Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

如何构建一个专属自己的智能体,用于撰写公司新闻稿,我会长期输入公司信息

Answer

构建一个用于撰写公司新闻稿的专属智能体,您可以按照以下步骤进行:

  1. 明确需求和目标:确定您希望智能体生成的新闻稿的风格、格式、内容重点等方面的要求。
  2. 数据收集与整理:长期输入公司的相关信息,包括但不限于公司的发展历程、业务范围、近期重大事件、领导讲话等。确保数据的准确性、完整性和时效性。
  3. 选择合适的技术和平台:有许多自然语言处理和机器学习的框架和平台可供选择,例如 TensorFlow、PyTorch 等。
  4. 模型训练:使用收集到的数据对模型进行训练,不断调整参数以提高生成效果。
  5. 测试与优化:在训练完成后,进行测试,查看生成的新闻稿是否符合预期,并根据测试结果对模型进行优化。
  6. 持续学习与更新:随着公司的发展和信息的变化,持续为智能体提供新的数据,使其能够不断学习和改进。

需要注意的是,构建这样一个智能体需要一定的技术知识和实践经验,如果您不具备相关能力,可能需要寻求专业的技术团队或服务提供商的帮助。

Content generated by AI large model, please carefully verify (powered by aily)
Others are asking
写新闻稿最好用的AI是什么
以下是一些写新闻稿好用的 AI 工具: 1. Copy.ai:功能强大的 AI 写作助手,提供丰富的新闻写作模板和功能,可快速生成新闻标题、摘要、正文等内容,节省写作时间并提高效率。 2. Writesonic:专注于写作的 AI 工具,提供新闻稿件生成、标题生成、摘要提取等功能,其智能算法能根据用户提供的信息快速生成高质量新闻内容,适合新闻写作和编辑人员使用。 3. Jasper AI:人工智能写作助手,虽主打博客和营销文案,但也可用于生成新闻类内容,写作质量较高,支持多种语言。 这些 AI 新闻写作工具都具有智能化的算法和丰富的模板库,可以帮助新闻从业人员快速生成高质量的新闻稿件,并提高工作效率。但请注意,内容由 AI 大模型生成,请仔细甄别。
2024-12-17
怎么让chagpt帮助我产出更好的润色新闻稿
以下是一些让 ChatGPT 帮助您产出更好的润色新闻稿的方法和相关信息: 1. 运用逆向提示词工程: 逆向提示词工程在写作领域具有广泛的应用性,运用这一技术,您创作出的文章会显得更自然,不会有那种明显的“由机器生成”的感觉。 对于润色新闻稿,您可以使用官方新闻风格的提示词:请以{文章摘要}为背景,写一篇 2000 字的新闻稿。写作要求包括以权威人物的观点或引用开头、描述当前政策或事件并提供日期和实际行动、插入专家观点或数据支持、使用中等长度的段落和复合句、保持中立的语气以正式和客观的风格进行、在句间使用转折或并列连接词、结尾时重回初始观点或引用并总结全文。例如,文章摘要为“周杰伦演唱会上受伤”。 2. 常见的文章润色 AI 工具: Wordvice AI:集校对、改写转述和翻译等功能于一体的 AI 写作助手,基于大型语言模型提供全面的英文论文润色服务。 ChatGPT:由 OpenAI 开发的大型语言模型,可用于学生和写作人员的多方面写作辅助。 Quillbot:人工智能文本摘要和改写工具,可用于快速筛选和改写文献资料。 HyperWrite:基于 AI 的写作助手和大纲生成器,可帮助用户在写作前进行头脑风暴和大纲规划。 Wordtune:AI 驱动的文本改写和润色工具,可以帮助用户优化文章的语言表达。 Smodin:提供 AI 驱动的论文撰写功能,可以根据输入生成符合要求的学术论文。 总的来说,这些 AI 工具涵盖了文章润色的各个环节,包括校对、改写、大纲生成、内容生成等,可以有效提高写作效率和质量。科研人员和学生可以根据自身需求选择合适的工具进行使用。
2024-11-04
如何构建一个专属自己的智能体,用于撰写公司新闻稿,我会长期输入公司信息 请选择几家大模型公司的产品,具体说下操作步骤
以下是一些可用于构建专属智能体以撰写公司新闻稿的平台及操作步骤: 1. Coze:这是新一代的一站式 AI Bot 开发平台,适用于构建基于 AI 模型的各类问答 Bot。它集成了丰富的插件工具,能极大地拓展 Bot 的能力边界。 2. Microsoft 的 Copilot Studio:其主要功能包括外挂数据、定义流程、调用 API 和操作,以及将 Copilot 部署到各种渠道。 3. 文心智能体:百度推出的基于文心大模型的智能体平台,支持开发者根据自身需求打造大模型时代的产品能力。 4. MindOS 的 Agent 平台:允许用户定义 Agent 的个性、动机、知识,以及访问第三方数据和服务或执行设计良好的工作流。 5. 斑头雁:2B 基于企业知识库构建专属 AI Agent 的平台,适用于客服、营销、销售等多种场景,提供多种成熟模板,功能强大且开箱即用。 6. 钉钉 AI 超级助理:依托于钉钉强大的场景和数据优势,提供更深入的环境感知和记忆功能,在处理高频工作场景如销售、客服、行程安排等方面表现出色。 在实际构建和应用智能体时,您可以遵循以下准则: 1. 彻底让自己变成一个“懒人”。 2. 能动嘴的不要动手(用嘴说出您想做的事远比打字来的快)。 3. 能动手的尽量用 AI(用 AI 远比您苦哈哈的手敲要来的快)。 4. 把您手上的工作单元切割开,建设属于自己的智能体。 5. 根据结果反馈不断调整自己的智能体。 6. 定期审视自己的工作流程,看哪个部分可以更多的用上 AI。 您可以根据自己的需求选择适合的平台进行进一步探索和应用。
2024-08-09
如何对扣子智能体做专属训练
对扣子智能体进行专属训练时,需要注意以下要点: 1. 跳转设置:扣子在节点切换提供了独立和非独立两种识别模式。独立识别模式中每个节点都有一个独立识别模型,非独立模式则直接使用当前智能体模型进行判断,实际使用中推荐独立模式。 2. 独立模式的选择:独立模式有两种选择。第一种是面对通用指令时,选择已经训练好的、专门用于节点切换的大型模型,其优点是经过特定训练,无需额外操心设计。第二种是在遇到非常复杂的情景时,使用自定义的大型模型,可根据需求定制模型和编写特定提示词以适应复杂交互场景,但实际测试效果不理想,所以推荐使用第一种。 3. 关键注意点:在使用专门训练的意图识别模型进行节点切换时,要特别注意两个关键点。一是每个智能体的用途必须清晰明确,在设计和实现时要清楚标注其功能和目的,以确保系统能准确识别和响应用户意图。二是智能体的名称非常重要,应清晰、易于识别,便于系统识别和记忆。
2025-01-27
如何做一款专属某行业的AI
要开发一款专属某行业的 AI ,可以参考以下要点: 1. 学习模式:AI 应像人类一样学习,例如在医疗保健领域,创建具有潜在空间层次结构的堆叠 AI 模型,反映对每个基本元素的理解或预测能力,可能会以与人脑皮层类似的方式发展,并针对特定任务专门设计神经架构。 2. 特定领域专家 AI:创建特定领域的专家 AI 比创建全能 AI 更容易,预计会创造许多专家 AI ,它们在编码、数据和测试方面采用多样化方法,并提供多种意见。 3. 现实世界互动:让熟练的人类专家配备可穿戴设备,收集现实世界的互动供 AI 学习,同时避免复制危险的偏见。 4. 模型生态系统:以医疗保健为例,应投资创建像优秀医生和药物开发者那样学习的“专家”AI 模型生态系统。成为顶尖人才通常从多年密集信息输入和正规教育开始,再通过学徒实践,AI 学习也应如此,通过堆叠模型训练,而非仅依靠大量数据。 5. 行业调研报告: 步骤:让 AI 阅读学习优秀行业调研报告,总结方法论和操作框架;询问收集行业数据时所用的一手和二手数据及靠谱资料收集网站;要求 AI 推荐行业信息网站和微信公众号,并输出行业调研报告框架;丰富框架每一章节内容。 注意事项:使报告有深度可通过自身对行业的了解整理深度洞察和见解,或深度咨询 AI 并借助其知识学习、研究和总结。 以上是关于如何做一款专属某行业的 AI 的相关内容。
2025-01-22
我想训练一个专属Agent该怎么做?
要训练一个专属 Agent,以下是一些关键步骤和要点: 1. 明确目标:确定您希望 Agent 实现的特定目标,这将为训练提供方向。 2. 理解智能体的定义:智能体是能够感知环境并采取行动以实现特定目标的实体,可以是软件程序或硬件设备。 3. 规划:将大型任务分解为更小、可管理的子目标,以有效处理复杂任务。 4. 反思和完善:让 Agent 能够对过去的行为进行自我批评和反思,从错误中吸取教训,并针对未来步骤进行完善,提高最终结果质量。 5. 记忆管理:包括短期记忆,利用模型的短期记忆进行学习;长期记忆,通过外部向量存储和快速检索实现长时间信息保留和回忆。 6. 工具使用:训练 Agent 学习调用外部 API 来获取模型权重中缺失的额外信息,包括当前信息、代码执行能力、对专有信息源的访问等。 7. 评估工具使用能力:从调用 API 的能力、检索 API 的能力以及计划 API 超越检索和调用的能力这三个层面进行评估。 在训练过程中,还需要注意模型的上下文窗口长度有限,输入的剧集应足够短以构建多剧集历史,2 4 个剧集的多剧集上下文对于学习近乎最优的上下文强化学习算法是必要的,且上下文强化学习的涌现需要足够长的上下文。
2025-01-17
部署Agent专属的web端应用
以下是关于部署 Agent 专属的 web 端应用的相关内容: 在 Linux 上部署较为简单,前提是您有一张 4G 以上显存的 GPU 显卡。步骤如下: 1. 下载代码仓库。 2. 安装依赖(注意有两个依赖未放在 requirements.txt 里)。 3. 启动 webui 的 demo 程序,然后用浏览器登陆服务器的 ip:8080 就能试玩。此 demo 提供了 3 个参数: server_name:服务器的 ip 地址,默认 0.0.0.0。 servic_port:即将开启的端口号。 local_path:模型存储的本地路径。 4. 第一次启动生成语音时,需查看控制台输出,会下载一些模型文件,可能因网络问题失败,但首次加载成功后后续会顺利。 5. 基于此基础可拓展,比如集成到 agent 的工具中,结合 chatgpt 做更拟人化的实时沟通。 6. webui 上可设置的几个参数说明: text:指需要转换成语音的文字内容。 Refine text:选择是否自动对输入的文本进行优化处理。 Audio Seed:语音种子,是一个用于选择声音类型的数字参数,默认值为 2,是很知性的女孩子的声音。 Text Seed:文本种子,是一个正整数参数,用于 refine 文本的停顿,实测文本的停顿设置会影响音色、音调。 额外提示词(可写在 input Text 里):用于添加笑声、停顿等效果,例如。 以下是一些 Agent 构建平台: 1. Coze:新一代一站式 AI Bot 开发平台,适用于构建基于 AI 模型的各类问答 Bot,集成丰富插件工具拓展 Bot 能力边界。 2. Microsoft 的 Copilot Studio:主要功能包括外挂数据、定义流程、调用 API 和操作,以及将 Copilot 部署到各种渠道。 3. 文心智能体:百度推出的基于文心大模型的智能体(Agent)平台,支持开发者根据需求打造产品能力。 4. MindOS 的 Agent 平台:允许用户定义 Agent 的个性、动机、知识,以及访问第三方数据和服务或执行工作流。 5. 斑头雁:2B 基于企业知识库构建专属 AI Agent 的平台,适用于客服、营销、销售等场景,提供多种成熟模板,功能强大且开箱即用。 6. 钉钉 AI 超级助理:依托钉钉强大的场景和数据优势,提供环境感知和记忆功能,在处理高频工作场景如销售、客服、行程安排等方面表现出色。 以上信息仅供参考,您可根据自身需求选择适合的平台。
2025-01-07
AI+交易:来定制专属于你的私人高级交易顾问吧!
以下是关于“AI+交易:来定制专属于你的私人高级交易顾问吧!”的相关内容: 原本是一名 AIGC 创作者,在接触交易后,希望将交易与 AIGC 相结合,打造私人高级交易顾问。学习交易知识后认识到,单纯迷信技术分析提高胜率实现长期稳定盈利对个人投资者不可行,心态关键。新人对交易理论不熟悉更致命,成熟交易员单一策略熟练运用能找进出点、良好心态能长期盈利,但不熟悉行情只能观望。借助 AI 分析行情,期望在不熟悉市场时找到合适进场点,提高资金使用效率,多种策略配合提高理论胜率(有统计数据显示几千名专业交易员一年里平均胜率 70)。 此外,还有以下 AI 与工作场景结合的案例: 1. 销售方面:包括话术总结优缺点、定制销售解决方案。 2. 客服方面:定制客服话术,有关键词库,如产品知识、使用方法等。 3. HR 方面:团队绩效管理,根据绩效数据输出考评和改进建议;面试工具,如使用 GPT4 技术的实时转录工具帮助求职者生成回答。 另外,在七大行业的商业化应用中: 1. 企业运营:包括日常办公文档撰写整理、营销对话机器人等。 2. 教育:协助评估学生学习情况、定制学习内容等。 3. 游戏/媒体:如定制化游戏、出海文案生成等。 4. 零售/电商:包括舆情监测分析、品牌营销内容撰写等。 5. 金融/保险:如个人金融理财顾问、识别欺诈活动风险等。
2024-12-17
如何打造专属自己的ai智能体?让保存的文献资料为自己专属分析只用?
打造专属自己的 AI 智能体并让保存的文献资料为自己专属分析,可参考以下步骤: 1. 设计 AI 智能体架构:先构思整个 AI 智能体的架构。 2. 规定稍后读阅读清单的元数据:新建一个飞书多维表格,根据稍后读的管理需要,定义元数据字段,如“内容(超链接格式,显示页面标题,可点击跳转具体的页面)”“摘要(根据具体内容,总结内容主题、关键信息、阅读价值,并指出适合的读者群体)”“作者”“平台”“状态(阅读状态,收藏的默认态为“仅记录”)”“发布日期”“收集时间”等。您也可以直接复制准备好的模板:【模板】稍后读管理 3. 搭建整理入库工作流: 首先在 Coze 中逐步搭建 AI 智能体,搭建整理入库工作流。这是支撑整个 AI 稍后读服务的前置流程。 新建工作流「url2table」,根据弹窗要求自定义工作流信息。 工作流全局流程设置: 开始节点:输入 url。由于希望收到用户输入的待收藏 url 就开始流程,所以不需要额外配置。 变量节点:引入 bot 变量中保存的飞书多维表格地址。为便于维护充当稍后读存储地址的飞书多维表格链接,需要将这个链接存储在 bot 的变量中,并在工作流运行时进行引用。 插件节点:获取页面内容。这一步直接把开始节点的{{BOT_USER_INPUT}}引入到参数{{url}}中,随便设置{{timeout}}为 60000。
2024-11-29
提示词撰写方法
以下是关于提示词撰写方法的详细介绍: 1. 明确任务:清晰地定义任务,如写故事时包含背景、角色和主要情节。 2. 提供上下文:若任务需特定背景知识,在提示词中提供足够信息。 3. 使用清晰语言:尽量用简单、清晰的语言描述,避免模糊或歧义词汇。 4. 给出具体要求:如有特定格式或风格要求,在提示词中明确指出。 5. 使用示例:如有特定期望结果,提供示例帮助模型理解需求。 6. 保持简洁:提示词简洁明了,避免过多信息导致模型困惑。 7. 使用关键词和标签:有助于模型理解任务主题和类型。 8. 测试和调整:生成文本后仔细检查结果,根据需要调整提示词,可能需多次迭代。 此外,还有一些具体的提示词句式,如: “我想了解xxxx,我应该向你问哪些问题?” “请给我列出xxx领域/行业相关的,最常用的50个概念,并做简单解释。如果有英文缩写,请给出完整的英文解释。” “请详细介绍一下elon musk的主要生平事迹。请详细介绍一下tesla这家企业的发展历程。” 等。 在星流一站式AI设计工具中: 提示词用于描绘画面。 输入语言方面,星流通用大模型与基础模型F.1、基础模型XL使用自然语言,基础模型1.5使用单个词组,支持中英文输入。 写好提示词的方法包括: 预设词组,小白用户可点击官方预设词组生图,提示词内容准确,包含人物主体、风格、场景特点、环境光照、画面构图、画质等。 调整负面提示词,帮助AI理解不想生成的内容。 利用“加权重”功能,让AI明白重点内容,可对已有提示词权重进行编辑。 辅助功能有翻译、删除所有提示词、会员加速等。
2025-01-23
你会撰写论文吗
在论文写作方面,AI 可以提供帮助。例如,如果向 LLM 提供背景信息和指令,它可以帮您写论文,比如:“根据以下关于我的信息,写一篇四段的大学申请论文:我来自西班牙巴塞罗那。尽管我的童年经历了一些创伤性事件,比如我 6 岁时父亲去世,但我仍然认为我有一个相当快乐的童年。在我的童年时期,我经常换学校,从公立学校到非常宗教的私立学校。我做过的最‘异国情调’的事情之一是在爱达荷州的双子瀑布与我的大家庭一起度过六年级。我很早就开始工作了。我的第一份工作是 13 岁时的英语老师。在那之后,以及在我的学习过程中,我做过老师、服务员,甚至建筑工人。” 在论文写作领域,有一些常用的 AI 工具和平台: 1. 文献管理和搜索: Zotero:结合 AI 技术,可自动提取文献信息,帮助管理和整理参考文献。 Semantic Scholar:由 AI 驱动的学术搜索引擎,能提供文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:通过 AI 技术提供文本校对、语法修正和写作风格建议,提高语言质量。 Quillbot:基于 AI 的重写和摘要工具,可精简和优化论文内容。 3. 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,便于数据分析和可视化。 Knitro:用于数学建模和优化的软件,可进行复杂的数据分析和模型构建。 4. 论文结构和格式: LaTeX:结合自动化和模板,高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,提供丰富模板库和协作功能,简化论文编写过程。 5. 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:通过与已发表作品比较,检测潜在抄袭问题。 使用这些工具时,要结合自己的写作风格和需求,选择最合适的辅助工具。同时需要注意,虽然可以用生成模型做某件事,但不意味着这是正确的事情。如果您是接收方,最好为您的组织准备好迎接各种 AI 生成的内容。幸运的是,对于像上述例子中概述的情况,已经有努力正在进行以检测 AI 生成的内容。 此外,提示词是通过结合指令、问题、输入数据和示例来构建的。为了得到结果,必须包含指令或问题,其他元素则是可选的。更高级的提示词可能包括一些关于模型应如何回答问题的指令,例如询问如何撰写大学入学申请论文,同时提出希望在答案中听到的不同方面的建议。
2025-01-11
ai可以如何帮忙撰写 产品需求文档
以下是一些利用 AI 帮忙撰写产品需求文档的工具和方法: 1. :可以生成产品需求文档(PRD)的原型图、解决方案流程图、时序图、页面结构图、测试用例等,还能帮助生成数据字段、优化 PRD 文档、评估功能的价值、生成 SQL 代码和周报思路等。 2. ChatPRD、WriteMyPRD、Uizard、tldraw 等工具:可以通过人类语言描述想要的产品,得到 80%的完成稿,然后进行修改和发布。 3. 产品经理还可以借助一些其他相关的 AI 工具,如: :用于个性化调色。 :将博客文章转化为播客。 :高效存储和检索图片。 此外,Lenny 认为人工智能(AI)将对产品管理的高级技能产生影响,如在产品塑造工作方面,AI 可通过分析市场、数据、客户需求和未来的见解制定超级智能的计划,产品经理则要擅长选择合适的数据和提出正确问题。在目标设定和跟踪方面,AI 工具能基于战略、业务要求和限制智能地建议应优化的目标,产品经理成为超级智能建议的编辑者。 同时,还有一些针对产品经理的其他 AI 工具集,如: 用户研究、反馈分析:Kraftful(kraftful.com) 脑图:Whimsical(whimsical.com/aimindmaps)、Xmind(https://xmind.ai) 画原型:Uizard() 项目管理:Taskade(taskade.com) 写邮件:Hypertype() 会议信息:AskFred() 团队知识库:Sense() 需求文档:WriteMyPRD(writemyprd.com) 敏捷开发助理:Standuply(standuply.com) 数据决策:Ellie AI() 企业自动化:Moveworks(moveworks.com)
2024-12-28
撰写一篇汽车领域人工智能自动驾驶应用系统方案,参照以下要求:(1) 选题应为课程相关的技术或者原理的应用。 (2) 重点撰写第2部分技术与服务,必须要使用到课程中所学到或者相关技术。 (3) 第6部分财务分析可根据情况适当缩减。 (4) 整体架构可以根据选题进行调整,可适当增加章节或者删减。 (5) 字体大小、标题等必须和模板相同。篇幅20页以上,不少于10000字,小四,宋体。 以下为一篇样稿,可参考其框架撰写 城市智能停车服务系统建设方案 目 录 1 项目背景 1 1.1 项目背景
以下是为您撰写的汽车领域人工智能自动驾驶应用系统方案的部分内容,您可以根据实际需求进行进一步的完善和补充: 一、项目背景 人工智能在汽车行业的应用已经十分广泛,正在深刻改变汽车的各个方面。自动驾驶技术利用 AI 进行图像识别、传感器数据分析和决策制定,使汽车能够自主导航和驾驶,如特斯拉、Waymo 和 Cruise 等公司都在积极开发和测试自动驾驶汽车。车辆安全系统中,AI 用于增强自动紧急制动、车道保持辅助和盲点检测等功能,通过分析摄像头和传感器数据预防事故。个性化用户体验方面,AI 可根据驾驶员偏好调整车辆设置,包括座椅位置、音乐选择和导航系统。预测性维护通过分析车辆实时数据,预测潜在故障和维护需求,提高车辆可靠性和效率。在汽车制造中,AI 用于自动化生产线,优化生产流程和质量控制。汽车销售和市场分析中,AI 帮助分析市场趋势、消费者行为和销售数据,优化营销策略和产品定价。电动化和能源管理方面,AI 在电动汽车的电池管理和充电策略中发挥作用,提高能源效率和延长电池寿命。共享出行服务借助 AI 优化路线规划、车辆调度和定价策略,提升服务效率和用户满意度。语音助手和车载娱乐由 AI 驱动,允许驾驶员通过语音控制车辆功能、获取信息和娱乐内容。车辆远程监控和诊断利用 AI 系统远程监控车辆状态,提供实时诊断和支持。 二、技术与服务 1. 自动驾驶技术 传感器融合:采用多种传感器,如激光雷达、摄像头、毫米波雷达等,收集车辆周围环境信息。利用 AI 算法对这些多源数据进行融合和分析,提高环境感知的准确性和可靠性。 深度学习决策:基于深度神经网络,训练车辆的决策模型。通过大量的真实驾驶数据,让模型学习如何在各种复杂场景下做出最优的驾驶决策,如加速、减速、转向等。 模拟训练:利用虚拟仿真环境进行大规模的自动驾驶训练。在模拟环境中,可以快速生成各种复杂和罕见的交通场景,加速模型的训练和优化。 2. 车辆安全系统 实时监测与预警:利用 AI 实时分析来自车辆传感器的数据,如车速、加速度、转向角度等,以及外部环境信息,如道路状况、天气条件等。当检测到潜在的危险情况时,及时向驾驶员发出预警。 自动紧急制动:基于 AI 的图像识别和距离检测技术,当判断车辆即将与前方障碍物发生碰撞且驾驶员未采取制动措施时,自动启动紧急制动系统,降低事故风险。 3. 个性化用户体验 偏好学习:通过收集驾驶员的日常操作数据,如座椅调整习惯、音乐播放喜好、常用导航路线等,利用机器学习算法分析和学习驾驶员的偏好模式。 智能推荐:根据学习到的偏好,为驾驶员提供个性化的推荐,如座椅自动调整、音乐推荐、导航路线规划等。 4. 预测性维护 数据采集与分析:安装各类传感器收集车辆的运行数据,如发动机转速、油温、轮胎压力等。利用 AI 算法对这些数据进行分析,挖掘潜在的故障模式和趋势。 故障预测模型:建立基于机器学习的故障预测模型,提前预测可能出现的故障,并及时通知驾驶员和维修人员,安排预防性维护。 5. 生产自动化 质量检测:利用机器视觉技术和 AI 算法,对生产线上的汽车零部件进行自动检测,识别缺陷和瑕疵,提高产品质量。 生产流程优化:通过分析生产数据,如设备运行状态、生产节拍等,利用 AI 优化生产流程,提高生产效率,降低生产成本。 三、财务分析(可根据情况适当缩减) 1. 初始投资 技术研发费用:包括自动驾驶算法开发、硬件设备采购、测试场地建设等方面的费用。 车辆改装和设备安装成本:为实现自动驾驶功能,对车辆进行改装和安装相关传感器、计算设备等的成本。 2. 运营成本 数据采集和处理费用:持续收集车辆运行数据和环境数据,并进行处理和分析的费用。 维护和升级成本:对自动驾驶系统进行定期维护、软件升级和硬件更换的费用。 3. 收益来源 车辆销售增值:配备自动驾驶和智能功能的汽车可以提高售价,增加销售收入。 服务订阅费用:为用户提供个性化服务、远程监控和诊断等服务的订阅收费。 4. 盈利预测 根据市场需求、成本控制和收益增长情况,进行短期和长期的盈利预测。 以上内容仅供参考,您可以根据具体的项目需求和实际情况进一步完善和细化各个部分。
2024-12-27
撰写提示词
以下是关于如何撰写提示词(prompt)的全面指导: 一、提示词的重要性 写提示词是一个关键步骤,它决定了 AI 模型如何理解并生成文本,一个好的提示词能帮助模型更好地理解任务要求,生成更符合预期的文本。 二、编写提示词的建议 1. 明确任务 清晰定义任务,如写故事时包含故事背景、角色和主要情节。 2. 提供上下文 若任务需特定背景知识,提供足够的上下文,如写历史事件报告时提供基本信息。 3. 使用清晰的语言 尽量用简单、清晰的语言描述任务,避免模糊或歧义词汇。 4. 给出具体要求 若任务有特定格式或风格要求,在提示词中明确指出。 5. 使用示例 如有特定期望结果,提供示例帮助模型理解需求。 6. 保持简洁 提示词简洁明了,过多信息可能使模型困惑导致不准确结果。 7. 使用关键词和标签 有助于模型更好理解任务主题和类型。 8. 测试和调整 生成文本后仔细检查结果,根据需要调整提示词,可能需多次迭代达满意结果。 三、在 AI 绘画中的提示词 1. 提示词语法 根据想画的内容写提示词,多个提示词间用英文半角符号。 一般概念性、大范围、风格化的关键词写在前,叙述画面内容的其次,最后是描述细节的,大致顺序为:。 每个词语在模型中的自带权重可能不同,可使用括号人工修改权重。 关键词应具特异性,措辞越具体越好,避免抽象和有解释空间的措辞。 2. 特定工具中的提示词 如在星流一站式 AI 设计工具中: 输入语言方面,通用大模型与部分基础模型使用自然语言,部分基础模型使用单个词组,支持中英文输入。 写好提示词包括内容准确,包含人物主体、风格、场景特点等;可利用预设词组,调整负面提示词,使用“加权重”功能突出重点内容,还可使用辅助功能如翻译、删除所有提示词、会员加速等。 希望以上内容能帮助您更好地撰写提示词。
2024-12-14
请给我一些优秀的、好用的智能体的“提示词”案例,我想用于学习如何撰写精良的提示词,以及更加深入的使用AI工具
以下是一些优秀的智能体提示词案例和相关学习建议: 藏师傅教您用 AI 三步制作任意公司的周边图片: 整个流程分为三个部分:获取 Logo 图片的描述;根据 Logo 图片的描述和生成意图生成图片提示词;将图片和提示词输入 Comfyui 工作生成。 提示词示例:“The pair of images highlights a logo and its realworld use for a hitech farming equipment; this logo is applied as a black and white tattoo on lower back of an inmate” 学习提示词运用的建议: 理解提示词的作用:向模型提供上下文和指示,影响模型输出质量。 学习提示词的构建技巧:明确任务目标,用简洁准确语言描述,给予足够背景信息和示例,使用清晰指令,对特殊要求明确指示。 参考优秀案例:在领域社区、Github 等资源中寻找。 实践、迭代、优化:多与语言模型互动,根据输出提高提示词质量。 活用提示工程工具:如 Anthropic 的 Constitutional AI。 跟上前沿研究:关注最新研究成果和方法论。 相关网站分享: Learn Prompting:https://learnprompting.org/docs/intro AI Short:https://www.aishort.top/en/ AIPRM:https://www.aiprm.com/prompts/ Prompt Library:https://promptlibrary.org/
2024-12-09
如果通过deepseek构建智能客服
要通过 DeepSeek 构建智能客服,可以参考以下步骤: 1. 效果对比:用 Coze 做小测试进行对比。 2. 如何使用: 搜索 www.deepseek.com,点击“开始对话”。 将装有提示词的代码发给 Deepseek。 认真阅读开场白之后,正式开始对话。 3. 设计思路: 将 Agent 封装成 Prompt,将 Prompt 储存在文件,保证最低成本的人人可用的同时,减轻调试负担。 通过提示词文件,让 DeepSeek 实现同时使用联网功能和深度思考功能。 在模型默认能力的基础上优化输出质量,并通过思考减轻 AI 味,增加可读性。 照猫画虎参考大模型的 temperature 设计了阈值系统,但是可能形式大于实质,之后根据反馈可能会修改。 用 XML 来进行更为规范的设定,而不是用 Lisp(有难度)和 Markdown(运行不稳定)。 4. 特别鸣谢:李继刚的【思考的七把武器】在前期提供了很多思考方向;Thinking Claude 是最喜欢使用的 Claude 提示词,也是设计 HiDeepSeek 的灵感来源;Claude 3.5 Sonnet 是最得力的助手。 另外,实现联网版的 DeepSeek R1 大模型的核心路径如下: 1. 拥有扣子专业版账号:如果还是普通账号,请自行升级或注册专业号后使用。 2. 开通 DeepSeek R1 大模型:访问地址 https://console.volcengine.com/cozepro/overview?scenario=coze ,打开火山方舟,找到开通管理,找到 DeepSeek R1 模型,点击开通服务,添加在线推理模型,添加后在扣子开发平台才能使用。 3. 创建智能体:点击创建,先完成一个智能体的创建。 同时,GPT1 到 Deepseek R1 所有公开论文中关于智能代理的部分提到:Anthropic 的《构建有效的代理》是一篇关于 2024 年的精彩回顾,重点关注连锁、路由、并行化、协调、评估和优化的重要性。还可以在加州大学伯克利分校 LLM 代理的慕课中找到更多资料。
2025-02-18
怎么用大模型构建一个属于我自己的助手
以下是用大模型构建属于自己的助手的几种方法: 1. 在网站上构建: 创建百炼应用获取大模型推理 API 服务: 进入百炼控制台的,在页面右侧点击新增应用,选择智能体应用并创建。 在应用设置页面,模型选择通义千问Plus,其他参数保持默认,也可以输入一些 Prompt 来设置人设。 在页面右侧提问验证模型效果,点击右上角的发布。 获取调用 API 所需的凭证: 在我的应用>应用列表中查看所有百炼应用 ID 并保存到本地。 在顶部导航栏右侧,点击人型图标,点击 APIKEY 进入我的 APIKEY 页面,创建新 APIKEY 并保存到本地。 2. 微信助手构建: 搭建,用于汇聚整合多种大模型接口,并获取白嫖大模型接口的方法。 搭建,作为知识库问答系统,将大模型接入用于回答问题,若不接入微信,搭建完成即可使用其问答界面。 搭建接入微信,配置 FastGpt 将知识库问答系统接入微信,建议先用小号以防封禁风险。 3. 基于 COW 框架构建: COW 是基于大模型搭建的 Chat 机器人框架,可将多模型塞进微信。 基于张梦飞同学的更适合小白的使用教程:。 实现功能包括打造属于自己的 ChatBot(文本对话、文件总结、链接访问、联网搜索、图片识别、AI 画图等)、常用开源插件的安装应用。 注意事项: 微信端因非常规使用有封号危险,不建议主力微信号接入。 只探讨操作步骤,请依法合规使用。 大模型生成的内容注意甄别,确保操作符合法律法规要求。 禁止用于非法目的,处理敏感或个人隐私数据时注意脱敏,以防滥用或泄露。 支持多平台接入,如微信、企业微信、公众号、飞书、钉钉等。 支持多模型选择,如 GPT3.5/GPT4.0/Claude/文心一言/讯飞星火/通义千问/Gemini/GLM4/LinkAI 等。 支持多消息类型,能处理文本、语音和图片,以及基于自有知识库进行定制的企业智能客服功能。 支持多部署方法,如本地运行、服务器运行、Docker 的方式。
2025-02-17
怎么用大模型构建一个属于我自己的助手
以下是用大模型构建属于自己的助手的几种方法: 1. 在网站上构建: 创建百炼应用获取大模型推理 API 服务: 进入百炼控制台的,在页面右侧点击新增应用,选择智能体应用并创建。 在应用设置页面,模型选择通义千问Plus,其他参数保持默认,也可以输入一些 Prompt 来设置人设。 在页面右侧提问验证模型效果,点击右上角的发布。 获取调用 API 所需的凭证: 在我的应用>应用列表中查看所有百炼应用 ID 并保存到本地。 在顶部导航栏右侧,点击人型图标,点击 APIKEY 进入我的 APIKEY 页面,创建新 APIKEY 并保存到本地。 2. 微信助手构建: 搭建,用于汇聚整合多种大模型接口,并获取白嫖大模型接口的方法。 搭建,作为知识库问答系统,将大模型接入用于回答问题,若不接入微信,搭建完成即可使用其问答界面。 搭建接入微信,配置 FastGpt 将知识库问答系统接入微信,建议先用小号以防封禁风险。 3. 基于 COW 框架构建: COW 是基于大模型搭建的 Chat 机器人框架,可将多模型塞进微信。 基于张梦飞同学的更适合小白的使用教程:。 实现功能包括打造属于自己的 ChatBot(文本对话、文件总结、链接访问、联网搜索、图片识别、AI 画图等)、常用开源插件的安装应用。 注意事项: 微信端因非常规使用有封号危险,不建议主力微信号接入。 只探讨操作步骤,请依法合规使用。 大模型生成的内容注意甄别,确保操作符合法律法规要求。 禁止用于非法目的,处理敏感或个人隐私数据时注意脱敏,以防滥用或泄露。 支持多平台接入,如微信、企业微信、公众号、飞书、钉钉等。 支持多模型选择,如 GPT3.5/GPT4.0/Claude/文心一言/讯飞星火/通义千问/Gemini/GLM4/LinkAI 等。 支持多消息类型,能处理文本、语音和图片,以及基于自有知识库进行定制的企业智能客服功能。 支持多部署方法,如本地运行、服务器运行、Docker 的方式。
2025-02-17
我怎样用低代码工具去构建我的AI智能体?LLM应用?
以下是关于如何用低代码工具构建 AI 智能体和 LLM 应用的一些建议: 在构建基于 LLM 的应用时,Anthropic 建议先寻找最简单的解决方案,只在必要时增加复杂度。智能系统通常会以延迟和成本为代价来换取更好的任务表现,开发者需要考虑这种权衡是否合理。当需要更复杂的解决方案时,工作流适合需要可预测性和一致性的明确任务,而智能体则更适合需要灵活性和模型驱动决策的大规模场景。不过,对于许多应用来说,优化单个 LLM 调用(配合检索和上下文示例)通常就足够了。 目前有许多框架可以简化智能系统的实现,例如: 1. LangChain 的 LangGraph。 2. 亚马逊 Bedrock 的 AI Agent 框架。 3. Rivet(一个拖放式 GUI 的 LLM 工作流构建器)。 4. Vellum(另一个用于构建和测试复杂工作流的 GUI 工具)。 这些框架通过简化标准的底层任务(如调用 LLM、定义和解析工具、链接调用等)使入门变得容易,但它们往往会创建额外的抽象层,可能会使底层提示词和响应变得难以调试,也可能诱使开发者在简单设置就足够的情况下增加不必要的复杂性。建议开发者先直接使用 LLM API,许多模式只需要几行代码就能实现。如果确实要使用框架,请确保理解底层代码。 此外,还有以下相关工具和应用: 1. VectorShift:能在几分钟内构建和部署生成式人工智能应用程序,利用大型语言模型(例如 ChatGPT)构建聊天机器人、文档搜索引擎和文档创建工作流程,无需编码。 2. Unriddle:帮助更快阅读、写作和学习的工具,能简化复杂的主题,找到信息,提问并立即获得答案。 工具使用或函数调用通常被视为从 RAG 到主动行为的第一个半步,为现代人工智能栈增加了一个新的层。一些流行的原语如网页浏览(Browserbase、Tiny Fish)、代码解释(E2B)和授权+认证(Anon)已经出现,它们使 LLM 能够导航网络、与外部软件(如 CRM、ERP)交互并运行自定义代码。Omni 的计算 AI 功能体现了这种方法,它利用 LLM 直接输出适当的 Excel 函数到电子表格中,然后执行计算并自动生成复杂查询供用户使用。 详细示例请参考:https://github.com/anthropics/anthropiccookbook/tree/main/patterns/agents
2025-02-17
如何构建自己领域的微调数据集
构建自己领域的微调数据集可以参考以下步骤: 1. 确定目标领域和应用需求:明确您希望模型在哪个细分领域进行学习和优化。 2. 数据收集:广泛收集与目标领域相关的数据。例如,若要训练二次元模型,需收集二次元优质数据;若要微调 Llama3 ,可参考相关文档获取数据集。 3. 数据标注:对收集的数据进行准确标注,以便模型学习到有效的特征。 4. 数据清洗:去除无效或错误的数据,提高数据质量。 5. 特殊处理:如为数据添加特殊 tag 等。 以 Stable Diffusion 为例,可收集如 833 张宝可梦数据,并按照特定步骤进行清洗、标注和添加特殊 tag 。对于 Llama3 ,获取数据集后上传到服务器,编写并执行微调代码即可进行微调。 在微调过程中,还需注意一些问题,如大型语言模型微调可能面临训练时间长、成本高等挑战,此时可考虑参数有效调优等创新方法。
2025-02-17
目前我有个数据源头,可能是excle或mysql数据库。他们都含义以下字段: 发货日期 物料编号 物料描述 板块 实际已交货量 销售单位 金额(RMB) 金额(不含税RMB) 国家 品牌; 我需要创建一个智能体助手,用于分析这些数据,这个智能通助手需要能按用户需要,分析各个维度的数据,并按板块等维度汇总,并转为柱状图图表表现出现,并表现用户所有日期的近一周的变化,并阐明变化或波动是由哪些数据导致的? 结合以上需求,我需要在飞书上构建一个企业每日利润表分析与汇报助手,该选定哪种prompt框架
很抱歉,目前飞书知识库中没有关于您所描述的这种特定需求下应选定哪种 prompt 框架的相关内容。但一般来说,构建这样的企业每日利润表分析与汇报助手的 prompt 框架可以考虑以下几个方面: 1. 明确数据来源和格式:清晰描述数据来自 Excel 或 MySQL 数据库,以及包含的具体字段。 2. 定义分析维度和指标:如按板块、国家等维度汇总数据,关注利润相关的指标。 3. 设定时间范围:明确分析近一周的数据变化。 4. 描述图表要求:指定以柱状图展示数据。 5. 解释变化原因:阐明导致数据变化或波动的关键因素。 您可以根据实际情况进一步细化和完善这个框架。
2025-02-15