Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

长期记忆设计

Answer

关于长期记忆设计,主要包括基础设定和人物背景两方面。

基础设定方面,设计了一些初始属性,如人物生日和星座、MTBI 性格分型(ENFJ)、出生地、职业、聊天习惯等。

人物背景方面,使用 AI 自动扩写了大约 100 条,涵盖了三观、爱好、日常习惯、教育经历、家庭背景、工作经历、恋爱经历等内容。

Content generated by AI large model, please carefully verify (powered by aily)

References

皮皮:你的微信虚拟女友 - 李洛云

一般的大模型是有自我认知模块的,它会被限定为一个虚拟助手。如下图(我用的是智谱AI),当没有自我认知修正的时候,它的回复如下:而使用一些prompt进行越狱(jail break)之后,我们可以做到大模型的自我认知修正,从而使得大模型认为自己是其他角色,下图为实际效果:此外,虚拟人的聊天载体也需要选择。如果使用独立app,网页,微信公众号就不够真实了,所以最后我选择了微信个人号。方案则是wechaty+padlocal,有兴趣的朋友可以自行搜索。[heading1]长期记忆:基础设定+人物背景[content]基础设定方面,我设计了一些初始属性,包括:人物生日和星座,MTBI性格分型(ENFJ),出生地,职业,聊天习惯等然后使用AI自动扩写了人物背景,大约100条,包括:三观,爱好,日常习惯,教育经历,家庭背景,工作经历,恋爱经历等[heading1]中期记忆:状态+增长记忆体[content]中期记忆主要用来解决两部分问题:存储必要的状态(例如人物之间的关系,虚拟人当前活动和所在地点等)虚拟人本身的记忆体可能会不断增长(例如要她要记住你的名字),或者我们之前的人物背景不足时,动态地进行补充[heading1]短期记忆:多轮对话[content]这里的短期记忆主要用于多轮对话,也就是常见的历史对话的存储[heading1]对话多模态:LLM伪多模态[content]读图能力(图生文模型)听音能力(音生文模型)发图能力实时生图能力(放弃)手机相册(文生图预生成)发语音能力实时文生音LLM伪多模态:询问LLM是否发图,发哪张图,概率多少询问LLM是否使用语音,而不是文字

皮皮:你的微信虚拟女友 - 李洛云

一般的大模型是有自我认知模块的,它会被限定为一个虚拟助手。如下图(我用的是智谱AI),当没有自我认知修正的时候,它的回复如下:而使用一些prompt进行越狱(jail break)之后,我们可以做到大模型的自我认知修正,从而使得大模型认为自己是其他角色,下图为实际效果:此外,虚拟人的聊天载体也需要选择。如果使用独立app,网页,微信公众号就不够真实了,所以最后我选择了微信个人号。方案则是wechaty+padlocal,有兴趣的朋友可以自行搜索。[heading1]长期记忆:基础设定+人物背景[content]基础设定方面,我设计了一些初始属性,包括:人物生日和星座,MTBI性格分型(ENFJ),出生地,职业,聊天习惯等然后使用AI自动扩写了人物背景,大约100条,包括:三观,爱好,日常习惯,教育经历,家庭背景,工作经历,恋爱经历等[heading1]中期记忆:状态+增长记忆体[content]中期记忆主要用来解决两部分问题:存储必要的状态(例如人物之间的关系,虚拟人当前活动和所在地点等)虚拟人本身的记忆体可能会不断增长(例如要她要记住你的名字),或者我们之前的人物背景不足时,动态地进行补充[heading1]短期记忆:多轮对话[content]这里的短期记忆主要用于多轮对话,也就是常见的历史对话的存储[heading1]对话多模态:LLM伪多模态[content]读图能力(图生文模型)听音能力(音生文模型)发图能力实时生图能力(放弃)手机相册(文生图预生成)发语音能力实时文生音LLM伪多模态:询问LLM是否发图,发哪张图,概率多少询问LLM是否使用语音,而不是文字

AI 女友麦洛薇(0 代码 comfyui 搭建,知识图谱稳定人设,无限上下文,永久记忆,可接入飞书)

最后,笔者ailm讲解一下实现人设稳定的具体原理:通过提示词工程与工具调用能力的配合,设计出一套与知识图谱相结合的工具调用逻辑,从而稳定人设。通过缩小max_length防止LLM长篇大论,每次输入到上下文窗口中的记忆也只返回最近几轮的对话。利用查询知识图谱的信息来实现永久记忆。所需要的提示词和工具设计如下:[heading2]1、提示词工程[content]麦洛薇提示词设计如下:[heading2]2、工具设计[content]工具调用方面,通过将与知识图谱交互这一大的任务,细分为:查询、创建、修改、删除实体或关系、获取实体的所有关系、获取所有实体名称列表多个工具,组成一个工具包供LLM调用。由于对LLM的多工具调用能力有极高的要求,笔者ailm在参数较少的本地模型(如8B、14B)上并不能完美的运行知识图谱RAG。[heading1]写到最后[content]1.如果你使用comfyui LLM party时出现错误,或你有一些新的想法,欢迎加QQ群:9310572132.github项目地址:3.视频教程:

Others are asking
现在哪些ai具有记忆功能
以下是一些具有记忆功能的 AI: 1. MemGPT:通过特定指令访问外部存储系统来保存和回调信息,极大地扩展了模型的记忆能力,并增强了其上下文理解能力。 2. ChatGPT 最新版本:可以将对话中的重点内容记录在一个名为“bio”的小本子上,这种内置记忆机制使得它能够在后续对话中利用之前的交流内容来提供更加个性化和相关性更强的回答。 3. OpenAI 的 GPT4:直接用 prompt 调用 bio 这个工具记录需要记忆的内容,每次新的对话开始时,在 prompt 的最后直接加上所有之前的记录的内容。 延伸阅读:MemGPT:Towards LLMs as Operating Systems
2024-12-17
有没有什么辅助初中生学习整理知识点,并能记录错误,反复记忆的AI
目前市面上有一些可以辅助初中生学习整理知识点,并能记录错误、反复记忆的 AI 工具。例如一些智能学习类的 APP,它们可以根据学生的学习情况和错题记录,生成个性化的学习计划和复习资料。但具体的选择还需要根据学生的学科需求、学习习惯等因素来决定。
2024-12-07
(defun 生成记忆卡片 (单词) "生成单词记忆卡片的主函数" (let* ((词根 (分解词根 单词)) (联想 (mapcar #'词根联想 词根)) (故事 (创造生动故事 联想)) (视觉 (设计SVG卡片 单词 词根 故事))) (输出卡片 单词 词根 故事 视觉))) (defun 设计SVG卡片 (单词 词根 故事) "创建SVG记忆卡片" (design_rule "合理使用负空间,整体排版要有呼
以下是关于生成记忆卡片和 SVG 卡片的相关信息: 卡片类的应用被定义为词生卡片,如李继刚的《汉语新解》、一泽的《名片设计》、云中江树的《AI 简历》等,都是通过给大模型优化过的 Prompt,让其生成 HTML 代码或 SVG 代码,再通过浏览器渲染效果。 把提示词丢给 Claude ,如在 Poe 平台上的 Claude 模型,大概率会直接输出 SVG 代码,但对于子步骤是否执行等情况难以知晓。Andrej Karpathy 认为,模型需要 tokens 来思考,如果大语言模型未将思考过程外化,则几乎等于没思考。 甲木介绍了让 Claude 生成古诗词卡片的方法,流程包括输入 Prompt 、用户输入主题和风格,AI 输出最终结果。获取提示词已开源,创作过程主要是根据给定主题和方向生成匹配的中国古诗词,创建设计感强烈、富有中国传统美学的 SVG 卡片展示诗词,并提供相关信息,还支持根据用户提供的主题和方向生成对应语境的 prompt 并配图生成 SVGCard 。但对于“逼格高”的看法因人而异,可将选择权交给 AI 。
2024-11-28
哪一款 Ai 更适合,并有记忆功能,不需要每次都发历史文章。
目前大语言模型普遍没有记忆功能,每次发送消息都需要包含历史会话内容,否则无法记住之前的对话。会话累加过多时会超出最大上下文窗口长度,同时增加计算成本。为节省资源,AI 聊天应用会自动对历史会话进行摘要,仅保留最近内容。 不过,也有一些应用程序在这方面有所尝试和改进,例如 Rewind 是一款能够提高生产力的应用程序,可以浏览、搜索并询问关于手机上任何您看到的内容。它通过捕捉您在 Safari 中阅读的内容和导入您的截屏来工作,让您可以利用人工智能的力量向 Rewind 提问关于您看到的任何问题,包括为您进行总结。Lazy 也是一款不错的工具,上下文切换不会中断您的工作流程,能随时裁剪各种内容,保存文章等,音频和视频内容还会利用 AI 提取主要内容并展示。
2024-11-18
现在的大模型应用都没有记忆能力需要在每次调用时输入上下文?
目前的大模型应用本质上通常没有直接的记忆功能。以 ChatGPT 为例,它能理解用户的交流内容并非因为自身具备记忆能力,而是每次将之前的对话内容作为新的输入重新处理。这种记忆功能实际上是通过在别处进行存储来实现的。 对于大模型的工作原理,在回复时是一个字一个字地推理生成内容,会根据输入的上下文来推测下一个字。但大模型的学习数据规模庞大,若每次计算都带入全量数据,算力难以承受,且仅算字的概率容易受不相干信息干扰,词向量机制和 transformer 模型中的 attention 自注意力机制解决了这些难题。 另外,系统的内存是大模型的上下文窗口,如 Google Gemini 1.5 Pro 实验版已将其提升到一千万。但窗口越大推理越慢,且模型可能失焦降低准确度,研发团队需平衡吞吐量、速度和准确度。在模型外,操作系统的其他部件如文件系统能让模型具备无限记忆的能力,而大模型应用领域常用的方法如 RAG 能让模型用自定义数据生成结果,处理无尽的私有数据。
2024-10-08
有没有根据课程进行日程安排并自动按照记忆曲线形成学习复习提醒的工具
以下是一些根据课程进行日程安排并自动按照记忆曲线形成学习复习提醒的工具: 1. Memrise:结合 AI 技术,根据学习者的记忆曲线提供复习和练习,增强记忆效果。使用方法是选择学习语言,使用应用提供的词汇卡和练习进行学习。 2. FluentU:使用真实世界的视频,通过 AI 生成个性化的词汇和听力练习。选择学习语言,观看视频并完成相关练习,积累词汇和提升听力理解能力。 此外,还有一些其他与 AI 学习外语相关的工具和平台: 1. Speechling:提供口语练习和发音反馈,帮助学习者改进口音和发音准确性。使用方法是录制语音,提交给 AI 系统或人类教练,获取反馈和改进建议。 2. Grammarly:可以帮助提高写作的语法和词汇准确性,支持多种语言。使用方法是将写作内容粘贴到 Grammarly 编辑器中,获取语法和词汇改进建议。 3. Google Translate:提供实时翻译、语音输入和图像翻译功能,适合快速查找和学习新词汇。输入或语音输入需要翻译的内容,查看翻译结果和示例句子。 4. Reverso Context:提供单词和短语的翻译及上下文例句,帮助理解和学习用法。输入单词或短语,查看翻译和例句,学习实际使用场景。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2024-10-07
界面设计的AI
以下是关于界面设计的 AI 相关内容: Midjourney 在 UI 界面设计中的应用: 可以通过添加页面指令描述来指定生成特定页面,如社交平台的登录页(关键词:「landing page」)、人力资源类产品的个人资料页(关键词:「Profile Page」)。 产出的设计图视觉效果不错,适合在 APP 设计的初始阶段,如头脑风暴和风格探索中为设计师提供灵感和创意,但直接落地开发仍有距离。 Midjourney 商业实战案例: 数据图标:蓝色渐变磨砂玻璃、磨砂玻璃建筑等元素的设计。 B 端图标设计:质感不错,可多尝试不同构图的喂图。 音乐软件 UI 设计:关键词如「music app ui design,ux design,white,light,bright,data,modern,smooth,behance,dribbble,–upbeta–q 2–v 4」,但生成的 UI 设计不规范,文字较乱,只能作为风格参考。 与 AI 合作进行界面设计: 保持冷静,将更多时间花在最终效果上,而非过分纠结技术细节。 让 AI 帮忙制作界面设计,如针对文本生成视频的一站式工作台,打磨交互体验。 看到效果才敢推进项目,但不要急于求成,一开始尽量多考虑细节。 避免过早优化不重要的功能和界面,随着经验积累和能力增强,关注核心功能。
2025-01-04
设计虚拟形象的
以下是关于设计虚拟形象的相关内容: 品牌虚拟代言人: 品牌自建虚拟代言人的原因:明星代言存在风险,如塌房、受《广告法》约束、代言多个产品导致消费者心智混乱等。 虚拟代言人的优势:成本低,行为和说话可控,可扩展性强,可定制性高,可追踪性好。 虚拟代言人的劣势:影响力相对明星代言人较弱,从出道到产生影响力需要漫长积累过程。 自建虚拟人的方式:有的基于传统品牌虚拟形象革新,如海尔的“海尔兄弟”、肯德基的“山德士上校”;有的基于真人偶像形象设计,如天猫的“千喵”、聚划算的“刘一刀”;有的创建全新的虚拟代言人,如屈臣氏的“屈晨曦 Willson”、欧莱雅的“M 姐”、SKII 的“Yumi”等。 品牌代言人:品牌代言人是企业为影响消费者购买行为聘请或塑造的有魅力的人,消费者会因对代言人的喜爱延伸到产品和品牌。但明星塌房事件让品牌选择明星代言有所顾虑,不少品牌开始与虚拟偶像合作或自建虚拟代言人。 用 AI 制作可动交互虚拟形象(支持面捕): MidJourney 生成形象设计:包括初步生成,一边尝试一边修改关键词,选择中意的形象精修,使用 PS 对图像进行处理(如调整颜色、抠图、锐化、优化细节),使用 PS 制作海报底图(异兽名字+原文简介)。 需要注意的是,虚拟形象的核心是内容,企业需要有持续创作优质内容的能力,否则打造虚拟形象的意义不大。
2025-01-04
我是景观设计设计师,不了解市场上的各种AI工具,请问我需要怎么系统的学习、利用AI来改进工作呢
作为景观设计师,系统学习和利用 AI 改进工作可以从以下几个方面入手: 一、了解相关 AI 工具 1. 用于绘制 CAD 图的 AI 工具 CADtools 12:Adobe Illustrator 插件,添加 92 个绘图和编辑工具。 Autodesk Fusion 360:集成 AI 功能的云端 3D CAD/CAM 软件。 nTopology:基于 AI 可创建复杂 CAD 模型。 ParaMatters CogniCAD:根据输入自动生成 3D 模型。 主流 CAD 软件的生成设计工具:根据设计目标和约束条件自动产生方案。 2. 审核规划平面图的 AI 工具 HDAidMaster:云端工具,在建筑、室内和景观设计领域表现出色。 Maket.ai:面向住宅行业,能自动生成户型图。 ARCHITEChTURES:AI 驱动的三维建筑设计软件。 Fast AI 人工智能审图平台:全自动智能审图流程,集成建筑全寿命周期信息。 二、提升自身能力 1. 设计专业方面 培养持续学习习惯,将其转化为实践能力。 提高需求理解、问题分析、审美判断和创意能力。 显性化设计思考与专业优势,提升设计质量。 2. 工具能力方面 严格评估和选型现有 AI 工具,确保标准化输出和一致性体验。 基于业务场景训练专属 AI 模型,集成 AI 能力形成新工具。 建设参数文档库,减少个人喜好的自然语言影响。 3. 工作流程方面 将 AI 融入日常设计流程,形成新的工作方式。 针对不同业务形态和需求,精细化设计流程。 探索合理的人&机结合方式,优化效率和创意品质。 4. 团队协作方面 制定并执行明确的 AI 融合策略。 保证硬件设备支持,营造创新环境。 增强对市场动态的适应能力,明确团队未来发力方向。 总之,随着技术进步,AI 在设计领域的作用将愈发重要,为您创造更多可能。但需注意,每个工具都有特定应用场景和功能,建议根据具体需求选择合适的工具。
2025-01-02
你好,你们Way to AGI能否为我提供中小学课程内容设计,尤其是AI通识课理论部分
以下是为您提供的关于中小学 AI 通识课理论部分的相关内容: 目前在“通往 AGI 之路”中,有以下相关课程和活动: 1. 一堂超好玩儿的离谱村 AI 课以及后续开源共创预告: 由一个小团队创建通用课件,然后开源给部分老师群体,在实践中迭代并补充多样的变体用法,最后完全开源。目前共创小团队有作者和詹娜。作者对 AI 了解深,詹娜在创新教育领域视野开阔。若有强烈加入共创的意愿,欢迎留言介绍专长、教育主张及在教育上使用 AI 的状况。 对于公立学校和公益机构的老师,后续会免费提供:支付一定押金可得教学课件和授课说明,教学后写相关文章回馈社区(原创内容>1000 字,公开署名发表)则全额退回押金,否则押金捐赠为活动经费。商业机构若需要,可向 waytoagi 采购课件。 为保护版权,初期只对在 waytoagi 社群并做出贡献的人群提供,是否符合标准由 waytoagi 智囊团判断。 2. 【已结束】AIPO:校园 AI 创投活动 10 月 8 日10 月 20 日: 10 月 9 日 20:00 有理论基础课程,讲师为银海,课程标题为基础通识课。 3. 如果让我推荐一门 AI 课: 预习周课程包括 AI 绘画电脑配置要求、高效 AIGC 创意者的数字人工具包、SD 插件安装方法、画静为动的 AIGC 视频制作讲解等。 基础操作课涵盖 AI 绘画通识课、AI 摄影虚拟的真实、AI 电影 穿越的大门等内容。 核心范式课程涉及词汇的纸牌屋、核心范式应用、控制随机性等方面。 SD WebUi 体系课程包括 SD 基础部署、SD 文生图、图生图、局部重绘等。 ChatGPT 体系课程有 ChatGPT 基础、核心 文风、格式、思维模型等内容。 ComfyUI 与 AI 动画课程包含部署和基本概念、基础工作流搭建、动画工作流搭建等。 应对 SORA 的视听语言课程涉及通识 欢迎参加电影的葬礼、影像赏析、基础戏剧影视文学等。 如果您想要免费获得课程,可以参与 video battle,每期的评委野菩萨老师要求严格,需要寓意深度审美并存。冠军奖励 4980 课程一份,亚军奖励 3980 课程一份,季军奖励 1980 课程一份,入围奖励 598 野神殿门票一张。扫码添加菩萨老师助理,可了解更多课程信息。
2024-12-30
构建一个路由分类器AI,在工作流里面有什么好的设计方案,怎么能保证分类器进行分类准确呢
构建路由分类器 AI 的工作流设计方案如下: 1. 内容编排:在第四步中,将指令分为扩写、缩写、总结以及其他四类,设定最终的分类条件。分类器匹配到特定分支后执行相应操作,这种编排方式可过滤并避免处理不明确的指令,确保智能体准确响应用户指令。 2. 编写具体指令:为每个指令编写具体内容,如缩写、扩写和总结三个分支,创建包含变量(即用户初始输入的原始文本)的简单指令,用花括号引用变量,系统将值赋给变量并传递给模型推理形成提示词。 3. 最终输出:对各分支结果进行输出,输出内容相对简洁。 4. 测试流程:首先准备用于扩写、缩写和总结三项测试的文本素材,然后逐一进行各项测试,包括扩写测试、缩写测试、总结测试和错误处理测试,以验证每个分支能否顺利执行。 要保证分类器分类准确,可以从以下方面入手: 1. 清晰明确地设定分类条件,避免模糊和歧义。 2. 对输入的指令进行充分的预处理和规范化,使其符合分类器的预期格式。 3. 不断优化和调整分类器的参数和算法,以适应不同类型和复杂程度的指令。 4. 进行大量的测试和验证,收集错误案例并进行分析改进。
2024-12-29
你是一名资深程序员和经验丰富的编程教授,能够以通俗保姆式的方法教会小白从0开始编程序。现在要你教我完成如下任务:我需要编写一个程序,能够每天和不同的文生图大语言模型对话,生成不同场景下的机器人设计图片。应该怎么一步步实现?
以下是为您提供的从 0 开始编写一个能够每天和不同的文生图大语言模型对话,并生成不同场景下机器人设计图片的程序的步骤: 首先,对于小白来说,可以参考以下教程进行学习和操作: 1. 张梦飞的【保姆级】一步一图,手把手教你把 AI 接入微信: 重点感谢@熊猫大侠的不厌其烦的答疑解惑,并推荐@熊猫大侠的老王。 作者是看着 WaytoAGI 里大佬的文章学习制作的。有代码基础的同学,可以直接移步到这三篇教程中。 本篇教程适合“小白中的小白”,简单粗暴,不做讲解,复制粘贴即可。一步一图,保姆级指引。 本篇文章中,没有写每一步代码的含义和配置文件的对应含义。如果想要深入研究和调优,请移步上方推荐的三篇文章。 2. 大圣的胎教级教程:万字长文带你理解 RAG 全流程: 这是一篇面向普通人的 RAG 科普,不是面向 RAG 研究者的技术向文章。 文章一共 1.6 万字,旨在让您对 RAG 技术有更全面的认知,在使用 RAG 相关产品时,可以更好地理解其能力边界,从而充分发挥其潜力。 本文适合任何人,包括 AI 爱好者、为企业寻找知识库解决方案的老板、AI 产品经理等。 3. Yeadon 的写给小小白的从游戏入手学习搓图像流 bot: 学会将发布的图像流添加进 bot 中,并测试生成海报,解决无法在聊天界面显示图片的问题,重新调整图像流使其在对话窗口显示图片,最后发布 Bot。 通过这份教程,可以学会如何在 Coze 平台上打造一个有趣的 AI 游戏助手,掌握 AI 人格设定和对话逻辑的设计方法,了解如何配置图像生成功能。 希望以上内容对您有所帮助,祝您编程顺利!
2024-12-29
有没有AI能长期记住对话内容
AI 能够实现长期记住对话内容。在智能体中,长期记忆主要有长文本(持久化)、总结、RAG 这三种实现方式。长文本(KV Cache)是 Transformer 架构中的一个功能,能通过缓存历史计算的 Key(K)和 Value(V)来减少冗余计算,加速模型的推理过程,但需要额外的存储空间,可能导致显存占用增加,为此有研究者提出多种优化技术。如果未来能结合持久化 KV Cache、KV Cache 的压缩技术,控制成本,就有可能打造出记忆力超越人类的智能体,能回忆更多详细信息,并在服务中展现更高级别的个性化和情感连贯性。 当下比较推荐将临时记忆转换为长期记忆的方式是定期总结+RAG,即定期对上下文对话内容进行总结,然后对总结后的文本进行索引,并将索引后的内容存储到数据库中。整个过程和人记忆内容的过程相似,但要注意避免在归纳和记忆时产生偏见,比如在归纳信息时回顾并整合已有记忆,在推理中加入反思环节,对于同一事物的记忆详细记录每次情况等。
2024-12-17
gpt 长期记忆功能
ChatGPT 的长期记忆功能已上线,能够跨聊天记忆用户信息,从而提供更相关和个性化的回答。用户可以控制记忆内容,同时也考虑到了隐私和安全问题。此外,GPTs 也将拥有记忆功能。 然而,GPT 模型在长期记忆方面仍存在一些局限性: 模型的上下文有限,以“无状态”方式运行,没有明显方法教会模型新事实,甚至不清楚其能否执行需要不断发展记忆和上下文的任务,如阅读一本书并理解对先前章节的引用。 缺乏更新自身或适应变化环境的能力,训练完成后固定,没有机制纳入新信息或用户、世界的反馈。虽可在新数据上微调模型,但可能导致性能下降或过拟合,且由于训练周期的潜在滞后,系统容易过时。 在个性化方面,模型没有有效方法将个性化信息纳入响应,除非使用有限且低效的元提示。 相关链接:
2024-08-20
如何构建一个专属自己的智能体,用于撰写公司新闻稿,我会长期输入公司信息 请选择几家大模型公司的产品,具体说下操作步骤
以下是一些可用于构建专属智能体以撰写公司新闻稿的平台及操作步骤: 1. Coze:这是新一代的一站式 AI Bot 开发平台,适用于构建基于 AI 模型的各类问答 Bot。它集成了丰富的插件工具,能极大地拓展 Bot 的能力边界。 2. Microsoft 的 Copilot Studio:其主要功能包括外挂数据、定义流程、调用 API 和操作,以及将 Copilot 部署到各种渠道。 3. 文心智能体:百度推出的基于文心大模型的智能体平台,支持开发者根据自身需求打造大模型时代的产品能力。 4. MindOS 的 Agent 平台:允许用户定义 Agent 的个性、动机、知识,以及访问第三方数据和服务或执行设计良好的工作流。 5. 斑头雁:2B 基于企业知识库构建专属 AI Agent 的平台,适用于客服、营销、销售等多种场景,提供多种成熟模板,功能强大且开箱即用。 6. 钉钉 AI 超级助理:依托于钉钉强大的场景和数据优势,提供更深入的环境感知和记忆功能,在处理高频工作场景如销售、客服、行程安排等方面表现出色。 在实际构建和应用智能体时,您可以遵循以下准则: 1. 彻底让自己变成一个“懒人”。 2. 能动嘴的不要动手(用嘴说出您想做的事远比打字来的快)。 3. 能动手的尽量用 AI(用 AI 远比您苦哈哈的手敲要来的快)。 4. 把您手上的工作单元切割开,建设属于自己的智能体。 5. 根据结果反馈不断调整自己的智能体。 6. 定期审视自己的工作流程,看哪个部分可以更多的用上 AI。 您可以根据自己的需求选择适合的平台进行进一步探索和应用。
2024-08-09
如何构建一个专属自己的智能体,用于撰写公司新闻稿,我会长期输入公司信息
构建一个用于撰写公司新闻稿的专属智能体,您可以按照以下步骤进行: 1. 明确需求和目标:确定您希望智能体生成的新闻稿的风格、格式、内容重点等方面的要求。 2. 数据收集与整理:长期输入公司的相关信息,包括但不限于公司的发展历程、业务范围、近期重大事件、领导讲话等。确保数据的准确性、完整性和时效性。 3. 选择合适的技术和平台:有许多自然语言处理和机器学习的框架和平台可供选择,例如 TensorFlow、PyTorch 等。 4. 模型训练:使用收集到的数据对模型进行训练,不断调整参数以提高生成效果。 5. 测试与优化:在训练完成后,进行测试,查看生成的新闻稿是否符合预期,并根据测试结果对模型进行优化。 6. 持续学习与更新:随着公司的发展和信息的变化,持续为智能体提供新的数据,使其能够不断学习和改进。 需要注意的是,构建这样一个智能体需要一定的技术知识和实践经验,如果您不具备相关能力,可能需要寻求专业的技术团队或服务提供商的帮助。
2024-08-09