直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

我建了一个智能体,需要智能体根据知识库的内容来回答客户问题,但是智能体在回答问题的时候经常忽略知识库,请问这个问题要如何解决

回答

要解决智能体在回答问题时经常忽略知识库的问题,可以从以下几个方面入手:

  1. 优化工作流设计:确保工作流的流程清晰,从输入到对接知识库,再到调用大模型和输出,各个环节紧密衔接,减少出现疏漏的可能性。
  2. 精心收集和整理知识库资料:对知识库的内容进行准确、全面的收集,并根据清洗结果进行手动二次校对,确保知识库的质量和准确性。
  3. 明确提示词约定:在提示词中明确规定回答只能来自于知识库,避免智能体从其他不可靠的来源获取信息。
  4. 加强对智能体的训练和调试:通过不断的训练和调试,让智能体更好地理解和运用知识库中的内容。
  5. 深入理解 RAG 技术:掌握优化 AI 更准确回答专有问题的专业术语和方法,如 RAG,逐步探索如何优化回答。

在实际应用中,不同的场景可能需要不同的解决策略,需要根据具体情况进行调整和优化。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

张梦飞 :AI商用级问答场景,怎么让AI+知识库回答的更准确?一篇专门为小白讲透RAG而作的教程(上篇)

在我提问了之后,大模型去知识库里找到了这个内容,然后回复了我们。这就是一个简单的正确回复的demo。然而,我们会发现,有时候她的回答会十分不准确。比如:明显回答的牛头不对马嘴。而且,图二中是知识库截图,其中是有“一菲为美嘉找了一份助教工作”的内容的。但是回答这个问题时,并没有根据正确的知识库内容回答。这个,就是基于知识库问答中的一个非常常见的错误场景。在其他情况下,甚至有可能出现报价错误、胡编乱造等等。这在严肃场景中,是不能接受的出错。现在应该能够直观的理解,为什么需要让大模型根据知识库回答的更加准确、更符合我们的要求。在AI领域中,优化AI更准确的回答一些专有问题的过程,有一个更加专业的术语,叫做RAG。接下来,咱们进入正题,一步一步探索,如何优化回答。

我用扣子做一个简单的智能体——竖起耳朵听

工作流一开始和结束都有特别的小块块。开始的那个小块块就像是工作的起点,它可以包含你输入的信息。结束的那个小块块就像是工作的终点,它会告诉你工作流运行的结果是什么。不同的小块块可能需要不同的信息才能工作,这些信息有两种:一种是引用前面小块块给出的信息,另一种是你可以自己设定的信息。在竖起耳朵听的智能体里,我也用到了5个小块块,可以回答带有图片口语的结果,使回答更好。😎👉知识库扣子的知识库功能很强大,它可以帮你上传和存储外面的知识内容,并且提供了很多种查找知识的方法。如果你的大模型有时候会出现幻觉,或者在某些专业领域知识不够,扣子的知识能力就能帮你解决这个问题,让你的大模型回复得更准确。在我的智能体里面,我用到了自己的知识库,我收集了很多关于地道口语表达的短句,知识库可以包含很多格式的文件,我只用了文本格式,有了自己的知识库,当智能体回答用户的时候会首先检索自己的知识库内容。👉开场白为了体验更好,我们还可以添加一段开场白,告诉用户我们是这个智能体是干什么的?我的开场白:

生物医药小助手的诞生之旅~如果你有公众号,你也应该做一个扣子智能体

这个智能体是由1个工作流+6个数据库实现的。工作流的设计比较简单,一个input,对接知识库,然后搭载豆包function call大模型,最后是一个output。6个数据库分别是我的公众号发表过的文章+执业药师教材(做第一个知识库的时候没经验,其实应该分开成两个数据库)、执业医师讲义、药监局新药审评报告、中国医药企业融资动态、药物对外授权(BD)动态、全球药物销售额。工作流是非常简单的,相对有难度的是收集知识库的资料并根据清洗结果进行手动二次校对(需要一定专业知识)。也许有人要问,医药知识我直接问大模型不好吗?大模型的语料来源庞杂,广度一定是比智能体好很多的,但是在医疗这个严肃领域,对回答准确性的要求非常高。为了避免出现误导性的回答,我在提示词中约定了回答只能来自于知识库。也许有问题超出知识库范畴的情况,但还没发现智能体回答是医学上不严谨的现象。广or精准,在医疗领域一定是精准优先的。

其他人在问
你的知识库主要容纳哪些能力和知识
以下是关于知识库的能力和知识的介绍: 1. 扣子的知识库功能强大,能够上传和存储外部知识内容,提供多种查找知识的方法。它可以解决大模型有时出现的幻觉或某些专业领域知识不足的问题,让回复更准确。 2. 可以使用多种功能定制 AI Bot,如提示词(设定 Bot 的身份、目标和技能)、插件(通过 API 连接集成各种平台和服务)、工作流(规划和实现复杂功能逻辑)、记忆库(保留和理解对话细节,添加外部知识库)。 3. Coze 的知识库包括两大核心能力:存储和管理外部数据,增强检索能力。支持从多种数据源上传文本和表格数据,自动切分知识内容并允许自定义分片规则,提供多种检索方式高效检索内容片段,生成最终回复内容。 4. 知识库适用于多种应用场景,如创建虚拟形象交流时保存相关语料,客服场景中解答用户常见问题,特定行业应用中提供精确信息等。
2024-11-17
如何创建个人专属知识库
以下是创建个人专属知识库的相关内容: 私人知识库中的内容通常包括从互联网收集的优质信息以及个人日常的思考和分享。 基于私人知识库打造个人专属的 ChatGPT 常见有两种技术方案: 训练专有大模型:可以使用个人知识库训练专有大模型,但此方案并非当下主流,存在高成本、更新难度大等缺陷。 利用 RAG(检索增强生成)技术:先将文本拆分成若干小文本块并转换为 embeddings 向量,保存在向量储存库中。当用户提出问题时,将问题转换为向量与储存库中的向量比对,提取关联度高的文本块与问题组合成新的 prompt 发送给 GPT API。 搭建基于 GPT API 的定制化知识库时,由于 GPT3.5 一次交互支持的 Token 有限,OpenAI 提供了 embedding API 解决方案。embeddings 是一个浮点数字的向量,向量之间的距离衡量关联性,小距离表示高关联度。
2024-11-16
如何创建coze知识库
以下是创建 Coze 知识库的步骤: 1. 来到个人空间,找到知识库导航栏,点击创建知识库。 知识库是共享资源,多个 Bot 可以引用同一个知识库。 选择知识库的格式并填写相关信息。目前(2024.06.08)Coze 支持三种格式:文档、表格(CSV、Excel 等)、图片(上传图片并填写图片文字说明)。格式不重要,重要的是要了解影响 RAG 输出质量的因素。 例如选择本地文档(问答对可选择表格),还可选择自定义的文档切割,数据处理完成后,一个问答对会被切割成一个文档片。 2. 在线知识库: 点击创建知识库,创建一个如画小二课程的 FAQ 知识库。 选择飞书在线文档,每个问题和答案以分割。 选择飞书文档、自定义,输入,可点击编辑修改和删除,然后添加 Bot,并在调试区测试效果。 3. 本地文档: 本地 word 文件要注意拆分内容以提高训练数据准确度,例如对于画小二课程,要先将大章节名称内容放入,再按固定方式细化章节内详细内容。 然后选择创建知识库自定义清洗数据。 4. 发布应用:点击发布,确保在 Bot 商店中能够搜到。 关于使用知识库,您可以查看教程: 。
2024-11-15
你的知识库来源于哪里
我的知识库来源较为广泛,包括以下方面: 符号人工智能的早期成就之一——专家系统,其基于从人类专家提取的知识库,并包含推理引擎进行推理。专家系统包含问题记忆、知识库、推理引擎等部分。 “通往 AGI 之路「WaytoAGI」,这是一个由开发者、学者和有志人士等参与的学习社区和开源的 AI 知识库。 扣子的知识库,功能强大,可上传和存储外部知识内容,并提供多种查找知识的方法,能解决大模型的某些问题,使其回复更准确。
2024-11-13
什么是知识库,以及他的运作原理是什么,请用小白也能理解的语言进行说明
知识库可以用比较通俗的方式来理解: 想象一个大语言模型就像一个非常聪明、读过无数书的人,但对于一些特定的工作场景中的细节,比如见到老板娘过来吃饭要打三折,张梦飞过去吃饭要打骨折,它可能并不清楚。这时候,知识库就像是给这个聪明的人发的一本工作手册。 从更专业的角度来说,知识库的运作原理通常包括以下几个步骤: 1. 文档加载:从各种不同的来源,比如 PDF、SQL 数据、代码等加载相关的文档。 2. 文本分割:把加载的文档分割成指定大小的块,称为“文档块”或“文档片”。 3. 存储:这包括两个环节,一是将分割好的文档块进行嵌入,转换成向量的形式;二是将这些向量数据存储到向量数据库中。 4. 检索:当需要使用数据时,通过某种检索算法从向量数据库中找到与输入问题相似的嵌入片。 5. 输出:把问题以及检索出来的嵌入片一起提交给大语言模型,大语言模型会根据问题和检索出来的提示一起生成更合理的答案。 以车型数据为例,每个知识库的分段中保存了一种车型的基础数据。当用户问宝马 X3 的售价是多少时,就能匹配到对应车型的分段,然后从其中获取到售价信息。 海外官方文档:https://www.coze.com/docs/zh_cn/knowledge.html 国内官方文档:https://www.coze.cn/docs/guides/use_knowledge
2024-11-13
我没有知识库,如何让AI就某一问题穷尽搜索
要让 AI 就某一问题进行穷尽搜索,一般会涉及以下步骤: 1. 文档向量化:知识库中的文档需要被转换成向量形式,以便在数值级别上与问题向量进行比较。使用知识库工具上传文档时,会完成文档的向量化,这依靠 Embedding Model 实现。 2. 知识库检索: 相似性计算:使用相似性度量方法(如余弦相似性)计算问题向量和各个文档向量之间的相似度,以找出与问题内容最接近的文档。 排序与选择:根据相似性得分对所有文档进行排序,通常会选择得分最高的几个文档,认为这些文档与问题最相关。 信息抽取:从选定的高相关性文档中抽取具体的信息片段或答案,可能涉及进一步的文本处理技术,如命名实体识别、关键短语提取等。 3. 信息整合阶段:将检索到的全部信息连同用户问题和系统预设整合成一个全新的上下文环境,为生成回答提供基础。 此外,像生物进化中通过自然选择的方式,从特定规则开始逐步改变(可能随机),在每一步保留最有效的规则并丢弃其他,这种方法不是我们通常定义的“人工智能”(更像是“遗传算法”),但在高维规则空间中往往比低维规则空间效果更好,因为维度越多,陷入局部最小值的可能性越小。 同时,给 AI 配备随时更新的“活字典”即知识库是一个好方法。知识库就像 AI 随时可查阅的百科全书,当 AI 遇到不确定问题时,可从知识库中检索相关信息给出更准确回答。比如建立包含最新新闻、科技发展、法律法规等内容的知识库,或者利用整个互联网的实时数据作为知识库,通过搜索引擎获取最新信息。
2024-11-13
一个大学生,如果要了解学习通用人工智能,提高其通用人工智能素养,请给出你的建议
以下是给大学生了解学习通用人工智能、提高通用人工智能素养的建议: 1. 从编程语言入手学习: 可以选择 Python、JavaScript 等编程语言,学习编程语法、数据结构、算法等基础知识,为后续学习打下基础。 2. 尝试使用 AI 工具和平台: 体验如 ChatGPT、Midjourney 等 AI 生成工具,了解其应用场景。 探索百度的“文心智能体平台”、Coze 智能体平台等面向大学生的平台。 3. 学习 AI 基础知识: 掌握 AI 的基本概念、发展历程。 熟悉主要技术,如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注权威媒体和学者,了解最新进展。 思考 AI 技术对未来社会的影响,培养思考和判断能力。 6. 深入学习数学知识: 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:了解向量、矩阵等基本概念。 概率论:掌握基础的概率论知识,如条件概率、贝叶斯定理。 7. 掌握算法和模型: 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:熟悉聚类、降维等算法。 强化学习:了解基本概念。 8. 了解评估和调优: 性能评估:学会评估模型性能的方法,如交叉验证、精确度、召回率等。 模型调优:学习使用网格搜索等技术优化模型参数。 9. 学习神经网络基础: 网络结构:理解前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)等基本结构。 激活函数:熟悉常用的激活函数,如 ReLU、Sigmoid、Tanh。
2024-11-17
典型的通用人工智能应用有哪些
以下是一些典型的通用人工智能应用: 1. 医疗保健: 医学影像分析:用于辅助诊断疾病。 药物研发:加速药物研发过程。 个性化医疗:提供个性化治疗方案。 机器人辅助手术:提高手术精度和安全性。 2. 金融服务: 风控和反欺诈:降低金融机构风险。 信用评估:帮助做出贷款决策。 投资分析:辅助投资者决策。 客户服务:提供 24/7 服务并回答常见问题。 3. 零售和电子商务: 产品推荐:根据客户数据推荐产品。 搜索和个性化:改善搜索结果和提供个性化体验。 动态定价:根据市场需求调整价格。 聊天机器人:回答客户问题和解决问题。 4. 制造业: 预测性维护:预测机器故障。 质量控制:检测产品缺陷。 供应链管理:优化供应链。 机器人自动化:提高生产效率。 5. 交通运输:暂未提及具体应用。 此外,通用人工智能模型还具有以下特点: 大型生成式人工智能模型可以灵活生成文本、音频、图像或视频等内容,适应各种不同任务。 当通用人工智能模型集成到人工智能系统中,该系统可服务于各种目的。 通用人工智能模型的提供者在人工智能价值链中具有特殊作用和责任,应提供适度的透明度措施和相关文件。
2024-11-17
什么是通用人工智能
通用人工智能(AGI)是指具有人类水平的智能和理解能力的 AI 系统。它有能力完成任何人类可以完成的智力任务,适用于不同的领域,同时拥有某种形式的意识或自我意识。 目前,AGI 还只是一个理论概念,尚未有任何 AI 系统能达到这种通用智能水平。实现 AGI 是人工智能研究的长期目标,这需要开发出在各种任务和环境中都能够进行推理、学习、理解和适应的 AI 系统。 OpenAI 在其内部会议上分享了关于通用人工智能(AGI)的五个发展等级: 1. 聊天机器人(Chatbots):具备基本对话能力的 AI,主要依赖预设脚本和关键词匹配,用于客户服务和简单查询响应。 2. 推理者(Reasoners):具备人类推理水平的 AI,能够解决复杂问题,如 ChatGPT,能够根据上下文和文件提供详细分析和意见。 3. 智能体(Agents):不仅具备推理能力,还能执行全自动化业务的 AI。目前许多 AI Agent 产品在执行任务后仍需人类参与,尚未达到完全智能体的水平。 4. 创新者(Innovators):能够协助人类完成新发明的 AI,如谷歌 DeepMind 的 AlphaFold 模型,可以预测蛋白质结构,加速科学研究和新药发现。 5. 组织(Organizations):最高级别的 AI,能够自动执行组织的全部业务流程,如规划、执行、反馈、迭代、资源分配和管理等。 常见名词解释: AGI:通用人工智能(Artificial General Intelligence)能够像人类一样思考、学习和执行多种任务的人工智能系统。 NLP:自然语言处理(Natural Language Processing),就是处理人类的自然语言。 LLM:大型语言模型(Large Language Model),数据规模很大,耗费资金多。
2024-11-17
你觉得人工智能带给人类的到底是提升还是毁灭呢?
人工智能带给人类的影响既有提升也有潜在的挑战,但并非必然导致毁灭。 从提升的方面来看: 技术上可以解决类似于社会歧视等问题,如通过 RLHF 等方法。 优化工作效率,虽然可能导致某些岗位的调整,但实际每个工作的组成部分不是单一的,人可以和人工智能更好地协同。例如放射科医生的案例,解读 X 光照片只是其工作的一部分,实际并未失业。 可以成为解决气候变化和大流行病等问题的关键。 作为自主的个人助理,代表人们执行特定任务,如协调医疗护理。帮助构建更好的下一代系统,并在各个领域推动科学进展。 潜在的挑战和担忧包括: 可能放大人类的负面影响,需要在技术层级加以解决。 导致失业,但能掌握人工智能的人会取代不会的人。 存在人类毁灭的担忧,不过目前此类观点缺乏具体的说明和论证。 对于强人工智能,目前 ChatGPT 的崛起引发了相关讨论,但通用技术并非等同于强人工智能。对于复杂的神经网络和黑箱模型的研究仍在进行,如何使用和控制这些模型是业界和社会争论的热点。科技公司倾向于训练辅助人类的超级智能助手,而非自我改进升级的超级智能体,以推动新一轮的工业革命和经济增长。 总之,人工智能的发展带来了巨大的机遇和挑战,需要我们聪明而坚定地采取行动,以实现其正面影响并应对潜在风险。
2024-11-16
人工智能最新信息
以下是人工智能的一些最新信息: 神经网络研究在 2010 年左右开始有巨大发展,ImageNet 大型图像集合催生了相关挑战赛。 2012 年卷积神经网络用于图像分类使错误率大幅下降,2015 年微软研究院的 ResNet 架构达到人类水平准确率。 从 2015 年到 2020 年,神经网络在图像分类、对话语音识别、自动化机器翻译、图像描述等任务中陆续实现人类水平准确率。 过去几年大型语言模型如 BERT 和 GPT3 取得巨大成功,得益于大量通用文本数据。 OpenAI 通用人工智能(AGI)的计划中,原计划 2026 年发布的 GPT7 因埃隆·马斯克的诉讼被暂停,计划 2027 年发布的 GPT8 将实现完全的 AGI。GPT3 及其升级版本 GPT3.5 是朝着 AGI 迈出的巨大一步。
2024-11-16
智能体
智能体(Agent)在人工智能和计算机科学领域是一个重要概念,指能够感知环境并采取行动以实现特定目标的实体,可以是软件程序或硬件设备。 智能体的定义: 智能体是自主系统,通过感知环境(通常借助传感器)并采取行动(通常通过执行器)来达成目标。在 LLM 支持的自主 Agent 系统中,LLM 充当 Agents 的大脑,并包含以下关键组成部分: 规划 子目标和分解:将大型任务分解为更小、可管理的子目标,以有效处理复杂任务。 反思和完善:对过去行为进行自我批评和反思,从错误中吸取教训,完善未来步骤,提高最终结果质量。 记忆 短期记忆:利用模型的短期记忆进行上下文学习。 长期记忆:通过外部向量存储和快速检索实现长时间保留和回忆(无限)信息。 工具使用:学习调用外部 API 获取模型权重中缺失的额外信息,包括当前信息、代码执行能力、对专有信息源的访问等。 智能体的类型: 智能体可根据复杂性和功能分为以下几种类型: 简单反应型智能体(Reactive Agents):根据当前感知输入直接行动,不维护内部状态,不考虑历史信息。例如温控器,根据温度传感器输入直接控制加热器。 基于模型的智能体(Modelbased Agents):维护内部状态,对当前和历史感知输入建模,能推理未来状态变化并据此行动。比如自动驾驶汽车,不仅感知当前环境,还维护和更新周围环境模型。 目标导向型智能体(Goalbased Agents):具有明确目标,能根据目标评估不同行动方案并选择最优行动。例如机器人导航系统,有明确目的地并规划路线以避开障碍。 效用型智能体(Utilitybased Agents):不仅有目标,还能量化不同状态的效用值,选择效用最大化的行动,评估行动优劣并权衡利弊。比如金融交易智能体,根据市场条件选择最优交易策略。 学习型智能体(Learning Agents):能通过与环境交互不断改进性能,学习模型、行为策略以及目标函数。例如强化学习智能体,通过与环境互动不断学习最优策略。 此外,还有来源于 Cathy 教练和 Leah 老师的情绪力手册中的情绪主题角色扮演小游戏,这是帮助家长和孩子从源头了解、分辨、分析、处理和控制情绪的手册,包含多个相关智能体。其创作思路和理念包括需求分析、分步实现需求、提示词编写测试、GPTs 使用链接和总结等内容。
2024-11-15
AI能回答目前解决不了的问题吗
人工智能不能解决目前所有的问题。例如在科学领域,我们还没有解决所有想要解决的问题,很多时候我们似乎没有选择研究内容的权利,比如大自然会迫使我们去研究某些方面。这就不可避免地让我们面对计算不可约性。 有许多问题都遵循类似的模式,如在游戏图中找到获胜的游戏序列、通过可能性图的移动寻找谜题的解决方案、在给定公理的情况下找到定理的证明、在给定基本反应的情况下寻找化学合成途径,以及解决大量的 NP 问题,这些问题中存在许多“非确定性”的计算路径。 在实际情况中,相关的图通常非常大,所以挑战在于不追踪整个可能性图的情况下找出要采取的步骤。常见的方法包括尝试为不同的可能状态或结果分配分数,并只追求分数最高的路径。在自动定理证明中,也常见从初始命题“向下”和从最终定理“向上”工作,试图找到路径在中间的交汇点。还有一个重要的想法是,如果确定了从 X 到 Y 存在路径,就可以将 X → Y 作为新规则添加到规则集合中。 另外,查看自动编码器内部可以提取出它提出的简化表示。当数据在神经网络中流动时,会努力保留重现原始输入所需的信息。如果某一层的元素较少,那么该层的元素就对应于原始输入的某种简化表示。以经过大量网络图像训练的标准现代图像自动编码器为例,给它输入一张猫的图片,它能成功复制出类似原图的东西,中间会有像素少得多的简化表示,虽然我们不知道模型中元素的含义,但它成功捕捉到了图片的本质。 总之,计算的不可约性将阻止我们完全依靠人工智能解决所有问题,总会有更多有待发现和需要更多计算才能达到的东西。
2024-11-13
我想请教一些问题 1:目前有哪些AI教育类产品 2:目前有哪些AI辅助学习类产品 3:有哪些AI辅助学习的好用的方法
以下是关于您所提出问题的回答: 目前的 AI 教育类产品和 AI 辅助学习类产品有: 语言学习方面:Speak、Quazel、Lingostar 等是由 AI 驱动的语言老师,能够实时交流并给予发音或措辞反馈;Grammarly 可进行英语写作和语法纠错。 数学学习方面:Photomath、Mathly 可指导学生解决数学问题;Khan Academy 有自适应学习系统。 综合学习方面:Duolingo 是自适应学习平台,能为用户提供个性化学习内容和练习。 AI 辅助学习的好用方法包括: 英语学习:利用智能辅助工具如 Grammarly 改进写作和语法;通过语音识别应用如 Call Annie 练习口语和纠正发音;使用自适应学习平台如 Duolingo 获得个性化学习计划;借助智能对话机器人如 ChatGPT 进行会话练习。 数学学习:运用自适应学习系统如 Khan Academy 获取精准推荐;使用智能题库和作业辅助工具如 Photomath 获得问题解答和解题步骤;借助虚拟教学助手如 Socratic 解答问题、观看教学视频和获得答疑服务;参与交互式学习平台如 Wolfram Alpha 进行数学建模和问题求解。
2024-11-12
如果我想要让AI回答高等数学相关的问题,请帮我推荐一下现在国内的哪个大模型更擅长?
在国内的大模型中,对于回答高等数学相关问题,以下几个大模型具有一定的优势: 通义千问(阿里):在翻译、电商、法律、推理、数学等方面表现较好。 讯飞星火(科大讯飞):在中小学教育学习、翻译等方面有一定能力。 需要注意的是,不同大模型的表现可能会因具体问题和使用场景而有所差异。您还可以参考第三方基准评测报告: 。但报告内容由 AI 大模型生成,请仔细甄别。
2024-11-09
如果我想要让AI回答高等数学相关的问题,适合用哪个大模型?
不同的大模型在处理高等数学相关问题时的能力有所差异。如果您编写的 AI 项目在处理高等数学问题时结果不如意,反复调试提示词也无明显改善,可以尝试更换大模型。 大型语言模型在处理数学计算,尤其是复杂的数学问题时可能会遇到困难,以下是一些解决办法: 1. 引入编程插件:将数学问题转化为编程问题,并引入编程插件来处理,通过编写代码执行数学计算后将结果返回给语言模型。 2. 教会模型数学法则:像教导小学生学习加法法则一样,让语言模型学习数学计算的规则。 3. 标准化自然数加法计算 prompt 模板:创建标准的自然数加法计算 prompt 模板,让模型按预定义规则和步骤执行加法计算。 4. 结合图像模型:对于涉及空间概念的数学问题,结合图像模型辅助处理。 5. 提供充足的语料和样本:为语言模型提供充足的数学计算样本和语料,以提高其数学计算能力。 在选择大模型时,如果您是 AI 应用开发者且使用 api,考虑到成本问题,应在工作流设计中,根据不同任务节点选择不同的大模型。基础性工作节点可使用免费或便宜的大模型,如普通的内容总结类工作;高价值性的工作节点则以性能优先,优先选择对应性能最好的大模型。 此外,在与大模型交互时,方法论不是关键,不断尝试和交互便是最佳方法。您可以在提示词里设定规则,也可临时更改,甚至无需遵循规则,重点是是否达成目的。使用 Markdown 格式清晰表达问题,有助于模型更好地理解您的意图,因其具有结构清晰、格式化强调和适用性广等优点。
2024-11-09
将复杂任务分解为简单子任务以简化问题,这样的ai工具都有什么
以下是一些可将复杂任务分解为简单子任务以简化问题的 AI 工具和相关策略: 1. OpenAI 官方指南中提到的策略: 使用意图分类来识别与用户查询最相关的指令。 对于需要很长对话的对话应用程序,总结或过滤之前的对话。 分段总结长文档,并递归构建完整总结。 指示模型在急于得出结论之前先自己找出解决方案。 使用内心独白或一系列查询来隐藏模型的推理过程。 询问模型在之前的回答中是否遗漏了什么。 使用基于嵌入的搜索来实现高效的知识检索。 使用代码执行来进行更准确的计算或调用外部 API。 2. 在 AIAgent 系列中: 基于 LLM 的 AI Agent 应首先以适当的方式将复杂任务分解为子任务,然后有效地组织和协调这些子任务,这有赖于 LLM 的推理和规划能力,当然也包括对工具的理解。
2024-11-05