直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

我建了一个智能体,需要智能体根据知识库的内容来回答客户问题,但是智能体在回答问题的时候经常忽略知识库,请问这个问题要如何解决

回答

要解决智能体在回答问题时经常忽略知识库的问题,可以从以下几个方面入手:

  1. 优化工作流设计:确保工作流的流程清晰,从输入到对接知识库,再到调用大模型和输出,各个环节紧密衔接,减少出现疏漏的可能性。
  2. 精心收集和整理知识库资料:对知识库的内容进行准确、全面的收集,并根据清洗结果进行手动二次校对,确保知识库的质量和准确性。
  3. 明确提示词约定:在提示词中明确规定回答只能来自于知识库,避免智能体从其他不可靠的来源获取信息。
  4. 加强对智能体的训练和调试:通过不断的训练和调试,让智能体更好地理解和运用知识库中的内容。
  5. 深入理解 RAG 技术:掌握优化 AI 更准确回答专有问题的专业术语和方法,如 RAG,逐步探索如何优化回答。

在实际应用中,不同的场景可能需要不同的解决策略,需要根据具体情况进行调整和优化。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

张梦飞 :AI商用级问答场景,怎么让AI+知识库回答的更准确?一篇专门为小白讲透RAG而作的教程(上篇)

在我提问了之后,大模型去知识库里找到了这个内容,然后回复了我们。这就是一个简单的正确回复的demo。然而,我们会发现,有时候她的回答会十分不准确。比如:明显回答的牛头不对马嘴。而且,图二中是知识库截图,其中是有“一菲为美嘉找了一份助教工作”的内容的。但是回答这个问题时,并没有根据正确的知识库内容回答。这个,就是基于知识库问答中的一个非常常见的错误场景。在其他情况下,甚至有可能出现报价错误、胡编乱造等等。这在严肃场景中,是不能接受的出错。现在应该能够直观的理解,为什么需要让大模型根据知识库回答的更加准确、更符合我们的要求。在AI领域中,优化AI更准确的回答一些专有问题的过程,有一个更加专业的术语,叫做RAG。接下来,咱们进入正题,一步一步探索,如何优化回答。

我用扣子做一个简单的智能体——竖起耳朵听

工作流一开始和结束都有特别的小块块。开始的那个小块块就像是工作的起点,它可以包含你输入的信息。结束的那个小块块就像是工作的终点,它会告诉你工作流运行的结果是什么。不同的小块块可能需要不同的信息才能工作,这些信息有两种:一种是引用前面小块块给出的信息,另一种是你可以自己设定的信息。在竖起耳朵听的智能体里,我也用到了5个小块块,可以回答带有图片口语的结果,使回答更好。😎👉知识库扣子的知识库功能很强大,它可以帮你上传和存储外面的知识内容,并且提供了很多种查找知识的方法。如果你的大模型有时候会出现幻觉,或者在某些专业领域知识不够,扣子的知识能力就能帮你解决这个问题,让你的大模型回复得更准确。在我的智能体里面,我用到了自己的知识库,我收集了很多关于地道口语表达的短句,知识库可以包含很多格式的文件,我只用了文本格式,有了自己的知识库,当智能体回答用户的时候会首先检索自己的知识库内容。👉开场白为了体验更好,我们还可以添加一段开场白,告诉用户我们是这个智能体是干什么的?我的开场白:

生物医药小助手的诞生之旅~如果你有公众号,你也应该做一个扣子智能体

这个智能体是由1个工作流+6个数据库实现的。工作流的设计比较简单,一个input,对接知识库,然后搭载豆包function call大模型,最后是一个output。6个数据库分别是我的公众号发表过的文章+执业药师教材(做第一个知识库的时候没经验,其实应该分开成两个数据库)、执业医师讲义、药监局新药审评报告、中国医药企业融资动态、药物对外授权(BD)动态、全球药物销售额。工作流是非常简单的,相对有难度的是收集知识库的资料并根据清洗结果进行手动二次校对(需要一定专业知识)。也许有人要问,医药知识我直接问大模型不好吗?大模型的语料来源庞杂,广度一定是比智能体好很多的,但是在医疗这个严肃领域,对回答准确性的要求非常高。为了避免出现误导性的回答,我在提示词中约定了回答只能来自于知识库。也许有问题超出知识库范畴的情况,但还没发现智能体回答是医学上不严谨的现象。广or精准,在医疗领域一定是精准优先的。

其他人在问
在WAY TO AGI 知识库有没有适合老师备课用的AI?请推荐
以下是为老师备课推荐的一些 AI 相关内容: B 站 up 主 Nally 的课程,免费且每节 15 分钟,内容很棒。 14、15 号左右白马老师和麦菊老师将带大家用 AI 做生图、毛毡字、光影字、机甲字等。 16 号晚上中老师将带大家动手操作炼丹,炼丹可能需要准备一些图,后续会让中老师提前发布内容方便大家准备。 工程生产有很多可控性,AI 视频相关内容丰富,文档会列出工具优劣及操作。很多工具每天有免费积分,共学课程基本不用花钱。每周有 AI 视频挑战赛。 有 AI 音乐的流派和 prompt 电子书,格林同学做了翻译。 此外,还有以下相关信息: 高效 PB 及相关案例:高效 PB 投入力度大,有厉害的伙伴,案例在社区,有多种 battle 方式,会有菩萨老师专门介绍。 11 月 2 号左右将开展博物馆奇妙日主题活动,在各地博物馆进行新创意。 关于 AI 知识库及学习路径的介绍,包括时代杂志评选的领军人物、AI 相关名词解释、知识库的信息来源、社区共创项目、学习路径、经典必读文章、初学者入门推荐、历史脉络类资料等。
2024-12-20
我想用coze搭建一个智能体,关于自然语言课程的期末复习指南,要将我的教材导入扣子作为知识库,智能体支持用户提问,搜索知识点,结合知识库和互联网搜索的内容给出问答,需要使用多智能体或工作流,使用卡片功能进行显示,请给出我搭建这个智能体的步骤
以下是使用 Coze 搭建一个关于自然语言课程期末复习指南智能体的步骤: 1. 访问 Coze 官网(https://www.coze.cn),注册并登录。 2. 点击页面左上角的⊕,通过【标准创建】填入智能体的基本信息。 3. 了解 Bot 开发调试界面: 人设与回复逻辑(左侧区域):设定智能体的对话风格、专业领域定位,配置回复的逻辑规则和限制条件,调整回复的语气和专业程度。 功能模块(中间区域): 技能配置: 插件:扩展智能体的专业能力,如计算器、日历等工具。 工作流:设置固定的处理流程和业务逻辑。 图像流:处理和生成图像的相关功能。 触发器:设置自动化响应条件。 知识库管理: 文本:存储文字类知识材料。 表格:结构化数据的存储和调用。 照片:图像素材库。 记忆系统: 变量:存储对话过程中的临时信息。 数据库:管理持久化的结构化数据。 长期记忆:保存重要的历史对话信息。 文件盒子:管理各类文档资料。 交互优化(底部区域): 开场白:设置初次对话的问候语。 用户问题建议:配置智能推荐的后续问题。 快捷指令:设置常用功能的快速访问。 背景图片:自定义对话界面的视觉效果。 预览与调试(右侧区域):实时测试智能体的各项功能,调试响应效果,优化交互体验。 4. 设定智能体的人设与回复逻辑后,为智能体配置对应的技能,以保证其可以按照预期完成目标任务。例如,以获取 AI 新闻的智能体为例,需要为它添加一个搜索新闻的接口来获取相关新闻。具体操作如下: 在智能体编排页面的技能区域,单击插件功能对应的+图标。 在添加插件页面,选择相关功能,然后单击新增。 修改人设与回复逻辑,指示智能体使用相应插件来搜索所需内容。 (可选)为智能体添加开场白,让用户更好地了解智能体的功能。开场白功能目前支持豆包、微信公众号(服务号)。 5. 配置好智能体后,在预览与调试区域中测试智能体是否符合预期。可单击清除图标清除对话记录。 6. 完成测试后,将智能体发布到社交渠道中使用。具体操作如下: 在智能体的编排页面右上角,单击发布。 在发布页面输入发布记录,并勾选发布渠道。 单击发布。 更多内容,请访问 Coze 官方文档: 英文版:https://www.coze.com/docs/welcome.html 中文版:https://www.coze.cn/docs/guides/welcome
2024-12-20
怎么构建个人本地知识库
构建个人本地知识库可以按照以下步骤进行: 1. 了解 RAG 技术: 利用大模型的能力搭建知识库是 RAG 技术的应用。 大模型训练数据有截止日期,RAG 可解决依靠不在训练集中的数据的问题。 RAG 应用包括文档加载、文本分割、存储、检索和输出 5 个过程。 文档加载可从多种来源加载,如 PDF 等非结构化数据、SQL 等结构化数据和代码等。 文本分割将文档切分为指定大小的块。 存储涉及将文档块嵌入转换为向量形式并存储到向量数据库。 检索通过算法找到与输入问题相似的嵌入片。 输出是将问题和检索出的嵌入片提交给 LLM 生成答案。 文本加载器将用户提供的文本加载到内存以便后续处理。 2. 准备软件: 需要一个额外的软件 AnythingLLM,它包含所有 Open WebUI 的能力,并额外支持选择文本嵌入模型和向量数据库。 3. 安装和配置: 安装地址:https://useanything.com/download 。 安装完成后进入配置页面,主要分为三步:选择大模型、选择文本嵌入模型、选择向量数据库。 4. 构建本地知识库: 在 AnythingLLM 中创建自己独有的 Workspace 与其他项目数据隔离。 首先创建一个工作空间。 上传文档并在工作空间中进行文本嵌入。 选择对话模式,AnythingLLM 提供 Chat 模式(大模型根据训练数据和上传文档综合给出答案)和 Query 模式(大模型仅依靠文档中的数据给出答案)。 完成配置后进行测试对话。 本文的思路来源于视频号博主黄益贺,作者按照其视频进行了实操并附加了一些关于 RAG 的额外知识。
2024-12-19
可不可以提供一个本地化的大模型方法,让我建立这个合规法律的知识库
以下是为您提供的本地化大模型及搭建合规法律知识库的方法: 一、通过 Open WebUI 使用大模型 1. 首先访问相关网址。打开页面时需使用邮箱注册账号。 2. 登陆成功后,若您使用过类似 ChatGPT 的大模型对话网站,对该页面不会陌生。 3. Open WebUI 一般有两种使用方式: 聊天对话。 RAG 能力,即让模型根据文档内容回答问题,这是构建知识库的基础之一。 4. 如果要求不高,此时已搭建本地大模型,并通过 Web UI 实现对话功能。 5. ChatGPT 访问速度快且回答效果好的原因: 速度快是因为 GPT 大模型部署的服务器配置高。 效果好是因为 GPT 大模型的训练参数多、数据更优及训练算法更好。 二、您的硬件达标了么 运行大模型需要很高的机器配置,个人玩家大多负担不起。以下是不同类型大模型的配置要求: 1. 生成文字大模型: 最低配置:8G RAM + 4G VRAM 建议配置:16G RAM + 8G VRAM 理想配置:32G RAM + 24G VRAM(如果要跑 GPT3.5 差不多性能的大模型) 2. 生成图片大模型(比如跑 SD): 最低配置:16G RAM + 4G VRAM 建议配置:32G RAM + 12G VRAM 3. 生成音频大模型: 最低配置:8G VRAM 建议配置:24G VRAM 最低配置运行非常慢,不建议使用。但这不妨碍我们亲自实操一遍,以加深对大模型构建知识库底层原理的了解。若想要更顺滑的体验知识库,可以参考文章: 三、本地知识库进阶 若要更灵活掌控知识库,需额外软件 AnythingLLM。它包含 Open WebUI 的所有能力,并额外支持以下能力: 1. 选择文本嵌入模型。 2. 选择向量数据库。 AnythingLLM 安装和配置 安装地址:https://useanything.com/download 。安装完成后进入配置页面,主要分为三步: 1. 第一步:选择大模型。 2. 第二步:选择文本嵌入模型。 3. 第三步:选择向量数据库。 构建本地知识库 AnythingLLM 中有 Workspace 的概念,可创建独有的 Workspace 与其他项目数据隔离。具体步骤: 1. 首先创建一个工作空间。 2. 上传文档并在工作空间中进行文本嵌入。 3. 选择对话模式。AnythingLLM 提供两种对话模式: Chat 模式:大模型会根据自己的训练数据和上传的文档数据综合给出答案。 Query 模式:大模型仅依靠文档中的数据给出答案。 4. 测试对话。完成上述配置后,即可与大模型进行对话。 四、写在最后 “看十遍不如实操一遍,实操十遍不如分享一遍”。若您对 AI Agent 技术感兴趣,可以联系我或者加我的免费知识星球(备注 AGI 知识库)。
2024-12-18
基于知识库系统的人工智能
基于知识库系统的人工智能包括以下方面: 专家系统: 是符号人工智能的早期成就之一,为充当有限问题领域的专家而设计。 基于从人类专家提取的知识库,并包含推理引擎。 像人类推理系统一样,包含短期记忆(问题记忆)和长期记忆(知识库)。 问题记忆包含与当前要解决问题有关的知识,称为静态知识。 知识库代表问题领域的长期知识,是动态知识。 推理引擎协调问题状态空间中的搜索过程,必要时向用户提问并找到适用规则。 例如,可根据动物物理特征判断动物的专家系统,其图称为 ANDOR 树,早期提取知识时绘制树形图有用,计算机中用规则表示更方便。 FastGPT: 基于 LLM 技术,能理解自然语言并生成高质量答案。 支持连接外部知识库获取更全面信息。 具有可视化工作流编排工具,方便创建复杂问答场景。 具备开箱即用的数据处理和模型调用功能,上手速度快。 是功能强大、易于使用的知识库问答系统,可帮助企业构建智能客服、知识库搜索、文档生成等应用。 相关资源: 您可以为喜欢的主题写一个 ANDOR 树。同时,可参见了解实施正向推理和反向推理的专家系统示例。需注意,此例简单,规则达一定数量(约 200 多条)时才会有智能行为,规则复杂时可能难以牢记,基于知识的系统重要特点是能准确解释任何决定的做出过程。
2024-12-17
我是一个投资人,我想针对每个项目建立知识库,类似一个个对话的形式,我把关于某个项目的材料全部丢进一个对话中,然后可以针对每个项目进行提问,或者要求AI帮我产出某种类型的文件。哪个App可以最好的满足我的需求?
以下是一些可能满足您需求的 App 选项: 1. WaytoAGI 网站: 提供和 AI 知识库对话的功能,您可以在此询问任何关于 AI 的问题。 集合了精选的 AI 网站,方便您按需求找到适合的工具。 有精选的 AI 提示词,可复制到 AI 对话网站使用。 会将每天知识库的精华内容呈现给大家。 2. 阿里千问模型:可以作为 AI 模型用于问答机器人的配置。 在配置问答机器人时,需要注意模型、提示词和知识库的协同作用。模型就像拥有无穷智慧的人,提示词能设定其角色和专注技能,知识库则如同工作手册,为其提供特定项目的详细信息。
2024-12-17
智能体搭建案例
以下为您提供两个智能体搭建案例: 案例一: 智能体名称:市场分析报告 智能体简介:品牌营销公司在用的生成智能体,输入行业/类目关键词自动检索关联信息并生成报告。数据化呈现更具真实性,附带信息来源网址便于源信息校正。可帮助品牌主/营销人员减少信息收集时间,聚焦决策判断。 应用场景: 目标人群:企业管理层(做发展策略评估)、投资者(评估投资机会)、创业者(评估项目可行性)、营销人员(做营销计划依据)。 当前痛点:信息收集需要长时间;报告的真实性是否可验证;现有大模型做的市场报告太过概念化,不能做有效参考。 应用价值:减少信息收集时间、真实可验证、聚焦决策判断。 智能体主要功能:根据用户的要求或指定的行业、产品,搜索网络信息,生成一份完整的市场调研报告,用数据支撑,并附引用链接。 案例二: 智能体开发平台:字节扣子和腾讯元器。 概念定义:智能体(Agent)简单理解就是 AI 机器人小助手,参照移动互联网,类似 APP 应用的概念。AI 大模型是技术,面向用户提供服务的是产品,很多公司开始关注 AI 应用层的产品机会。 C 端案例:社交方向,用户注册后先捏一个自己的 Agent,然后让自己的 Agent 和其他人的 Agent 聊天,两个 Agent 聊到一起后再真人介入;还有借 Onlyfans 入局打造个性化聊天的创业公司。 B 端案例:帮助 B 端商家搭建 Agent。 智能体开发平台介绍:字节于 2 月 1 日正式推出 AI 聊天机器人构建平台 Coze 的国内版“扣子”,主要用于开发下一代 AI 聊天机器人。国内还有很多智能体开发平台,如 Dify.AI,但个人比较常用的还是扣子。
2024-12-20
哪个智能体能够根据用户的购物历史、浏览行为和偏好,提供个性化的产品推荐。
以下智能体能够根据用户的购物历史、浏览行为和偏好提供个性化的产品推荐: 1. 电子商务网站:通过收集用户的购物历史和浏览习惯等数据,使用机器学习和数据挖掘技术进行分析,从而推荐相似产品。 2. 基于人工智能的语音助手:可以分析用户行为、偏好以及历史购买记录,为用户提供更个性化的商品推荐,提升购物体验。 3. 中小企业:利用 AI 分析客户行为数据,包括购买历史、浏览记录、反馈等,基于分析结果生成个性化的产品推荐和服务。 4. 扣子模板中的个性化推荐引擎:利用人工智能和机器学习算法,根据用户的历史行为和偏好,实时推荐最相关的产品或服务,以提升转化率。
2024-12-20
智能体在电商领域的应用
智能体在电商领域有以下应用: 1. 电商导购:以“什么值得买”智能体为例,当用户输入“我想买个笔记本电脑”,智能体会先提取关键词“笔记本电脑”,通过相关 API 检索商品信息,与内置提示词组装成上下文,请求大模型回答,提供更好的商品推荐效果。 2. 工作流协作:工作流也可理解为多智能体协作,通过多个智能体的组装解决复杂场景的搜索问题。例如给新产品取名,涉及多个步骤和检测,人工操作费时,而 AI 搜索与 Workflow 模式可有效解决,通过定义多个智能体完成各项功能,并由调度中枢协调工作和决策。 在品牌卖点提炼方面: 1. 构建中对结构的理解和控制最为重要,旨在提供结构化思路,单点可通过不断迭代完善。品牌卖点提炼助手本质是办公助手,能为有营销思维的团队提供思路,提高团队效率。 2. 实际搭建需根据公司业态调整,给智能体更多提示词提升分析合理性。不同行业的线上、线下和人员触点不同,遵循营销管理流程保证输出,调整提示词提升准确度。营销管理结构化提示词中避免依赖举例,决策和洞察力仍依赖人员,智能体作为灵感助手辅助决策。 3. 最终提炼的品牌卖点应用于与用户交互的所有场景,即触点,包括线上(如微信、抖音等平台)、线下(产品到达消费者手上的场景或线下实体门店场景)和人员(线上直播间、人工客服或线下销售人员等)触点。在最终步骤,需找到所有传达品牌卖点的场景,结合需求制作落地页或沟通话术,建立品牌价值。
2024-12-20
当前电商领域有哪些智能体可以用
在电商领域,以下是一些常见的智能体类型及应用示例: 1. 简单反应型智能体:如温控器,根据当前的感知输入直接采取行动,不维护内部状态和考虑历史信息。 2. 基于模型的智能体:像自动驾驶汽车,维护内部状态,对当前和历史感知输入进行建模,能推理未来状态变化并据此行动。 3. 目标导向型智能体:例如机器人导航系统,具有明确目标,能评估行动方案并选择最优行动。 4. 效用型智能体:如金融交易智能体,能量化不同状态的效用值,选择效用最大化的行动。 5. 学习型智能体:例如强化学习智能体,通过与环境交互不断学习最优策略。 以“什么值得买”智能体为例,当用户输入“我想买个笔记本电脑”,智能体会先提取关键词,再通过相关 API 检索商品信息,与内置提示词组装后请求大模型回答,成为电商导购类的垂直搜索应用,在商品推荐方面效果较好。 此外,工作流(Workflow)也可理解为多智能体协作(MultiAgents),通过多个智能体的组装解决复杂场景的搜索问题。例如给新产品取名,可定义多个智能体分别负责不同功能,还需要有调度中枢协调工作和做决策。 还有“买买买!💥产品买点提炼神器强化版🚀”智能体,专注于市场营销领域,能帮助用户从产品出发挖掘卖点并转化为买点,生成小红书文案和抖音短视频脚本等,并保存至飞书文档。
2024-12-20
智能图书馆的技术价值
智能图书馆的技术价值主要体现在以下方面: RAG(检索增强生成)技术: 工作原理: 检索(Retrieval):如同图书馆员根据描述从庞大知识库中找出相关书籍和文章,系统从知识库或文档集合中找到与用户问题相关的内容。 增强(Augmented):类似图书馆员挑选出最相关段落和信息并汇总,大模型对检索到的信息进行筛选和优化,确保选中最相关和有用的信息。 生成(Generation):如同图书馆员把汇总信息组织成连贯、易懂的回答,大模型将整合的信息生成自然流畅的回答。 综合解释:RAG 就像超级智能的图书馆员,先检索相关信息,再筛选优化,最后生成连贯回答。 优点: 成本效益:实现成本低于训练和维护大型专有模型。 灵活性:可利用多种数据源,包括结构化和非结构化数据,迅速适应不同领域和变化的数据。 可扩展性:随时增加或更新知识库内容,无需重新训练模型。 缺点:回答准确性不如专有模型的方案。 其他相关技术: DALLE 3:与 ChatGPT 结合,用户输入会话命令可获得匹配图像,改善了之前图像生成器的操作方式。 开放式有声读物集合:微软和麻省理工学院联手,使用文本转语音技术将 5000 本书转换为免费有声读物并在 Spotify 上提供。 AudioShake 的 AI 程序:可隔离预先录制音频的元素,分解成组成部分,解决老音乐音轨分离问题。 Ai Pin:磁性连接衣服成为 AI 助手,使用专有软件和 OpenAI 的 GPT,仅用声音就能完成多种操作。
2024-12-19
我想要让AI来操作,我这个电脑,然后呢?去充当一个AI客服的角色去回答微信上的问题有什么办法吗?
目前在微信中,Coze 平台是一个 AI 智能体创作平台,可以根据需求构建 AI 机器人并发布到多种社交平台。微信的不同功能在与 AI 对接上有所差异: 1. 个人微信/微信群:Coze AI 平台之前不支持直接对接,但国内版正式发布 API 接口功能后,直接对接已成为可能。 2. 微信公众号:Coze AI 平台支持对接,能让 AI 机器人自动回复用户消息。 3. 微信服务号:同样支持对接,可帮助企业提升服务效率。 4. 微信客服:Coze AI 平台支持对接,使 AI 机器人能够自动回答用户咨询,提高客服响应速度。 在把 AI 大模型能力接入微信后,对于类似客服的应用场景,存在模型幻觉导致胡乱回答的问题。对于非技术从业者,落地场景存在困难。一个问答机器人的界面配置包括 AI 模型、提示词、知识库。
2024-12-20
你可以根据问题说生成PPT或者图片吗
以下是关于生成 PPT 或图片的相关内容: 增强版 Bot 是基于 AI 驱动的智能创作平台,可实现一站式内容生成,包括图片、PPT、PDF 等。例如,在对话框输入诉求“生成常见的系统架构风格架构设计图”即可生成相应图片,输入“帮我生成一篇包含以上架构风格的完整 PPT”可生成 PPT 幻灯片内容及相关模板选择,输入“根据上面的架构风格,制作一篇常见系统架构风格的 PDF 文件”可生成相应的可选模板。 在 MJ 应用中,为 PPT 配图可通过复制图像链接和提示词,在 discord 中输入相应命令生成图像。生成后可改变比例和镜头拉远,检查构图,选择合适的图放入 PPT 调整构图。 在制作课程时,可通过一系列提问模板让 ChatGPT 协助创作章节内容,并将其转换成 PPT 格式,还可加入学员案例、参考范例让其进行改写或续写。
2024-12-19
我是一个法律工作者,需要经常回答客户的一些法律问题,哪个AI适合我这种场景的工作需求
对于您这种经常回答客户法律问题的法律工作者,以下几种场景中适合使用法律行业垂类的 AI 产品: 1. 法规研究与解读:使用 Prompt 指令词,如“根据最新修订的《数据安全法》,解析企业在处理个人信息时应遵循的主要原则,并给出具体操作建议”,AI 助手将依据最新条款解析原则并提出操作指南或合规建议。 2. 法律意见书撰写或非诉交易文件材料:例如“针对我方当事人涉及的版权纠纷案,输入【已有的证据材料】+【相关法律条文】,撰写一份初步法律意见书,论证我方主张的合理性和胜诉的可能性”,AI 将根据提供的材料撰写法律意见书。 3. 案例检索:如“请搜索近五年内关于商标侵权案件中‘混淆可能性’标准的具体判例,并提供相似度最高的三个案例的关键要点摘要”,AI 系统将检索并提炼关键判决理由和结果。 4. 类案检索:同样最好使用法律行业垂类的 AI 产品。 5. 法律文本阅读:选择某一份或者若干份文档上传,AI 完成解析,然后根据需要了解的内容进行提问。 在使用 Prompt 时,要注意结构提示,如“【需求或目的+根据具体法条或者根据某部法律+具体需要研究或则具体的研究细节内容】”。
2024-12-19
对人工智能伦理规范的理解,包括现有规范具体内容、现有问题、应当如何规范,并从一个具体领域说明,例如:金融人工智能
以下是关于人工智能伦理规范的相关内容: 现有规范具体内容: 国家人工智能产业综合标准化体系建设指南(征求意见稿)中,安全/治理标准包括人工智能领域的安全、治理等部分。安全标准规范了人工智能全生命周期的安全要求,治理标准规范了人工智能的技术研发和运营服务等要求,包括伦理治理要求。 欧洲议会和欧盟理事会规定了人工智能的统一规则,其中提到高级别专家组制定了七项不具约束力的人工智能伦理原则,包括人类主体和监督、技术稳健性和安全性、隐私和数据治理、透明度、多样性、非歧视和公平、社会和环境福祉以及问责制。 现有问题: 文中未明确提及现有规范存在的具体问题。 应当如何规范: 鼓励非高风险人工智能系统的提供者制定行为守则,包括相关的治理机制,以促进自愿适用适用于高风险人工智能系统的部分或全部强制性要求,并根据系统的预期目的和所涉及的较低风险进行调整,考虑可用的技术解决方案和行业最佳实践。 鼓励所有人工智能系统的提供者和模型的提供者,在自愿的基础上适用与欧洲可信人工智能伦理准则要素、环境可持续性、人工智能素养措施、人工智能系统的包容性和多样化设计与开发等有关的额外要求。 以金融人工智能为例: 在金融领域应用人工智能时,应遵循上述的伦理规范和要求。例如,要确保数据的隐私和安全,模型的稳健性和可靠性,避免歧视和不公平,保证透明度和可解释性,同时要接受监管和审查,以降低金融风险,保障金融市场的稳定和公平。
2024-12-18
问我一个关于AIGC的问题。
以下是一些关于 AIGC 的问题供您参考: 1. AIGC 在内容创作领域的优势和局限性分别是什么? 2. AIGC 如何影响传统的内容创作行业? 3. 目前 AIGC 在图像生成方面有哪些最新的技术突破? 4. 如何评估 AIGC 生成内容的质量和准确性? 5. AIGC 在视频生成领域的应用前景如何? 6. 与 UGC 和 PGC 相比,AIGC 在内容多样性方面表现如何? 7. 哪些行业最有可能率先广泛应用 AIGC 技术? 8. Gen AI/Generative AI 与 AIGC 在技术实现上有哪些关键差异? 9. ChatGPT 作为一种服务,与其他类似的聊天应用有何不同? 10. 未来 AIGC 工具在产品原型设计方面可能会有哪些创新?
2024-12-14
最近gpt怎么不会正常回答问题了,出现了降智现象
GPT 有时不能正常回答问题可能有以下原因: 1. 对于一些复杂的数学问题,与 ChatGPT 相比,GPT4 虽然表现更好,但仍可能存在超出其能力范围的情况。ChatGPT 在回答问题时,常见的问题包括依赖“模板匹配”导致回答不连贯或无意义,无法抓住问题要点或数学步骤逻辑,在实现或计算方面犯错,以及倾向于无目的的代数操作或计算从而导致混乱或错误。 2. 新手在使用时可能忽略基础知识的重要性,比如在还未充分掌握基础教程的情况下就急于上手写复杂的提示词,导致后续出现一些基础问题,如模型失忆、内容混淆、无法指定准确字数等。 3. 新手期容易陷入试图用一个 Prompt 解决多个问题的误区,导致 Prompt 过长、结构复杂、逻辑不清晰,从而影响整体性能和稳定性,使生成的内容多为正确的废话或忽略初始设置的限制性语句等。 4. GPT 回答问题的方式可能较为古板,缺乏趣味性和感情色彩。通过让其扮演特定角色、给出明确输出要求,尤其是加入感情色彩和动作描述等方式,可以改善回复的灵性和人味儿。
2024-12-10
AI智能体在电商领域可落地的应用
AI 智能体在电商领域有以下可落地的应用: 1. 电商导购:以“什么值得买”智能体为例,当用户输入“我想买个笔记本电脑”,智能体会先提取关键词“笔记本电脑”,通过相关 API 检索商品信息,与内置提示词组装成上下文,请求大模型回答,从而提供更好的商品推荐效果。 2. 工作流优化:工作流也可理解为多智能体协作,通过多个智能体的组装解决复杂场景的搜索问题。例如给新产品取名,涉及多个步骤和检测,人工操作费时,而 AI 搜索与 Workflow 模式可有效解决,通过定义多个完成不同功能的智能体,并由调度中枢协调工作和决策。 3. 品牌卖点提炼:AI 在逻辑推理、数据分析、内容理解和输出上有独特优势,可搭建品牌卖点提炼助手。但在搭建前需明确 AI 的能力边界,如对公司产品、独特之处、核心渠道等了解有限。AI 更适合做引导型助手,在寻找卖点陷入停滞时提供更多思考维度。实际搭建时,除遵循营销管理流程保证输出合理,还需根据公司业态调整智能体提示词以提升信息准确度。对于电商产品,需考虑线上线下不同触点和人员等因素。
2024-12-19
AI智能体在电商领域营销助手应用
AI 智能体在电商领域营销助手方面有以下应用: 1. 品牌卖点提炼: 智能体的构建中,理解和控制结构最为重要,其本质是办公助手,能为有营销思维的团队提供思路,提高效率。 实际搭建要根据公司业态调整,给智能体更多提示词提升分析合理性。例如电商产品,线上触点有淘系、京东系等电商平台和抖音、小红书等兴趣电商内容平台,线下触点包括产品包装、包裹等,人员触点有销售人员等;线下实体服务行业,线上触点有大众点评/美团等,线下触点有门店展示等。 遵循营销管理流程构建智能体可保证输出准确,调整提示词能提升某部分助手信息准确度,但注意营销管理结构化提示词中不要依赖举例,以免限制 AI 创造性思维。 2. 电商导购: 以“什么值得买”智能体为例,用户输入“我想买个笔记本电脑”,智能体会提取关键词,通过 API 检索商品信息,与提示词组装后请求大模型回答,成为电商导购类垂直搜索应用,提升商品推荐效果。 工作流 Workflow 可理解为多智能体协作,通过多个智能体组装解决复杂场景搜索问题,如新产品取名,涉及多个步骤和智能体,还需调度中枢协调工作和决策。 3. 搭建智能体提炼品牌卖点: AI 在逻辑推理、数据分析等方面有强项,可用于品牌卖点提炼,搭建品牌卖点提炼助手。 搭建前要明确 AI 能力边界,如 AI 不了解公司产品、独特之处等。 AI 真正的能力是逻辑推理、处理分析数据等,确定的智能体更适合做引导型助手,在寻找卖点陷入停滞时提供思考维度。
2024-12-19
AI智能体在电商领域到底能做什么
AI 智能体在电商领域主要有以下应用: 1. 电商导购:以“什么值得买”智能体为例,当用户输入购买需求,如“我想买个笔记本电脑”,智能体会提取关键词,通过相关 API 检索商品信息,与内置提示词组装成上下文,请求大模型回答,提供更精准的商品推荐。 2. 工作流协作:通过多个智能体的组装,解决复杂场景的搜索问题。例如给新产品取名,定义多个智能体分别负责不同功能,如给出建议名字、检索是否同名等,同时需要调度中枢协调工作,决定是继续下一步还是回溯。 3. 决策支持:如在理赔提交审核中,将付款方规则转换为有向无环图,智能体遍历决策树,利用语言模型评估相关文件是否符合规则,并在复杂任务中选择最佳方法。 4. 品牌卖点提炼:实际搭建中,遵循营销管理流程保证输出合理性,根据电商业态调整单独智能体的提示词提升信息准确度,为营销团队提供更广阔思路和灵感。
2024-12-19