方法和数据集,在文生图/文生视频技术方面梳理了发展路径和应用场景。 优点在于研究具有创新性和实用性,为相关领域的发展提供了有价值的参考。但也存在一些不足,如音乐检测研究中缺乏专业自动调音样本,部分技术在实际应用中可能面临一些挑战。 未来发展方面,有望在数据样本的丰富性、技术的优化和多模态整合等方面取得进一步突破,拓展更多的应用场景。
2024-11-15
用20个字概括AI文档撰写和ppt制作
AI 文档撰写和 PPT 制作涵盖多种工具与应用场景,如 Gamma、美图 AI PPT 等,可辅助教学等工作。
2024-11-13
帮我撰写专利分析报告的ai有哪些
以下是一些可用于撰写专利分析报告的 AI 工具和平台: 1. 专利检索与分类: Google Patents:使用 AI 技术帮助用户检索和分析专利文献。 IBM Watson for IP:利用 NLP 和机器学习技术,自动化地检索和分类专利文献,提高检索的准确性和效率。 2. 专利分析和评估: TurboPatent:使用 AI 技术进行专利文档的自动审查和分析,评估专利的授权可能性和潜在风险。 PatentBot:AI 驱动的平台,可以自动分析专利文本,评估专利的技术范围和创新性。 3. 自动化专利申请: Specifio:利用 AI 技术自动生成专利申请文件,包括专利说明书和权利要求书,提高专利申请的效率。 PatentPal:使用 AI 技术自动生成和编辑专利申请文件,减少人工工作量。 4. 专利图像和图表分析: Aulive:利用 AI 技术分析专利中的图像和图表,自动识别技术内容和创新点。 AIpowered image recognition tools:用于专利文献中的图像识别和分析,提高图像处理的效率和准确性。 5. 专利趋势分析和预测: Innography:利用 AI 技术分析专利数据,提供技术趋势分析和竞争情报。 PatSnap:AI 驱动的平台,分析专利数据和技术趋势,提供全面的专利情报和市场分析。 使用这些平台的一般步骤如下: 1. 注册和登录:在对应的平台上注册账户并登录。 2. 上传专利文献:上传待审查的专利文献或输入检索关键词。 3. 选择分析功能:根据需要选择专利检索、分析、评估或生成功能。 4. 查看结果和报告:查看 AI 生成的检索结果、分析报告和评估结果。 5. 进一步处理:根据分析结果进行进一步的人工审查和处理,或者直接生成专利申请文件。 需要注意的是,AI 技术在专利审查领域的应用,可以极大地提高工作效率,减少人工工作量,提高专利检索、分类和分析的准确性和效率。但在使用时,仍需仔细甄别结果。
2024-10-31
你好我需要一个AI对话总结撰写文字的AI,要求必须超长文本理解,文笔很棒
以下为您推荐两款具备超长文本理解能力且文笔不错的 AI 对话产品: 1. Kimi: 显著特点是拥有超长上下文能力,最初支持 20 万字上下文,现已提升至 200 万字。对于处理长文本或大量信息的任务具有巨大优势,能帮助从事文案工作、处理大量文字或文件的用户更有效地处理和分析信息,提高工作效率,对需要长期记忆或参考大量背景信息的任务尤其有用。 不足之处在于文字生成和语义理解、文字生成质量方面可能不如国内其他产品好,且不支持用户自定义智能体。但仍推荐给刚入门 AI 的朋友。 2. 智谱清言: 其背后的技术源自清华大学研发团队的科研成果转化,模型质量出色。 产品设计对标 ChatGPT,努力打造类似用户体验,是国内首批开放智能体应用的公司之一,在智能体开发和模型优化方面积累了丰富经验和技术,在逻辑推理和处理复杂提示词方面表现出明显优势,处理需要深度思考和分析的任务时表现出色。
2024-10-24
如果我需要撰写一个以“AI对音乐行业就业岗位的影响”为主题的约3000字的科普类文章,我应该优先关注WaytoAGI 知识库中的哪些内容?
很抱歉,目前“通往 AGI 之路”知识库中没有与“AI 对音乐行业就业岗位的影响”相关的直接内容。但您可以从以下几个方面入手来撰写这篇文章: 1. 了解 AI 在音乐创作、制作、表演等方面的应用现状和发展趋势。 2. 研究 AI 技术如何改变音乐的生产流程和效率。 3. 分析 AI 对音乐创作者、演奏者、制作人等不同岗位的具体影响,包括可能的岗位替代和新岗位的产生。 4. 探讨 AI 带来的音乐版权和知识产权问题,以及对相关法律和政策的影响。 5. 关注音乐消费者对 AI 参与音乐创作和表演的接受程度和需求变化。
2024-10-19
根据我的论文主题撰写一段引言:《通用人工智能时代的博弈论应用:数据科学与决策价值》
在当今科技飞速发展的时代,通用人工智能(AGI)的崛起正以前所未有的态势改变着我们的生活和社会。随着数据量的爆炸式增长以及决策环境的日益复杂,博弈论作为一门研究决策主体相互作用时的策略选择及均衡问题的学科,在通用人工智能时代展现出了独特的应用价值。 在数据科学领域,海量的数据为我们提供了丰富的信息,但如何从这些数据中提取有价值的知识并做出明智的决策,成为了一个关键挑战。博弈论的引入为解决这一问题提供了新的思路和方法。它帮助我们理解不同数据主体之间的竞争与合作关系,从而优化数据的采集、处理和分析过程。 在决策价值方面,通用人工智能系统需要在复杂多变的环境中做出最优决策。博弈论通过对不同策略的收益和风险进行分析,为决策提供了理论依据和数学模型,使得决策更加科学、合理和高效。 综上所述,研究通用人工智能时代的博弈论应用,对于推动数据科学的发展以及提升决策的价值具有重要的理论和实践意义。
2024-09-28
如何利用飞书构建RAG系统
以下是关于如何利用飞书构建 RAG 系统的相关内容: RAG 的常见误区: 随意输入任何文档就能得到准确回答:这是常见误区,RAG 流程包含离线环节(文档解析、切割及向量化写入向量数据库)和在线检索环节(用户问题理解、初步检索、重排序及大模型生成),任何环节都会影响最终质量,有效实现 RAG 系统需要考虑多个复杂因素,如文档预处理、高效索引、相关性排序等,需要专业知识和持续优化。 RAG 完全消除了 AI 的幻觉:虽然 RAG 可以显著减少幻觉,但并不能完全消除,只要有大模型参与,就有可能产生幻觉。 RAG 不消耗大模型的 Token 了:从大模型生成结果环节可以看出,最终还是将知识库中检索的结果给到 LLM,然后由 LLM 进行重新整理输出,所以 RAG 仍然消耗大模型的 Token。 本地部署资讯问答机器人:Langchain + Ollama + RSSHub 实现 RAG: 加载所需的库和模块,如 feedparse 用于解析 RSS 订阅源,ollama 用于在 python 程序中跑大模型,使用前需确保 ollama 服务已开启并下载好模型。 从订阅源获取内容,通过函数从指定的 RSS 订阅 url 提取内容,将长文本拆分成较小的块,并附带相关元数据,最终合并成列表返回。 为文档内容生成向量,使用文本向量模型 bgem3,从 hf 下载好模型后,通过函数利用 FAISS 创建高效的向量存储。 RAG 性能提升策略和评估方法(产品视角): 前言:RAG 是检索增强生成的缩写,是结合检索模型和生成模型的技术,核心目的是把知识告诉给 AI 大模型,让其“懂”我们,核心流程是根据用户提问从私有知识中检索相关内容,与用户提问一起放入 prompt 中提交给大模型,常见应用场景如知识问答系统。
2024-11-20
数据中心运维服务的智能体构建
以下是关于数据中心运维服务智能体构建的相关内容: 一泽 Eze:Coze+飞书多维表格,打造专属 AI 智能体,享受 10 倍知识管理效率 逐步搭建 AI 智能体: 1. 创建 Bot。 2. 填写 Bot 介绍。 3. 切换模型为“通义千问”(测试下来,通义对提示词理解、执行效果最好)。 4. 把配置好的工作流(如整理入库、选择内容)添加到 Bot 中。 5. 新增变量{{app_token}}。 6. 添加外层 bot 提示词(可按需求和实际效果优化调整)。完成上述步骤后,能在「预览与调试」窗口与 AI 稍后读智能体对话并使用全部功能。 智能体在品牌卖点提炼中的应用 搭建一个智能体帮助提炼卖点: 1. 确定智能体的结构:按照市场营销的逻辑组织智能体的结构。 2. 搭建完整智能体: 以品牌卖点提炼六步法为核心的流程,包括探索、排列、抽取、收敛、确认、应用流程。 加入其他分析助手,如品牌卖点定义与分类助手、STP 市场分析助手、用户画像分析助手、触点收集助手等。 还包括一些在后续品牌卖点应用过程中有效的分析工具,如用户需求分析的 KANO 助手、营销六层转化漏斗分析、超级转化率六要素等。
2024-11-19
AI村民构建的AI小镇资料
以下是关于 AI 小镇“离谱村”的相关资料: 离谱村之歌: 村民阿飞创作的村歌,歌词中描绘了离谱村村民不种田,只搞 AI 的狂欢。代码是他们的麦田,数据是他们的酒,机器学习、深度神经等技术他们玩得转,算法优化、模型训练如同游戏般简单。从早到晚只有键盘的敲击声,AI 的梦想正在成形。村里有智能机器人、自动车等未来元素,村民用 AI 种菜、放牛,智能管家解决烦恼。离谱村的夜因 AI 灯光而明亮,这里的故事将传遍每个角落,其 AI 成果让世界震撼。 离谱村的共创故事: 离谱村是由 WaytoAGI 孵化的 900 人共创项目,目前是用飞书做整体协同。一部完全由 AI 制作完成的短片《离谱村的故事》获得了 MIT 电影黑客松的 Best Video 第一名。其中的配音是用 Audiobox 捏出来的,为保证离谱熊声线的一致性,还用了 GPTsovits 对其声音做了专属训练。有专门的离谱村百科和村民目录用于素材管理,接下来会引入离谱家人的共创内容。 离谱村介绍: WaytoAGI 是由一群热爱 AI 的专家和爱好者共同建设的开源 AI 知识库,涵盖 AI 绘画、AI 视频、AI 智能体、AI 3D 等多个版块,包含赛事和活动促进大家动手实践,有 1000 万的访问量。离谱村是 WaytoAGI 孵化的千人共创项目,参与者不分年龄层,通过 AI 工具创作出各种作品。离谱村是一个没有被定义的地方,每个人心中都有自己想象中的样子,它不仅是物理空间,更是灵魂的避风港,激励着人们发挥想象力创造独特生活方式。
2024-11-13
如何构建自己的AI助理?
构建自己的 AI 助理可以参考以下步骤: 1. 确定功能范围: 支持用户发送“关键字”,自助获取您分享的“AI 相关资料链接”。 能够回答 AI 相关知识,优先以“您的知识库”中的内容进行回答,若知识库信息不足则调用 AI 大模型回复,并在答案末尾加上“更多 AI 相关信息,请链接作者:jinxia1859”。 能发布在您的微信公众号上,作为“微信客服助手”。 2. 准备相关内容: 根据 AI 助理的目的和核心能力,编写 prompt 提示词。 整理“关键字”与“AI 相关资料链接”的对应关系,可用 word、txt、excel 等格式。 创建自己的【知识库】,用于回答 AI 相关知识。 创建【工作流】,控制 AI 按照要求处理信息。 准备好自己的微信公众号,以便发布机器人。 3. 设计详细步骤: 先展示 AI 助理的【最终效果】界面。 构建 AI Agent 还可以类比为培养一位职场新人,包括规划阶段明确目标,将具体任务拆解为可管理的子任务并设计执行方法;实施阶段搭建工作流程,为子任务设置操作指南并验证输出质量;优化阶段通过反复测试和调整,优化性能,直到稳定输出高质量结果。您可以设定一个任务目标,动手构建专属的 AI 助理。
2024-11-08
我拥有很多的行业资料,我想构建一个自己的知识库,然后通过向AI助手提问,帮我快速找到资料和解决方案,这个知识库应该怎么建立?按什么格式?
以下是建立自己的知识库的步骤和相关格式: 1. 选择工具:以 Coze 为例,来到个人空间,找到知识库导航栏,点击创建知识库。 需注意知识库是共享资源,多个 Bot 可以引用同一个知识库。 2. 选择格式并填写信息: 目前(2024.06.08)Coze 支持三种格式,分别是文档、表格(CSV、Excel 等)、图片(上传图片并填写图片文字说明)。 格式并非关键,重要的是理解影响 RAG 输出质量的因素。 例如可以选择本地文档(问答对可选择表格)。 参考。 选择自定义的文档切割,数据处理完成后,一个问答对会被切割成一个文档片。 3. 使用知识库:关于使用知识库,可以查看教程。
2024-11-06
如何构建有效的知识库
构建有效的知识库可以参考以下方法: 使用 Dify 构建知识库: 1. 准备数据: 收集需要纳入知识库的文本数据,包括文档、表格等格式。 对数据进行清洗、分段等预处理,确保数据质量。 2. 创建数据集: 在 Dify 中创建一个新的数据集,并将准备好的文档上传至该数据集。 为数据集编写良好的描述,描述清楚数据集包含的内容和特点。 3. 配置索引方式: Dify 提供了三种索引方式供选择:高质量模式、经济模式和 Q&A 分段模式。 根据实际需求选择合适的索引方式,如需要更高准确度可选高质量模式。 4. 集成至应用: 将创建好的数据集集成到 Dify 的对话型应用中,作为应用的上下文知识库使用。 在应用设置中,可以配置数据集的使用方式,如是否允许跨数据集搜索等。 5. 持续优化: 收集用户反馈,对知识库内容和索引方式进行持续优化和迭代。 定期更新知识库,增加新的内容以保持知识库的时效性。 总的来说,Dify 提供了一个可视化的知识库管理工具,使得构建和维护知识库变得相对简单。关键步骤包括数据准备、数据集创建、索引配置,以及将知识库集成到应用中并持续优化。 知识图谱: 知识图谱是一种揭示实体之间关系的语义网络,可以对现实世界的事物及其相互关系进行形式化地描述。于 2012 年 5 月 17 日被 Google 正式提出,其初衷是为了提高搜索引擎的能力,增强用户的搜索质量以及搜索体验。知识图谱可以将 Web 从网页链接转向概念链接,支持用户按照主题来检索,实现语义检索。 其关键技术包括: 1. 知识抽取: 实体抽取:命名实体识别从数据源中自动识别命名实体。 关系抽取:从数据源中提取实体之间的关联关系,形成网状的知识结构。 属性抽取:从数据源中采集特定实体的属性信息。 2. 知识表示: 属性图 三元组 3. 知识融合: 实体对齐:消除异构数据中的实体冲突、指向不明等不一致性问题。 知识加工:对知识统一管理,形成大规模的知识体系。 本体构建:以形式化方式明确定义概念之间的联系。 质量评估:计算知识的置信度,提高知识的质量。 知识更新:不断迭代更新,扩展现有知识,增加新的知识。 4. 知识推理:在已有的知识库基础上挖掘隐含的知识。 手把手教你本地部署大模型以及搭建个人知识库: 如果想要对知识库进行更加灵活的掌控,我们需要一个额外的软件:AnythingLLM。这个软件包含了所有 Open WebUI 的能力,并且额外支持了以下能力:选择文本嵌入模型、选择向量数据库。 安装地址:https://useanything.com/download 当我们安装完成之后,会进入到其配置页面,这里面主要分为三步: 1. 第一步:选择大模型。 2. 第二步:选择文本嵌入模型。 3. 第三步:选择向量数据库。 构建本地知识库: AnythingLLM 中有一个 Workspace 的概念,我们可以创建自己独有的 Workspace 跟其他的项目数据进行隔离。 1. 首先创建一个工作空间。 2. 上传文档并且在工作空间中进行文本嵌入。 3. 选择对话模式。AnythingLLM 提供了两种对话模式: Chat 模式:大模型会根据自己的训练数据和我们上传的文档数据综合给出答案。 Query 模式:大模型仅仅会依靠文档中的数据给出答案。 4. 测试对话。当上述配置完成之后,我们就可以跟大模型进行对话了。
2024-11-04