Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

我怎样用低代码工具去构建我的AI智能体?LLM应用?

Answer

以下是关于如何用低代码工具构建 AI 智能体和 LLM 应用的一些建议:

在构建基于 LLM 的应用时,Anthropic 建议先寻找最简单的解决方案,只在必要时增加复杂度。智能系统通常会以延迟和成本为代价来换取更好的任务表现,开发者需要考虑这种权衡是否合理。当需要更复杂的解决方案时,工作流适合需要可预测性和一致性的明确任务,而智能体则更适合需要灵活性和模型驱动决策的大规模场景。不过,对于许多应用来说,优化单个 LLM 调用(配合检索和上下文示例)通常就足够了。

目前有许多框架可以简化智能系统的实现,例如:

  1. LangChain 的 LangGraph。
  2. 亚马逊 Bedrock 的 AI Agent 框架。
  3. Rivet(一个拖放式 GUI 的 LLM 工作流构建器)。
  4. Vellum(另一个用于构建和测试复杂工作流的 GUI 工具)。

这些框架通过简化标准的底层任务(如调用 LLM、定义和解析工具、链接调用等)使入门变得容易,但它们往往会创建额外的抽象层,可能会使底层提示词和响应变得难以调试,也可能诱使开发者在简单设置就足够的情况下增加不必要的复杂性。建议开发者先直接使用 LLM API,许多模式只需要几行代码就能实现。如果确实要使用框架,请确保理解底层代码。

此外,还有以下相关工具和应用:

  1. VectorShift:能在几分钟内构建和部署生成式人工智能应用程序,利用大型语言模型(例如 ChatGPT)构建聊天机器人、文档搜索引擎和文档创建工作流程,无需编码。
  2. Unriddle:帮助更快阅读、写作和学习的工具,能简化复杂的主题,找到信息,提问并立即获得答案。

工具使用或函数调用通常被视为从 RAG 到主动行为的第一个半步,为现代人工智能栈增加了一个新的层。一些流行的原语如网页浏览(Browserbase、Tiny Fish)、代码解释(E2B)和授权+认证(Anon)已经出现,它们使 LLM 能够导航网络、与外部软件(如 CRM、ERP)交互并运行自定义代码。Omni 的计算 AI 功能体现了这种方法,它利用 LLM 直接输出适当的 Excel 函数到电子表格中,然后执行计算并自动生成复杂查询供用户使用。

详细示例请参考:https://github.com/anthropics/anthropic-cookbook/tree/main/patterns/agents

Content generated by AI large model, please carefully verify (powered by aily)

References

小七姐:来自 Anthropic 的建议:构建高效智能体

在构建基于LLM的应用时,我们建议先寻找最简单的解决方案,只在必要时增加复杂度。这可能意味着完全不使用智能系统。智能系统通常会以延迟和成本为代价来换取更好的任务表现,开发者需要考虑这种权衡是否合理。当需要更复杂的解决方案时,工作流适合需要可预测性和一致性的明确任务,而智能体则更适合需要灵活性和模型驱动决策的大规模场景。然而,对于许多应用来说,优化单个LLM调用(配合检索和上下文示例)通常就足够了。[heading3]什么时候以及如何使用框架[content]目前有许多框架可以简化智能系统的实现,包括:LangChain的LangGraph亚马逊Bedrock的AI Agent框架Rivet(一个拖放式GUI的LLM工作流构建器)Vellum(另一个用于构建和测试复杂工作流的GUI工具)这些框架通过简化标准的底层任务(如调用LLM、定义和解析工具、链接调用等)使入门变得容易。但它们往往会创建额外的抽象层,这可能会使底层提示词和响应变得难以调试。它们也可能诱使开发者在简单设置就足够的情况下增加不必要的复杂性。我们建议开发者先直接使用LLM API:许多模式只需要几行代码就能实现。如果确实要使用框架,请确保理解底层代码。对底层机制的错误假设是客户常见的错误来源。详细示例请参考我们的实践指南。https://github.com/anthropics/anthropic-cookbook/tree/main/patterns/agents[heading3]构建模块、工作流和智能体[content]在这一部分,我们将探讨我们在生产环境中观察到的智能系统常用模式。我们将从基础构建模块——增强型LLM开始,逐步增加复杂度,从简单的组合工作流到自主智能体。

AIGC Weekly #35

Gem是一款最新科技和金融新闻的应用,通过先进的AI技术提供简洁、个性化的新闻摘要,满足用户的兴趣。Gem通过搜索网络,为用户提供科技和金融领域最相关、最新的新闻文章,帮助用户紧跟科技和金融领域的最新动态。其先进的AI算法分析顶级来源的新闻文章,并生成简洁准确的摘要,帮助用户节省时间,一目了然地获取所需信息。[heading2][VectorShift:无代码构建LLM应用](https://www.vectorshift[content]在几分钟内构建和部署生成式人工智能应用程序。利用大型语言模型(例如ChatGPT)构建聊天机器人、文档搜索引擎和文档创建工作流程,无需编码。由我们平台的演示支持。我们的平台的演示支持通过拖放应用程序构建器使用案例:构建、设计、原型和部署自定义的生成式人工智能工作流程。[heading2][Unriddle:更快地阅读、写作和学习的AI工具](https://www.unriddle[content]Unriddle是一个帮助你更快阅读、写作和学习的工具。它能简化复杂的主题,找到信息,提问并立即获得答案。受到成千上万的研究人员、读者和学生的信任。它能帮助你轻松发现和连接想法,理解任何文档只需几秒钟,生成AI助手,帮助你快速找到、总结和理解信息。此外,Unriddle还能帮助你快速找到你想要的内容,简化复杂内容,生成文本并提供自动完成和高亮功能,以改进、扩展、总结和解释。

AI 智能体:企业自动化的新架构 - Menlo Ventures

工具使用或函数调用通常被视为从RAG到主动行为的第一个半步,为现代人工智能栈增加了一个新的层。这些工具,本质上是预先编写的代码组件,执行特定的操作。流行的原语如网页浏览([Browserbase](https://www.browserbase.com/)、[Tiny Fish](https://www.tinyfish.io/))、代码解释([E2B](https://e2b.dev/))和授权+认证([Anon](https://www.anon.com/))已经出现。它们使LLMs能够导航网络、与外部软件(如CRM、ERP)交互并运行自定义代码。该系统向LLM呈现可用的工具,后者然后选择一个工具,构建必要的结构化JSON输入,并触发API执行以产生最终操作。Omni的[计算AI](https://omni.co/blog/introducing-calculations-ai)功能体现了这种方法。它利用LLM直接输出适当的Excel函数到电子表格中,然后执行计算并自动生成复杂查询供用户使用。就此而言,工具的使用是强大的,但仅凭自身并不能被视为"主动性"。逻辑控制流程仍然由应用程序预先定义。我们将在即将到来的设计中探索的真正智能体人,使LLMs能够动态地编写全部或部分自己的逻辑。

Others are asking
AI使用文档
以下是一份关于如何使用 AI 来做事的指南: 一、当前 AI 系统的发布情况 越来越强大的人工智能系统正快速发布,如 Claude 2 、Open AI 的 Code Interpreter 等,但似乎没有相关实验室提供用户文档,用户指南多来自 Twitter 影响者。 二、处理文档和数据 1. 处理文本,特别是 PDF ,Claude 2 表现出色。可以将整本书粘贴到 Claude 的前一版本中,新模型更强大。通过询问后续问题来审问材料,但需注意系统仍会产生幻觉,若要确保准确性需检查结果。 2. 对于数据和代码相关: 代码解释器是一种 GPT 4 模式,允许上传文件、编写和运行代码、下载结果,可用于执行程序、数据分析、创建各种文件、网页甚至游戏。但使用它进行未经培训的分析存在风险。 对于大型文档或同时处理多个文档,可使用 Claude 2 ;对于较小的文档和网页,可使用 Bing 侧边栏( Edge 浏览器的一部分),但上下文窗口大小有限。 希望以上内容对您有所帮助。若想了解更多关于特定任务类型或工具使用的详细信息,可提前阅读相关文章。
2025-02-20
AI PPT从⼊⻔到精进
以下是关于 AI PPT 从入门到精进的相关内容: 一、个人 AI 时代生存/摸鱼/探索指南.基础篇 过去一年持续进行了研究和分享,包括 AI 协作探索、AI 产品的流量和竞争视角分析、从谷歌 185 个大模型使用案例看大模型场景落地、AIGC 行业与商业观察总览、AIGC 时代的生存探索未来工作和能力模型变化.Dev、和 AI 重度协作 1500 小时后的 8 条最佳实践经验,以及 AI PPT 从入门到精进、AI 协作下的公司和行业研究。 二、熊猫 Jay:超全的 AI 工具生成 PPT 的思路和使用指南,收获培训奖励 1000 作者熊猫 Jay 因企业内部要求编写此文章做内部培训并公开分享。无论您是 PPT 专家还是新手,都希望通过 AI 工具更高效地制作 PPT 满足不同需求、提高工作效率。AI 工具提供多种精美 PPT 模板,能节省组织内容和编排思路的时间,让 PPT 既有专业感又具个性。接下来为大家详细介绍市面上最受欢迎的 5 款 AI PPT 工具:MindShow、爱设计、闪击、Process ON、WPS AI。 三、给小白的 AI 产品推荐 在 PPT 类 AI 产品方面,国内外产品丰富。市场上的此类产品通常是在传统 PPT 设计和生成工具基础上融入生成式 AI 新功能。基于个人使用经验,为大家筛选出一些值得推荐的产品。 在国内,爱设计 PPT 脱颖而出。其背后拥有强大团队,对市场需求有敏锐洞察力,成功把握 AI 与 PPT 结合的市场机遇,已确立市场领先地位。强烈推荐国内用户使用,它代表当前国内 AI 辅助 PPT 制作的最高水平,能提高制作效率并保证高质量输出。
2025-02-20
我想学习怎么用ai生成视频
以下是使用 AI 生成视频的相关知识和方法: 使用 Adobe 工具生成带有文本提示和图像的视频: 在 Advanced 部分,您可以使用 Seed 选项添加种子编号,以帮助启动流程并控制 AI 创建的内容的随机性。如果使用相同的种子、提示和控制设置,则可以重新生成类似的视频剪辑。选择 Generate 进行生成。 将小说做成视频的制作流程: 1. 小说内容分析:使用 AI 工具(如 ChatGPT)分析小说内容,提取关键场景、角色和情节。 2. 生成角色与场景描述:根据小说内容,使用工具(如 Stable Diffusion 或 Midjourney)生成角色和场景的视觉描述。 3. 图像生成:使用 AI 图像生成工具根据描述创建角色和场景的图像。 4. 视频脚本制作:将提取的关键点和生成的图像组合成视频脚本。 5. 音频制作:利用 AI 配音工具(如 Adobe Firefly)将小说文本转换为语音,添加背景音乐和音效。 6. 视频编辑与合成:使用视频编辑软件(如 Clipfly 或 VEED.IO)将图像、音频和文字合成为视频。 7. 后期处理:对生成的视频进行剪辑、添加特效和转场,以提高视频质量。 8. 审阅与调整:观看生成的视频,根据需要进行调整,比如重新编辑某些场景或调整音频。 9. 输出与分享:完成所有编辑后,输出最终视频,并在所需平台上分享。 请注意,具体的操作步骤和所需工具可能会根据项目的具体需求和个人偏好有所不同。此外,AI 工具的可用性和功能也可能会随时间而变化,建议直接访问上述提供的工具网址获取最新信息和使用指南。 AI 视频生成的技术发展概况: 从交互方式来看,当前 AI 视频生成主要可分为文本生成视频、图片生成视频、视频生成视频三种形式。一些视频生成方法是先生成静态关键帧图像,然后构建为视频序列。也存在直接端到端生成视频的技术,无需进行多阶段处理即可生成视频,如基于 GAN、VAE、Transformer 的方法。例如微软 NUWAXL 是通过逐步生成视频关键帧,形成视频的“粗略”故事情节,然后通过局部扩散模型(Local Diffusion)递归地填充附近帧之间的内容。
2025-02-20
最好的ai视频生成工具推荐
以下是为您推荐的一些优秀的 AI 视频生成工具: 1. Pika:出色的文本生成视频 AI 工具,擅长动画制作且支持视频编辑。 2. SVD:Stable Diffusion 的插件,可在图片基础上生成视频,由 Stability AI 开源。 3. Runway:老牌 AI 视频生成工具,提供实时涂抹修改视频功能,但收费。 4. Kaiber:视频转视频 AI,能将原视频转换成各种风格的视频。 5. Sora:由 OpenAI 开发,可生成长达 1 分钟以上的视频。 6. PixVerse:多模态输入,支持文本到视频和图像到视频转换,提供多种风格选项,可精细化控制生成内容,有社区支持,生成效率高,提供视频上采样功能,但 Web 应用和 Discord 服务器生成的视频质量有差异,使用时仍需准确的文本描述。 7. ChatGPT + 剪映:ChatGPT 生成视频小说脚本,剪映根据脚本自动分析并生成素材和文本框架。 8. Pictory:允许用户轻松创建和编辑高质量视频,可根据文本描述生成相应内容。 9. VEED.IO:提供 AI 图像和脚本生成器,帮助用户从图像制作视频并规划内容。 10. 艺映 AI:专注于人工智能视频领域,提供文生视频、图生视频、视频转漫等服务。 这些工具适用于不同的应用场景和需求,您可以根据自身情况进行选择。更多的文生视频网站可查看:https://www.waytoagi.com/category/38 。请注意,内容由 AI 大模型生成,请仔细甄别。
2025-02-20
我想优化PPT,用什么AI工具
以下是一些可用于优化 PPT 的 AI 工具及相关信息: 目前市面上大多数 AI 生成 PPT 通常按照以下思路来完成设计和制作: 1. AI 生成 PPT 大纲 2. 手动优化大纲 3. 导入工具生成 PPT 4. 优化整体结构 为您推荐以下一些 AI PPT 工具: 1. Gamma:这是一个在线 PPT 制作网站,允许用户通过输入文本和想法提示快速生成幻灯片。它支持嵌入多媒体格式,如 GIF 和视频,以增强演示文稿的吸引力。网址:https://gamma.app/ 2. 美图 AI PPT:由知名图像编辑软件“美图秀秀”的开发团队推出。用户通过输入简单的文本描述来生成专业的 PPT 设计,包含丰富的模板库和设计元素,适用于多种场合。网址:https://www.xdesign.com/ppt/ 3. Mindshow:一款 AI 驱动的 PPT 辅助工具,提供一系列智能设计功能,如自动布局、图像选择和文本优化等。网址:https://www.mindshow.fun/ 4. 讯飞智文:由科大讯飞推出的 AI 辅助文档编辑工具,利用语音识别和自然语言处理领域的技术优势,提供智能文本生成、语音输入、文档格式化等功能。网址:https://zhiwen.xfyun.cn/ 此外,您还可以参考以下两篇市场分析的文章: 1. 《》 2. 《》 需要注意的是,内容由 AI 大模型生成,请仔细甄别。
2025-02-20
最近很火的AI工具
以下是一些最近很火的 AI 工具: 1. Unity 推出的两款 AI 工具: Copliot 工具:可通过与 Muse Chat 聊天快速启动创建游戏项目,如一键生成塔防类游戏基础框架、让人物角色做动作,还能协助编码和创建 3D 材质、动画等内容。现可申请加入等待列表:https://create.unity.com/aibeta ,官方提示暑假会进一步开放。 Unity Sentis:是第一个将 AI 模型嵌入到实时 3D 引擎中的跨平台解决方案,能在 Unity 运行时为游戏或应用程序嵌入 AI 模型,增强游戏玩法和其他功能,目前还在封测阶段。 2. NotebookLM:2024 年热门 AI 产品,12 月更新了新功能“加入”,用户可成为播客节目一环。但该功能存在一些限制,如很早之前就在 Google 开发者大会上展示过,最近才有 BETA 版;对部分地区用户有强限制,注意检查网络设置;“加入”功能使用不稳定,需多点耐心;目前只支持英语发言,上传文本语言不受限;目前只支持网页版,没有移动端。使用地址: 3. Writerbuddy AI 分析了 3000 多种 AI 工具,选出访问量最大的 50 个工具,ChatGPT 独占 60%流量。 4. MotionGPT 是多模态运动语言模型,可通过文字聊天生成逼真人体运动,并发布了演示视频。 5. Radishes 是开源无版权音乐平台,支持 Windows、macOS、Linux 和 Web,功能包括音乐搜索、下载、每日歌单推荐等。
2025-02-20
在coze上实现notebookllm
以下是关于在 Coze 上实现 NotebookLLM 的相关信息: LLM 作为知识问答工具有缺陷,如无法实时获取最新信息、存在“幻觉”问题、无法给出准确引用来源等。搜索引擎虽体验不够简便直接,但加上 LLM 可能带来更优信息检索体验。 在生成标题、导语、大纲时,因为涉及文本理解与创作,这是 LLM 节点的工作,需要对其进行配置。为减少 token 消耗和节省模型调度费用,在满足预期情况下,应尽量减少大模型处理环节。经过实测,豆包·function call 32k 模型能在一轮对话中稳定生成相关内容。每个大模型节点配置项丰富,入门用户主要关注一些方面,如在“标题、导语、大纲”节点中,希望 LLM 接收原文信息后一次性生成所需内容,还需视实际情况调大模型的最大回复长度,并设计填入用户提示词。
2025-02-19
notebookllm
NotebookLM 是谷歌推出的一款工具,具有以下特点和用途: 有人称它为笔记工具、AI 学习工具或播客生成器。 只要上传文档、音频或网页链接(如 YouTube 等),就能生成专业的播客,其中主持人对话生动自然,包含各种人类语气和行为。 可以将公众号文章等内容变成双人对谈播客。 是 Google AI Lab 开发的笔记应用,基于 Gemini 1.5 Pro 的长文本理解和多模态能力。 用户可通过上传文件或链接快速生成笔记和音频内容,适合教育和研究等场景。 支持协作,适合整理公众号文章、编写书稿等多种用途。 体验地址:https://notebooklm.google/
2025-02-19
waytoagi的知识库基于哪个LLM创建的
目前没有明确的信息表明 waytoagi 的知识库基于哪个 LLM 创建。但以下信息可能对您有所帮助: AnythingLLM 包含了所有 Open WebUI 的能力,并且额外支持选择文本嵌入模型、选择向量数据库等。安装地址为:https://useanything.com/download 。安装完成后配置主要分为三步,包括选择大模型、选择文本嵌入模型、选择向量数据库。AnythingLLM 中有 Workspace 的概念,可创建自己独有的 Workspace 跟其他项目数据进行隔离,包括创建工作空间、上传文档并进行文本嵌入、选择对话模式(Chat 模式和 Query 模式)等。 GitHubDaily 开源项目列表中提到了 AnythingLLM,它是一个可打造成企业内部知识库的私人专属 GPT,可以将任何文档、资源或内容转换为大语言模型(LLM)知识库。
2025-02-19
类似于ollama和vllm这样的LLM 框架有哪些
以下是类似于 ollama 和 vllm 的 LLM 框架: 1. Encoderonly 框架(也叫 AutoEncoder),典型代表如 BERT 等。 2. Encoderdecoder 框架,典型代表如 T5 和 GLM 等。 3. Decoderonly 框架(也叫 AutoRegressive),典型代表如 GPT 系列、LLaMa、PaLM 等。 此外,还有一些在 LLM 应用中发挥重要作用的框架,如: 1. LangChain:是当前大模型应用开发的主流框架之一,提供了一系列工具和接口,其核心在于“链”概念,包括 Model I/O、Retrieval、Chains、Agents、Memory 和 Callbacks 等组件,生态系统还包括 LangSmith、LangGraph 和 LangServe 等工具。 2. LlamaIndex:在促进 LLM 和整合上下文数据方面表现出色,抽象出许多提示链的细节,与外部 API 的接口,从向量数据库检索上下文数据,并在多个 LLM 调用中维持内存。
2025-02-17
LLM 训练推理模型有哪些
以下是一些常见的 LLM 训练推理模型: 1. FengshenbangLM: 地址: 简介:是 IDEA 研究院认知计算与自然语言研究中心主导的大模型开源体系,开源了姜子牙通用大模型 V1,是基于 LLaMa 的 130 亿参数的大规模预训练模型,具备翻译、编程、文本分类、信息抽取、摘要、文案生成、常识问答和数学计算等能力。除姜子牙系列模型之外,还开源了太乙、二郎神系列等模型。 2. BiLLa: 地址: 简介:开源了推理能力增强的中英双语 LLaMA 模型。较大提升 LLaMA 的中文理解能力,并尽可能减少对原始 LLaMA 英文能力的损伤;训练过程增加较多的任务型数据,利用 ChatGPT 生成解析,强化模型理解任务求解逻辑;全量参数更新,追求更好的生成效果。 3. Moss: 地址: 简介:支持中英双语和多种插件的开源对话语言模型,MOSS 基座语言模型在约七千亿中英文以及代码单词上预训练得到,后续经过对话指令微调、插件增强学习和人类偏好训练具备多轮对话能力及使用多种插件的能力。 此外,Andrej Karpathy 的相关介绍中提到了 LLM 训练的一些情况,如训练过程涉及大约 10TB 的文本,通常来源于互联网的抓取,需要大量的互联网资源和一个 GPU 集群,费用大约 200 万美元。Karpathy 的视频还详细介绍了 LLM 训练的全部过程,包括预训练、有监督微调和强化学习等。
2025-02-16
大型语言模型(LLM)基于Transformer架构的模型的优缺点是什么,有什么局限性
大型语言模型(LLM)基于 Transformer 架构的模型具有以下优点: 1. 在大量数据集上进行预训练,展现出卓越的语言处理能力,能预测接下来的 Token。 然而,也存在一些缺点和局限性: 1. 瞬态状态:天生缺乏持久的记忆或状态,需要额外的软件或系统来保留和管理上下文。 2. 概率性质:随机性导致响应的不确定性,对相同提示词可能产生不同回答。 3. 过时信息:依赖预训练数据,只能访问历史知识,无法获取实时更新。 4. 内容制造:可能生成看似合理但不准确的信息,即“幻觉”。 5. 资源密集:巨大规模意味着显著的计算和财务成本,影响可扩展性和可访问性。 6. 领域特定性:本质上通用,但通常需要特定领域数据才能在专业任务中表现出色。 7. 缺乏创造性:像一个高性能的知识检索工具,超出检索范围时表现差,甚至出现“幻觉”。面对复杂逻辑推导和新的知识推演能力不足,无法基于新的语料推演出新知识。 8. 对于特定领域或高度专业化的查询,容易产生错误信息或“幻觉”,特别是当查询超出训练数据或需要最新信息时。
2025-02-13
如果通过deepseek构建智能客服
要通过 DeepSeek 构建智能客服,可以参考以下步骤: 1. 效果对比:用 Coze 做小测试进行对比。 2. 如何使用: 搜索 www.deepseek.com,点击“开始对话”。 将装有提示词的代码发给 Deepseek。 认真阅读开场白之后,正式开始对话。 3. 设计思路: 将 Agent 封装成 Prompt,将 Prompt 储存在文件,保证最低成本的人人可用的同时,减轻调试负担。 通过提示词文件,让 DeepSeek 实现同时使用联网功能和深度思考功能。 在模型默认能力的基础上优化输出质量,并通过思考减轻 AI 味,增加可读性。 照猫画虎参考大模型的 temperature 设计了阈值系统,但是可能形式大于实质,之后根据反馈可能会修改。 用 XML 来进行更为规范的设定,而不是用 Lisp(有难度)和 Markdown(运行不稳定)。 4. 特别鸣谢:李继刚的【思考的七把武器】在前期提供了很多思考方向;Thinking Claude 是最喜欢使用的 Claude 提示词,也是设计 HiDeepSeek 的灵感来源;Claude 3.5 Sonnet 是最得力的助手。 另外,实现联网版的 DeepSeek R1 大模型的核心路径如下: 1. 拥有扣子专业版账号:如果还是普通账号,请自行升级或注册专业号后使用。 2. 开通 DeepSeek R1 大模型:访问地址 https://console.volcengine.com/cozepro/overview?scenario=coze ,打开火山方舟,找到开通管理,找到 DeepSeek R1 模型,点击开通服务,添加在线推理模型,添加后在扣子开发平台才能使用。 3. 创建智能体:点击创建,先完成一个智能体的创建。 同时,GPT1 到 Deepseek R1 所有公开论文中关于智能代理的部分提到:Anthropic 的《构建有效的代理》是一篇关于 2024 年的精彩回顾,重点关注连锁、路由、并行化、协调、评估和优化的重要性。还可以在加州大学伯克利分校 LLM 代理的慕课中找到更多资料。
2025-02-18
怎么用大模型构建一个属于我自己的助手
以下是用大模型构建属于自己的助手的几种方法: 1. 在网站上构建: 创建百炼应用获取大模型推理 API 服务: 进入百炼控制台的,在页面右侧点击新增应用,选择智能体应用并创建。 在应用设置页面,模型选择通义千问Plus,其他参数保持默认,也可以输入一些 Prompt 来设置人设。 在页面右侧提问验证模型效果,点击右上角的发布。 获取调用 API 所需的凭证: 在我的应用>应用列表中查看所有百炼应用 ID 并保存到本地。 在顶部导航栏右侧,点击人型图标,点击 APIKEY 进入我的 APIKEY 页面,创建新 APIKEY 并保存到本地。 2. 微信助手构建: 搭建,用于汇聚整合多种大模型接口,并获取白嫖大模型接口的方法。 搭建,作为知识库问答系统,将大模型接入用于回答问题,若不接入微信,搭建完成即可使用其问答界面。 搭建接入微信,配置 FastGpt 将知识库问答系统接入微信,建议先用小号以防封禁风险。 3. 基于 COW 框架构建: COW 是基于大模型搭建的 Chat 机器人框架,可将多模型塞进微信。 基于张梦飞同学的更适合小白的使用教程:。 实现功能包括打造属于自己的 ChatBot(文本对话、文件总结、链接访问、联网搜索、图片识别、AI 画图等)、常用开源插件的安装应用。 注意事项: 微信端因非常规使用有封号危险,不建议主力微信号接入。 只探讨操作步骤,请依法合规使用。 大模型生成的内容注意甄别,确保操作符合法律法规要求。 禁止用于非法目的,处理敏感或个人隐私数据时注意脱敏,以防滥用或泄露。 支持多平台接入,如微信、企业微信、公众号、飞书、钉钉等。 支持多模型选择,如 GPT3.5/GPT4.0/Claude/文心一言/讯飞星火/通义千问/Gemini/GLM4/LinkAI 等。 支持多消息类型,能处理文本、语音和图片,以及基于自有知识库进行定制的企业智能客服功能。 支持多部署方法,如本地运行、服务器运行、Docker 的方式。
2025-02-17
怎么用大模型构建一个属于我自己的助手
以下是用大模型构建属于自己的助手的几种方法: 1. 在网站上构建: 创建百炼应用获取大模型推理 API 服务: 进入百炼控制台的,在页面右侧点击新增应用,选择智能体应用并创建。 在应用设置页面,模型选择通义千问Plus,其他参数保持默认,也可以输入一些 Prompt 来设置人设。 在页面右侧提问验证模型效果,点击右上角的发布。 获取调用 API 所需的凭证: 在我的应用>应用列表中查看所有百炼应用 ID 并保存到本地。 在顶部导航栏右侧,点击人型图标,点击 APIKEY 进入我的 APIKEY 页面,创建新 APIKEY 并保存到本地。 2. 微信助手构建: 搭建,用于汇聚整合多种大模型接口,并获取白嫖大模型接口的方法。 搭建,作为知识库问答系统,将大模型接入用于回答问题,若不接入微信,搭建完成即可使用其问答界面。 搭建接入微信,配置 FastGpt 将知识库问答系统接入微信,建议先用小号以防封禁风险。 3. 基于 COW 框架构建: COW 是基于大模型搭建的 Chat 机器人框架,可将多模型塞进微信。 基于张梦飞同学的更适合小白的使用教程:。 实现功能包括打造属于自己的 ChatBot(文本对话、文件总结、链接访问、联网搜索、图片识别、AI 画图等)、常用开源插件的安装应用。 注意事项: 微信端因非常规使用有封号危险,不建议主力微信号接入。 只探讨操作步骤,请依法合规使用。 大模型生成的内容注意甄别,确保操作符合法律法规要求。 禁止用于非法目的,处理敏感或个人隐私数据时注意脱敏,以防滥用或泄露。 支持多平台接入,如微信、企业微信、公众号、飞书、钉钉等。 支持多模型选择,如 GPT3.5/GPT4.0/Claude/文心一言/讯飞星火/通义千问/Gemini/GLM4/LinkAI 等。 支持多消息类型,能处理文本、语音和图片,以及基于自有知识库进行定制的企业智能客服功能。 支持多部署方法,如本地运行、服务器运行、Docker 的方式。
2025-02-17
如何构建自己领域的微调数据集
构建自己领域的微调数据集可以参考以下步骤: 1. 确定目标领域和应用需求:明确您希望模型在哪个细分领域进行学习和优化。 2. 数据收集:广泛收集与目标领域相关的数据。例如,若要训练二次元模型,需收集二次元优质数据;若要微调 Llama3 ,可参考相关文档获取数据集。 3. 数据标注:对收集的数据进行准确标注,以便模型学习到有效的特征。 4. 数据清洗:去除无效或错误的数据,提高数据质量。 5. 特殊处理:如为数据添加特殊 tag 等。 以 Stable Diffusion 为例,可收集如 833 张宝可梦数据,并按照特定步骤进行清洗、标注和添加特殊 tag 。对于 Llama3 ,获取数据集后上传到服务器,编写并执行微调代码即可进行微调。 在微调过程中,还需注意一些问题,如大型语言模型微调可能面临训练时间长、成本高等挑战,此时可考虑参数有效调优等创新方法。
2025-02-17
目前我有个数据源头,可能是excle或mysql数据库。他们都含义以下字段: 发货日期 物料编号 物料描述 板块 实际已交货量 销售单位 金额(RMB) 金额(不含税RMB) 国家 品牌; 我需要创建一个智能体助手,用于分析这些数据,这个智能通助手需要能按用户需要,分析各个维度的数据,并按板块等维度汇总,并转为柱状图图表表现出现,并表现用户所有日期的近一周的变化,并阐明变化或波动是由哪些数据导致的? 结合以上需求,我需要在飞书上构建一个企业每日利润表分析与汇报助手,该选定哪种prompt框架
很抱歉,目前飞书知识库中没有关于您所描述的这种特定需求下应选定哪种 prompt 框架的相关内容。但一般来说,构建这样的企业每日利润表分析与汇报助手的 prompt 框架可以考虑以下几个方面: 1. 明确数据来源和格式:清晰描述数据来自 Excel 或 MySQL 数据库,以及包含的具体字段。 2. 定义分析维度和指标:如按板块、国家等维度汇总数据,关注利润相关的指标。 3. 设定时间范围:明确分析近一周的数据变化。 4. 描述图表要求:指定以柱状图展示数据。 5. 解释变化原因:阐明导致数据变化或波动的关键因素。 您可以根据实际情况进一步细化和完善这个框架。
2025-02-15
我需要在飞书上构建一个企业每日利润表分析与汇报助手,该选定哪种prompt框架,提供下prompt样例
以下是几种适用于在飞书上构建企业每日利润表分析与汇报助手的 prompt 框架及样例: 1. ICIO 框架: 指令:明确执行的具体任务,如“分析企业每日利润表并生成详细报告”。 背景信息:提供执行任务的背景信息,如“企业近期业务拓展,成本有所增加”。 输入信息:大模型需要用到的一些信息,如“利润表的各项数据”。 输出信息:明确输出的具体信息的要求,如“报告以表格形式呈现,包含各项利润数据的同比和环比变化,并给出简要分析”。 2. BROKE 框架: 背景:说明背景,如“公司处于业务增长阶段,需要密切关注利润情况”。 角色:设定特定的角色,如“利润表分析专家”。 目标:明确任务的目标,如“准确分析每日利润表,为管理层提供决策支持”。 关键结果:明确可以衡量的结果,如“报告中的分析结论能帮助管理层制定有效的成本控制策略”。 调整:根据具体的情况,来调整具体的结果,如“根据市场变化调整利润分析的重点”。 3. CRISPIE 框架: 能力和角色:期望大模型扮演的角色洞察,如“专业的财务分析师”,提供幕后洞察力、背景信息和上下文。 声明:简洁明了的说明希望完成的任务,如“对每日利润表进行全面深入分析”。 个性:回应的风格、个性或者方式,如“以简洁明了、数据准确为特点”。 实验:提供多个回答的示例。 4. 情境框架: 情境:描述当前的情况,如“企业面临市场竞争,利润波动较大”。 任务:明确要完成的任务,如“分析每日利润表,找出利润波动的原因”。 行动:说明采取的行动,如“对各项收入和成本进行详细比对”。 结果:阐述期望得到的结果,如“生成包含原因分析和建议的报告”。
2025-02-14
有哪些在企业内部落地应用AI大模型工具的实践案例?不要营销文案生成、代码开发助手、智能客服问答机器人这种太常见的
以下是一些在企业内部落地应用 AI 大模型工具的实践案例: 1. 阿里云百炼: 智能体应用:能够弥补大模型的不足,如回答私有领域问题、获取实时信息、回答专业问题等。适用于有企业官网、钉钉、微信等渠道,期望为客户提供产品咨询服务,以及缺少技术人员开发大模型问答应用的场景。典型场景包括私有领域知识问答、个性化聊天机器人、智能助手等。 内部业务助手:通过企业内部规章制度、部门结构、产品介绍等文档构建知识库,并借助 RAG 智能体实现内部知识问答功能。系统支持多源异构数据,并通过复杂文档解析和视觉增强技术,提升文档理解的准确性与深度。目前该功能已灰度上线,需提供 UID 并通过白名单进行开启。 2. 达摩院: AI 模特(虚拟换装):支持虚拟换装、姿态编辑。 3. 电商零售: 推广文案写作:通过内置的多样化营销场景的文体模板,基于用户输入的创作主题以及参考素材,大模型即可为您生成对应的营销文案,为营销活动和宣传文案提供灵感和文案写作支持。 4. 泛企业: VOC 挖掘:是一个面向各类企业的 VOC 标签挖掘的工具。不论是用户的长短评论、帖子、还是用户和客服/销售的聊天记录、通话记录,都可以使用。通过选中或自定义标签,即可让大模型针对海量非结构化的 VOC 数据快速打标。相比于人工打标或规则打标准确率更高;对于业务标签变动频繁的情况,也能更敏捷、快速地影响。 5. 通义晓蜜:基于深度调优的对话大模型,为营销服类产品提供智能化升级所需的生成式摘要总结、质检、分析等能力应用。
2025-02-18
哪个ai工具可以根据现有的网站或截图生成源代码
以下是一些可以根据现有的网站或截图生成源代码的 AI 工具: :借助 GPT4 Vision 的能力,能直接将屏幕截图转换为 HTML/Tailwind CSS,并利用 DALLE 3 的图像生成能力生成相似图像。 此外,还有一些与网站制作相关的 AI 工具: Wix ADI 。基于用户提供的信息自动生成定制化网站,提供多个设计选项和布局,集成了 SEO 工具和分析功能。 Bookmark:网址为 。通过询问用户几个简单问题快速生成网站,提供直观的拖放编辑器,包括多种行业模板和自动化营销工具。 Firedrop:网址为 。其 AI 设计助手 Sacha 可根据用户指示创建和修改网站设计,提供实时编辑和预览功能,包含多种现代设计风格和自定义选项。 The Grid:网址为 。其 AI 设计助手 Molly 可以自动调整网站的设计和布局,基于内容和用户互动进行优化,支持多种内容类型。 在 AI 代码生成和开发工具方面: :由 Wingware 开发的专为 Python 编程设计的开发环境,集成了多种功能,年度许可证起价 179 美元/月。 :开源的 AI 开发助手,能根据产品需求生成完整的代码库,遵循 MIT 许可证。 :Sourcegraph 的 AI 工具,作为全面的编程助手能理解整个代码库,个人使用免费。
2025-02-18
写微信小程序,用哪个 ai 代码助手最好
以下是一些适用于写微信小程序的 AI 代码助手推荐: 1. DIN: 搭建 OneAPI 以汇聚整合多种大模型接口。 搭建 FastGpt 作为知识库问答系统。 搭建 chatgptonwechat 接入微信,并配置 FastGpt 把知识库问答系统接入到微信。 2. Cursor: 可通过任意 AI 工具获得代码,专业代码模型表现更优。 网址:https://www.cursor.com/ 3. Deepseek(新手推荐): 网址:https://www.deepseek.com/zh 方便获取游戏代码,国内能访问,网页登录方便,目前完全免费。 4. 通义灵码: 在 Pytharm 中,“文件”“设置”“插件”红色框位置搜索“通义灵码”进行安装(目前免费)。 5. JetBrains 自身的助手插件: 在 Pytharm 中,“文件”“设置”“插件”红色框位置搜索“Jetbrains AI assistant”进行安装(收费,目前有 7 天免费试用)。 6. Marscode 及 Tencent cloud AI code Assistant 等。 7. 无影的晓颖 AI 助手: 内置在云电脑里,使用流畅,但需要在无影的云电脑中。 需要注意的是,不同的 AI 代码助手在生成特定代码时可能有不同的表现,您可以根据自己的需求和实际使用体验进行选择。
2025-02-17
我需要以无代码的形式搭建一个数据大屏,有哪些工具可以满足我的需求
目前市面上有一些无代码工具可以帮助您搭建数据大屏,例如: 1. 阿里云 DataV:提供丰富的可视化组件和模板,操作相对简单。 2. 腾讯云图:支持多种数据源接入,具备强大的可视化编辑能力。 3. 帆软 FineReport:功能较为全面,能满足多样化的大屏搭建需求。 您可以根据自己的具体需求和使用习惯选择适合的工具。
2025-02-17
AI 在生成单元测试代码方面有什么新的进展与方向?
AI 在生成单元测试代码方面有以下新的进展与方向: 1. 基于规则的测试生成: 测试用例生成工具:如 Randoop 可基于代码路径和规则为 Java 应用程序生成测试用例,Pex 是微软开发的能为.NET 应用自动生成高覆盖率单元测试的工具。 模式识别:Clang Static Analyzer 利用静态分析技术识别代码模式和潜在缺陷来生成测试用例,Infer 是 Facebook 开发的能自动生成测试用例以帮助发现和修复潜在错误的工具。 2. 基于机器学习的测试生成: 深度学习模型:DeepTest 利用深度学习模型为自动驾驶系统生成测试用例以模拟不同驾驶场景并评估系统性能,DiffTest 基于对抗生成网络(GAN)生成测试用例来检测系统的脆弱性。 强化学习:RLTest 利用强化学习生成测试用例,通过与环境交互学习最优测试策略以提高测试效率和覆盖率,A3C 是基于强化学习通过策略梯度方法生成高质量测试用例的工具。 3. 基于自然语言处理(NLP)的测试生成: 文档驱动测试生成:Testim 是 AI 驱动的测试平台,能通过分析文档和用户故事自动生成测试用例以减少人工编写时间,Test.ai 利用 NLP 技术从需求文档中提取测试用例以确保测试覆盖业务需求。 自动化测试脚本生成:Selenium IDE 结合 NLP 技术可从自然语言描述中生成自动化测试脚本,Cucumber 使用 Gherkin 语言编写的行为驱动开发(BDD)框架能通过解析自然语言描述生成测试用例。 此外,峰瑞资本投资的 AI Coding 创业公司 Babel 专注于 AI Agent 的研发,其核心产品 Test Gru 已在美国上线,能为客户自动生成单元测试,客户侧 PR 接受率约为 70%。还有如 Cursor 等工具,可借助其生成测试代码提升代码可靠性,但使用时也需注意方法,如使用 Git 管理代码版本、对 AI 代码进行 Review 等。
2025-02-14
用AI处理销售数据需要写代码吗
用 AI 处理销售数据不一定需要写代码,这取决于具体的情况和所使用的工具。 Python 是常用于自动化处理数据的语言之一,在处理销售数据时,它有丰富的库可用于各种任务,如数据收集、处理等。相关的 AI 脚本提示可按照操作意图分类,例如 Web Scraping Prompts、Data Processing Prompts 等。 如果您不熟悉代码,ChatGPT 等工具也能在一定程度上帮助您处理销售数据。 另外,让 AI 写出您想要的代码时,可通过创建优质的.cursorrules 来明确相关要求,例如说明自己是谁、要做什么、项目的规矩、文件存放位置、使用的工具、测试方法、参考资料以及 UI 要求等。 在处理数据库相关的销售数据时,若不会写 SQL 代码,可借助 AI 帮忙。例如向豆包提供具体需求,如操作的数据表、执行的操作及相关条件等,它能为您生成相应的 SQL 语句。
2025-02-11