直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

如何利用飞书多维表格识别pdf文件中的内容,自动生成结构化数据

回答

飞书多维表格是一款功能强大的在线数据库工具,它能够存储和管理数据,并且通过智能伙伴实现自动化管理选题、任务管理等多种应用场景。要利用飞书多维表格识别PDF文件中的内容并自动生成结构化数据,你可以按照以下步骤操作:

  1. 准备PDF文件:确保你有一个包含所需信息的PDF文件。

  2. 使用OCR技术:首先,你需要使用光学字符识别(OCR)技术来识别PDF文件中的文字内容。OCR技术可以将PDF中的图像文字转换为可编辑的文本数据。

  3. 飞书智能伙伴:飞书提供了智能伙伴功能,可以通过对话的方式帮助用户创建多维表格或解析数据。你可以通过智能伙伴发送指令,让它根据你的要求自动完成一系列的多维表格操作。

  4. 解析文本并填入多维表格:在飞书多维表格中,你可以使用智能伙伴的“录入一行记录并拆解到对应字段”的功能,将OCR识别后的文本数据解析并填入到多维表格的对应字段中。

  5. 创建和调整多维表格结构:根据解析后的数据,你可以使用智能伙伴的“增加一些字段”或“推荐相关字段”的功能来调整多维表格的结构,确保表格能够准确地反映PDF文件中的信息。

  6. 数据整理和验证:在数据被录入多维表格后,你可能需要进行一些手动的整理和验证,以确保数据的准确性和完整性。

  7. 利用飞书开放平台:如果需要更高级的自动化和集成,你可以利用飞书开放平台,结合其他工具或服务,例如ChatGPT,来进一步优化数据的识别和处理流程。

请注意,这个过程可能需要一些技术知识和对飞书多维表格功能的熟悉。如果你需要进一步的帮助或定制化的解决方案,可以考虑参与飞书举办的“多维表格开发者日 | AI 专场”活动,以获取更多的信息和支持。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

通过增强PDF结构识别,革新检索增强生成技术(RAG)

因此,在RAG之前,我们需要将大型文档转换为可检索内容。转换涉及以下几个步骤,如图2所示:图2将PDF文档转换为可检索内容的过程文档解析和文本切分(Document parsing & chunking)。这一步涉及到提取段落、表格和其他内容块,然后将提取的内容分块以进行后续检索。嵌入向量(Embedding)生成。这一步将文本块转换为实值向量并存储在数据库中。由于这些步骤中的每一步都可能导致信息损失,因此复合损失会显著影响RAG响应的效果。本文主要讨论文档解析和文本切分质量是否会影响RAG系统的效果。我们将探讨与此问题相关的挑战、方法和实际案例。讨论将包括对该领域两种类型方法的考察,即基于规则(Rule-based)的方法和基于深度学习(Deep learning-based)的方法,然后通过实际案例对它们的效果进行实证评估。

其他人在问
我想要一个能上传pdf文件的ai
以下是一些能够上传 PDF 文件的 AI 工具和方法: 1. DeepL(网站):点击页面「翻译文件」按钮,上传 PDF、Word 或 PowerPoint 文件即可。 2. 沉浸式翻译(浏览器插件):安装插件后,点击插件底部「更多」按钮,选择「制作双语 BPUB 电子书」、「翻译本地 PDF 文件」、「翻译 THML / TXT 文件」、「翻译本地字幕文件」。 3. Calibre(电子书管理应用):下载并安装 calibre,并安装翻译插件「Ebook Translator」。 4. 谷歌翻译(网页):使用工具把 PDF 转成 Word,再点击谷歌翻译「Document」按钮,上传 Word 文档。 5. 百度翻译(网页):点击导航栏「文件翻译」,上传 PDF、Word、Excel、PPT、TXT 等格式的文件,支持选择领域和导出格式(不过进阶功能基本都需要付费了)。 6. 彩云小译(App):下载后点击「文档翻译」,可以直接导入 PDF、DOC、DOCX、PPT、PPTX、TXT、epub、srt 等格式的文档并开始翻译(不过有免费次数限制且进阶功能需要付费)。 7. 微信读书(App):下载 App 后将 PDF 文档添加到书架,打开并点击页面上方「切换成电子书」,轻触屏幕唤出翻译按钮。 此外,还有以下相关信息: AI PDF(与免费帐户。它消除了重复上传文件的需要。PRO 版本可以搜索 1000 个 PDF 和 OCR 文档。为冗长的文档提供上级摘要。 TXYZ 网站:是一个帮助大家搜索、查询专业文献并可以进行对话的 AI 工具,提供从搜索获取、查询对话获取知识再到管理知识的一站式服务。是唯一和预印本文库官方合作的 AI 工具,ArXiv 的每篇论文下面都有直达 TXYZ 的按钮。用户可以自己上传 PDF 论文或者链接,通过它来在专业文献中迅速找到自己想要的答案和内容。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2024-11-21
与PDF对话
以下是关于与 PDF 对话的相关内容: AIGC 落地应用中,有 ChatWithPDF 官方 Pulgin 可解决 Chat GPT 无法阅读、解析 PDF 的问题,推荐指数为🌟🌟🌟🌟。还有 Voice control for ChatGPT Chrome 插件用于和 ChatGPT 语音对话,支持多种语言,可当英语口语/听力老师,但 TTS 效果生硬,期待改善,推荐指数🌟🌟🌟,下载地址: 增强的 PDF 结构识别框架(pdflux.com)应用于 ChatDOC(海外官网:chatdoc.com),它是 AI 文档阅读助手,能在数秒内总结长文档、解释复杂概念和查找关键信息,在可靠性和准确性方面居所有 ChatPDF 类产品之首。其优势包括精通表格理解、多文档对话、每个回答均可溯源至原文、支持多种文档类型。 阅读书籍、论文的互动式问答场景对应的关键词库有 15 个,如书籍、报告、文件等。ChatGPT 知识库截止于 2021 年 9 月,对于新数据或最新出版的内容无法提供答案,如有现成 PDF,建议通过 CHATDOC 网站进行互动式问答,并提供了输入信息和提出问题的步骤及模板,还有相关案例。
2024-11-13
有哪些可以阅读多字数文本(doc,pdf等格式)的ai
以下是一些可以阅读多字数文本(如 doc、pdf 等格式)的 AI 产品: 1. 沉浸式翻译: 主打在所有网页双语翻译、PDF 文档对照阅读。 可以一键开启网页中 Youtube 视频的双语字幕。 插件安装地址:https://immersivetranslate.com/ 2. Kimi AI: 由月之暗面科技有限公司开发。 最大特点在于超长文本(支持最多 20 万字的输入和输出)的处理和基于文件、链接内容对话的能力。 用户可以上传 TXT、PDF、Word 文档、PPT 幻灯片、Excel 电子表格等格式的文件,Kimi AI 能够阅读并理解相关内容,为用户提供基于文件内容的回复。 此外,以下是一些可以翻译 PDF 的 AI 产品: 1. DeepL(网站):,点击页面「翻译文件」按钮,上传 PDF、Word 或 PowerPoint 文件即可。 2. 沉浸式翻译(浏览器插件):,安装插件后,点击插件底部「更多」按钮,选择「制作双语 BPUB 电子书」、「翻译本地 PDF 文件」、「翻译 THML / TXT 文件」、「翻译本地字幕文件」。 3. Calibre(电子书管理应用):,下载并安装 calibre,并安装翻译插件「Ebook Translator」。 4. 谷歌翻译(网页):,使用工具把 PDF 转成 Word,再点击谷歌翻译「Document」按钮,上传 Word 文档。 5. 百度翻译(网页):,点击导航栏「文件翻译」,上传 PDF、Word、Excel、PPT、TXT 等格式的文件,支持选择领域和导出格式(不过进阶功能基本都需要付费了)。 6. 彩云小译(App):下载后点击「文档翻译」,可以直接导入 PDF、DOC、DOCX、PPT、PPTX、TXT、epub、srt 等格式的文档并开始翻译(不过有免费次数限制且进阶功能需要付费)。 7. 微信读书(App):下载 App 后将 PDF 文档添加到书架,打开并点击页面上方「切换成电子书」,轻触屏幕唤出翻译按钮。 请注意,内容由 AI 大模型生成,请仔细甄别。
2024-11-13
如何让智能体输出内容的格式为pdf
要让智能体输出内容的格式为 PDF ,可以参考以下步骤: 1. 明确任务目标与执行形式: 详细描述期望获得的输出内容,包括确定输出是文本、图像、音频还是其他形式的数据,明确输出的具体格式和结构,以及确定输出内容的质量标准。 预估任务的可行性。 确定任务的执行形式。例如,以 LearnAndRecord 的一篇文章为例,拆解其结构,评估生成结果的输出格式(如文字、图片、音频)及可行性。 2. 分步构建和测试 Agent 功能: 详细配置子任务节点,并验证每个子任务的可用性。比如,在生成思维导图的任务中,确定处理方式(如单次)、输入(如引用特定变量)和输出(如确定所需的图片格式的思维导图输出字段)。 值得注意的是,Coze 支持 Markdown 格式输出 AI 生成的内容,Markdown 作为轻量级文本标记语言,能够有效展示文本、图片、URL 链接和表格等多种内容形式。前两者可直接用 Markdown 输出/嵌入,音频则需通过 URL 链接跳转外部网页收听。总体而言,通过稍加变通,基本可以实现所需功能。
2024-11-09
翻译PDF文档的ai工具推荐
以下是为您推荐的翻译 PDF 文档的 AI 工具: 1. DeepL(网站): ,点击页面「翻译文件」按钮,上传 PDF、Word 或 PowerPoint 文件即可。 2. 沉浸式翻译(浏览器插件): ,安装插件后,点击插件底部「更多」按钮,选择「制作双语 BPUB 电子书」、「翻译本地 PDF 文件」、「翻译 THML / TXT 文件」、「翻译本地字幕文件」。 3. Calibre(电子书管理应用): ,下载并安装 calibre,并安装翻译插件「Ebook Translator」。 4. 谷歌翻译(网页): ,使用工具把 PDF 转成 Word,再点击谷歌翻译「Document」按钮,上传 Word 文档。 5. 百度翻译(网页): ,点击导航栏「文件翻译」,上传 PDF、Word、Excel、PPT、TXT 等格式的文件,支持选择领域和导出格式(不过进阶功能基本都需要付费)。 6. 彩云小译(App):下载后点击「文档翻译」,可以直接导入 PDF、DOC、DOCX、PPT、PPTX、TXT、epub、srt 等格式的文档并开始翻译(不过有免费次数限制且进阶功能需要付费)。 7. 微信读书(App):下载 App 后将 PDF 文档添加到书架,打开并点击页面上方「切换成电子书」,轻触屏幕唤出翻译按钮。 请注意,内容由 AI 大模型生成,请仔细甄别。
2024-11-08
什么ai软件可以将pdf转为ppt免费
以下是一些可以将 PDF 转为 PPT 的免费 AI 软件或工具: 1. DeepL(网站):,点击页面「翻译文件」按钮,上传 PDF、Word 或 PowerPoint 文件即可。 2. 沉浸式翻译(浏览器插件):,安装插件后,点击插件底部「更多」按钮,选择「制作双语 BPUB 电子书」、「翻译本地 PDF 文件」、「翻译 THML / TXT 文件」、「翻译本地字幕文件」。 3. Calibre(电子书管理应用):,下载并安装 calibre,并安装翻译插件「Ebook Translator」。 4. 谷歌翻译(网页):,使用工具把 PDF 转成 Word,再点击谷歌翻译「Document」按钮,上传 Word 文档。 5. 百度翻译(网页):,点击导航栏「文件翻译」,上传 PDF、Word、Excel、PPT、TXT 等格式的文件,支持选择领域和导出格式(不过进阶功能基本都需要付费了)。 6. 彩云小译(App):下载后点击「文档翻译」,可以直接导入 PDF、DOC、DOCX、PPT、PPTX、TXT、epub、srt 等格式的文档并开始翻译(不过有免费次数限制且进阶功能需要付费)。 7. 微信读书(App):下载 App 后将 PDF 文档添加到书架,打开并点击页面上方「切换成电子书」,轻触屏幕唤出翻译按钮。 另外,歌者 PPT 也是一款相关工具,它是一款永久免费的智能 PPT 生成工具,具有话题生成、资料转换(支持多种文件格式转 PPT)、多语言支持、海量模板和案例库、在线编辑和分享、增值服务(自定义模板、字体、动效等)等功能。其优势在于免费使用、智能易用、海量案例、资料转 PPT 专业、AI 翻译等,特别适合不太擅长制作 PPT 或者时间紧张的人群。
2024-11-05
如何利用飞书构建RAG系统
以下是关于如何利用飞书构建 RAG 系统的相关内容: RAG 的常见误区: 随意输入任何文档就能得到准确回答:这是常见误区,RAG 流程包含离线环节(文档解析、切割及向量化写入向量数据库)和在线检索环节(用户问题理解、初步检索、重排序及大模型生成),任何环节都会影响最终质量,有效实现 RAG 系统需要考虑多个复杂因素,如文档预处理、高效索引、相关性排序等,需要专业知识和持续优化。 RAG 完全消除了 AI 的幻觉:虽然 RAG 可以显著减少幻觉,但并不能完全消除,只要有大模型参与,就有可能产生幻觉。 RAG 不消耗大模型的 Token 了:从大模型生成结果环节可以看出,最终还是将知识库中检索的结果给到 LLM,然后由 LLM 进行重新整理输出,所以 RAG 仍然消耗大模型的 Token。 本地部署资讯问答机器人:Langchain + Ollama + RSSHub 实现 RAG: 加载所需的库和模块,如 feedparse 用于解析 RSS 订阅源,ollama 用于在 python 程序中跑大模型,使用前需确保 ollama 服务已开启并下载好模型。 从订阅源获取内容,通过函数从指定的 RSS 订阅 url 提取内容,将长文本拆分成较小的块,并附带相关元数据,最终合并成列表返回。 为文档内容生成向量,使用文本向量模型 bgem3,从 hf 下载好模型后,通过函数利用 FAISS 创建高效的向量存储。 RAG 性能提升策略和评估方法(产品视角): 前言:RAG 是检索增强生成的缩写,是结合检索模型和生成模型的技术,核心目的是把知识告诉给 AI 大模型,让其“懂”我们,核心流程是根据用户提问从私有知识中检索相关内容,与用户提问一起放入 prompt 中提交给大模型,常见应用场景如知识问答系统。
2024-11-20
扣子的智能体如何在飞书中创建一个可以和用户会话的账号
要在飞书中创建一个可以和用户会话的扣子智能体账号,您可以按照以下步骤进行操作: 1. 创建扣子的令牌: 在扣子官网左下角选择扣子 API。 在 API 令牌中选择“添加新令牌”。 给令牌起一个名字。 为了方便选择永久有效。 选择制定团队空间,可以是个人空间、也可以选择团队空间。 勾选所有权限。 保存好令牌的 Token,切勿向他人泄露。 2. 获取机器人 ID: 在个人空间中找到自己要接入到微信中的机器人,比如画小二智能小助手。 点击对应的机器人进入机器人编辑界面。 在浏览器地址栏的 bot/之后的数据就是该机器人的 Bot ID。 3. API 授权: 点击右上角发布。 会发现多了一个 Bot as API,勾选 Bot as API。 确定应用已经成功授权 Bot as API。 4. 服务器设置: chatgptonwechat(简称 CoW)项目是基于大模型的智能对话机器人,支持微信公众号、企业微信应用、飞书、钉钉接入,可选择多种模型,能处理文本、语音和图片,通过插件访问操作系统和互联网等外部资源,支持基于自有知识库定制企业 AI 应用。 点击“Docker”中的“编排模板”中的“添加”按钮。 将编译好的内容复制进来。 在“容器编排”中“添加容器编排”。 选择在“编排模板”里创建的“coze2openai”。 提示运行成功,如果无法正常启动,请看文档后面的“常见问题”。 5. 绑定微信: 需要提前准备一个闲置的微信,因为这种方法是非官方接口,有可能微信号会受到官方限制。 点击容器,可以看到运行的是两个服务。 点击“wcandyaibot”后面的日志按钮,在弹出层中用提前预备好的微信进行扫码。 手动刷新界面验证是否成功,点击“刷新日志”,看到 WeChat login success 提示微信登录成功。 为确保微信实时在线,点击“日志管理”的“wcandyaibot”的“刷新日志”,显示“wechat login seccess”则表示微信正常登录中。 6. 效果测试: 把绑定的微信号拉到群里或者单独对话,训练的数据越好,对话效果越好。您可以参考个人微信对话和微信群对话效果演示视频:
2024-11-19
用飞书做个智能工单系统
目前飞书知识库中没有关于用飞书做智能工单系统的相关内容。但一般来说,要使用飞书构建智能工单系统,您可以考虑以下步骤: 1. 明确工单系统的需求和功能,例如工单的类型、处理流程、优先级设置等。 2. 利用飞书的应用开发平台或相关工具,创建工单模板和表单,以收集工单的必要信息。 3. 配置工单的流转规则和通知机制,确保工单能够及时准确地分配给相关人员,并通知到相关方。 4. 建立工单的跟踪和监控机制,以便了解工单的处理进度和状态。 5. 对工单数据进行分析和统计,以便优化工单处理流程和提高服务质量。 由于缺乏具体的飞书相关内容,以上步骤仅为一般性的指导,您可能需要进一步探索飞书的功能和相关文档来实现智能工单系统。
2024-11-13
飞书和notion,在搭建个人知识库方面,各自的优点和缺点是什么
飞书在搭建个人知识库方面的优点: 可以方便地分类和整理知识,例如个人搭建某一领域知识库或企业搭建产品资料知识库。 有相关的分享和直播,能帮助用户轻松打造知识管理体系。 缺点: 随着知识库中信息增多,如果分类不合理,很难找到所需文章。 问题答案可能在文章某一段落,每次都需重新阅读文章才能找到答案。 Notion 在搭建个人知识库方面的优点: 是功能强大的知识管理和项目管理工具,可将各种信息 all in one place。 数据库可定制性高,接近关系型数据库,适合有相关需求的用户。 数据库的每一条记录都是一个页面,页面包含可自定义的属性和丰富内容。 支持的块类型非常丰富。 缺点:暂未提及。 此外,Notion 在创建知识库并上传文本内容方面,有特定的操作步骤,如在文本格式页签下选择 Notion 并进行授权,还可选择自动分段与清洗或自定义分段等方式。
2024-11-11
利用AI自动查阅飞书知识库信息
以下是关于利用 AI 自动查阅飞书知识库信息的相关内容: 关于我: 我是 WaytoAGI 专属问答机器人,基于 Aily 和云雀大模型。「飞书智能伙伴创建平台」(英文名:Aily)是飞书团队旗下的企业级 AI 应用开发平台,提供简单、安全且高效的环境,帮助企业构建和发布 AI 应用。云雀是字节跳动研发的语言模型,能通过自然语言交互高效完成任务。 使用方法: 1. 您可以在 WaytoAGI 飞书知识库首页找到加入飞书群的链接(最新二维码请在获取),然后点击加入,直接@机器人即可。 2. 也可以在 WaytoAGI.com 的网站首页,直接输入问题,即可得到回答。 在飞书群中的使用: 在飞书 5000 人大群里,内置了智能机器人「waytoAGI 知识库智能问答」,它基于飞书 aily 搭建。您只需在飞书群里发起话题时,它会根据 waytoAGI 知识库的内容进行总结和回答。 飞书群智能机器人的功能: 1. 自动问答:自动回答用户关于 AGI 知识库内涉及的问题,可对多文档进行总结、提炼。 2. 知识搜索:在内置的「waytoAGI」知识库中搜索特定信息和数据,快速返回相关内容。 3. 文档引用:提供与用户查询相关的文档部分或引用,帮助用户获取更深入的理解。 4. 互动教学:通过互动式的问答,帮助群成员学习和理解 AI 相关的复杂概念。 5. 最新动态更新:分享有关 AGI 领域的最新研究成果、新闻和趋势。 6. 社区互动:促进群内讨论,提问和回答,增强社区的互动性和参与度。 7. 资源共享:提供访问和下载 AI 相关研究论文、书籍、课程和其他资源的链接。 8. 多语言支持:支持多语言问答,满足不同背景用户的需求。 搭建问答机器人: 2024 年 2 月 22 日的会议首先介绍了 WaytoAGI 社区的成立愿景和目标,以及其在飞书平台上的知识库和社区的情况。接着讨论了利用 AI 技术帮助用户检索知识库内容,引入 RAG 技术,通过机器人来帮助用户快速检索。然后介绍了基于飞书的知识库智能问答技术的应用场景和实现方法,可快速给大模型补充新鲜知识,提供大量新内容。之后讨论了如何使用飞书的智能伙伴功能来搭建 FAQ 机器人,以及智能助理的原理和使用方法。最后介绍了企业级 agent 方面的实践。
2024-11-09
飞书是AGI应用吗?
飞书不是 AGI 应用。“飞书智能伙伴创建平台”(英文名:Aily)是飞书团队旗下的企业级 AI 应用开发平台,它提供了简单、安全且高效的环境,帮助企业构建和发布 AI 应用,推动业务创新和效率提升。云雀是字节跳动研发的语言模型。在飞书的应用中,有基于飞书的知识库智能问答技术,可利用智能伙伴功能搭建 FAQ 机器人等。同时,飞书群内置 AI 智能机器人,能回复任何与 AI 相关的问题。
2024-11-06
利用飞书多维表格,搭建与知识库对话能力
利用飞书多维表格搭建与知识库对话能力的步骤如下: 1. 前期准备 设计 AI 稍后读助手的方案思路 简化“收集”:实现跨平台收集功能,支持电脑(web 端)、安卓、iOS 多端操作。考虑到待阅读内容通常有网页链接,理想方式是输入一个 URL 完成收集,借鉴微信文件传输助手的方式,通过聊天窗口输入更符合用户习惯。 自动化“整理入库”:系统在入库时自动整理每条内容的关键信息,包括标题、摘要、作者、发布平台、发布日期、收集时间和阅读状态。同时,阅读清单支持跨平台查看,提高可访问性。 智能“选择”推荐:根据当前收藏记录和用户阅读兴趣进行相关性匹配,生成合适的阅读计划。 基于以上思路,同在字节生态中的 Coze、飞书、飞书多维表格可为 AI 稍后读构建完整的 AI 工作流,通过飞书机器人与 Coze 搭建的智能体对话,在聊天窗口完成链接输入和阅读计划输出,由 Coze 调用大模型、插件完成内容的整理、推荐。 2. 逐步搭建 AI 智能体 经过配置得到两个可用工作流(整理入库、选择内容),将其编排为完整智能体。 配置过程:创建 Bot,填写 Bot 介绍,切换模型为“通义千问”(测试下来效果最好),把配置好的工作流添加到 Bot 中,新增变量{{app_token}},添加外层 bot 提示词(可按需求和实际效果优化调整)。完成后可在「预览与调试」窗口与 AI 稍后读智能体对话并使用全部功能。
2024-09-27
多维表格,如何通过一个表格字段,ai自动生成对应数据
目前在多维表格中,要通过一个表格字段让 AI 自动生成对应数据,可能需要借助特定的 AI 工具和相关的集成设置。但暂时没有具体的现成方法和步骤可以提供给您。您可以考虑寻找支持与多维表格集成的 AI 服务,并按照其提供的文档和指南进行配置和操作。
2024-08-01
常用的结构化提示词框架有哪些?
以下是一些常用的结构化提示词框架: 1. 基础的结构化编写 Prompt 框架: Role: Profile: author:作者 version:版本 language:中文 description: Goals: 1. 2. Constrains: Skills: Workflows: 1. 2. 2. CRISPE 框架(Capacity and Role,Insight,Statement,Personality,Experiment) 3. BROKE 框架(Background,Role,Objectives,Key Results,Evolve) 4. ICIO 框架: Instruction(指令):明确定义 AI 需要执行的任务,遵循简洁明了、具体详细、行动导向、单一任务等原则。 Context(背景信息):提供任务的相关背景,包括任务目的、目标受众、相关背景、限制条件、角色扮演等。 Input Data(输入数据):为 AI 提供执行任务所需的具体信息或数据。 Output Indicator(输出引导):指导 AI 如何构建和呈现输出结果,包括格式要求、语气和风格、长度限制、结构指引、特殊要求、评估标准等。
2024-11-14
结构化提示词
结构化提示词是一种像写文章一样编写提示词的方法。其思想较为普遍,日常写作的文章和书籍都常使用标题、子标题、段落、句子等语法结构。 在文生图方面,调整好参数生成图片后,若质感欠佳,可添加标准化提示词,如“,绘图,画笔”等,让画面更趋近于固定标准。 对于新手,有一套极简基础的结构化编写 Prompt 框架,例如: Role: Profile: author:作者 version:版本 language:中文 description: Goals: 1. 2. Constrains: Skills: Workflows: 1. 2. 在提高模型响应精确度方面,改进提示词格式很重要。如在问答和文本分类中,提示词可以通过指令、上下文、输入和输出指示来改进响应结果。越明确的指示,响应越好。包含相关语境和其他要素,提供更多信息和具体指令,能使响应更符合需求。
2024-11-11
GPTs 结构化提示词模板
以下是为您整理的关于 GPTs 结构化提示词模板的相关内容: 简单的提示词模板:最终目标是把需求说清楚。例如,“Act like a ”。 GPTs 教程及案例拆解 开源:一些 GPTs 的 prompt 中,如超强 LOGO 生成器,其使用方法为设计一个 logo 生成工具,允许用户上传多张 logo 图片作为参考,通过提示询问用户是否使用这些图片来创建新的 logo 设计,可自定义提示词风格和设定图片参考权重,利用 GPT4 Vision 的识图能力生成新 logo 设计,若用户不满意则重新生成,创作完后提示用户是否满意,满意则提供转 LOGO 矢量图的链接。 GPTs 教程及案例拆解 精选:GPTs 项目包括 Reviewer2Pal,可帮用户将直白的英文论文回应转换为专业回复;方法论专家 Methodology Expert,辅助用户使用方法论解决相关问题;灵感专家 Brainstorming Expert,辅助用户进行灵感思考和提出发散性角度;自动结构化框架,由小七姐编写,欢迎关注其公众号“AI 中文百科”领取更多好玩的 GPT 工具。
2024-11-07
什么是结构化提示词
结构化提示词是一种提示词构建的方法,由云中江树提出并开源发布。其思想类似于日常写作中使用的文章结构,通俗来说就是像写文章一样写提示词。 例如,小七姐提供了一套极简的基础结构化编写 Prompt 的框架,包括定义角色、描述角色信息(如作者、版本、语言、主要功能)、列出主要目标、限制条件、所需技能以及工作流程等。 在一些领域如舞曲提示词中,也存在特定的结构提示词,如上行进行、预示性歌词、气氛转变等。 LangGPT 提出的结构化提示词已被国内主流大模型智能体平台使用,并发展成为有影响力的学习交流社群。
2024-10-21
结构化思维是?
结构化思维是一种将问题或任务分解为多个部分,并按照一定的逻辑顺序进行组织和分析的思维方式。它强调对问题进行系统性的思考,通过拆解问题,找出各个环节之间的关系,从而更深入地理解问题,并找到解决方案。 在使用 AI 工具时,结构化思维也非常重要。例如,在使用 ChatGPT 时,可以通过追问法来提高对话能力。具体来说,可以先问主题、面向和希望的细节,然后针对回复追问差别、步骤、条件或资源,提供可行的做法与选择,并加入风格或其他限制,最后再提供更多元素让它改写。这样可以帮助我们更好地利用 AI 工具,获得更准确、详细的答案。 此外,在使用 AI 工具时,还需要注意一些问题。例如,上下文 token 长度可能会有限制,需要参考分治法来解决。同时,在让 AI 学习现有数据时,需要描述清楚如何总结规律才能总结得好。 总之,结构化思维是一种非常重要的思维方式,可以帮助我们更好地理解问题、解决问题,并提高使用 AI 工具的效果。
2024-07-05
知识库中有哪些关于结构化提示词的文章,请列表显示
以下是知识库中关于结构化提示词的一些文章: 1. 《LangGPT 相关视频 & 活动分享》:介绍了 LangGPT 项目的相关视频和活动,包括结构化 prompt。 2. 《系统论述文章构建高性能 Prompt 之路—结构化 Prompt》:探讨了如何构建高性能的 Prompt,包括结构化 Prompt 的使用。 3. 《提示链 Prompt Chain 和多提示词协同》:介绍了 Prompt Chain 和多提示词协同的概念,以及如何使用它们来提高模型的性能。 4. 《如何构建生产级鲁棒高性能 Prompt》:提供了一些关于如何构建生产级鲁棒高性能 Prompt 的建议。 5. 《提升大模型可靠性的 prompt 方法汇总》:总结了一些提升大模型可靠性的 prompt 方法,包括结构化 Prompt。 6. 《为什么结构化 Prompt 如此有效?》:解释了结构化 Prompt 之所以有效的原因。 7. 《DALLE3 的紧箍咒》:讨论了 DALLE3 模型的限制,以及如何使用结构化 Prompt 来克服这些限制。 这些文章提供了关于结构化提示词的不同方面的信息,包括如何使用它们来提高模型的性能和可靠性,以及如何构建生产级的高性能 Prompt。
2024-05-15