Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

大模型的头部公司都有哪些

Answer

目前,大模型的头部公司有很多,以下是一些知名的公司:

  • 百度:其文心一言是当前国内能力较好的模型之一。
  • 抖音:云雀大模型具有一定的影响力。
  • 智谱 AI:推出了多代 GLM 模型,在国内表现出色。
  • 中科院:紫东太初大模型也备受关注。
  • 百川智能:其百川大模型具有一定的特色。
  • 商汤:日日新大模型在市场上有一定的知名度。
  • MiniMax:推出了具有特色的模型和产品。

这些公司在大模型领域都有一定的技术实力和市场影响力,但随着技术的不断发展,其他公司也可能会崛起。在选择使用大模型时,用户可以根据自己的需求和应用场景进行评估和选择。

Content generated by AI large model, please carefully verify (powered by aily)

References

8月正式上线的国内大模型

5⃣️五家北京企业机构:百度(文心一言)https://wenxin.baidu.com抖音(云雀大模型)https://www.doubao.com智谱AI(GLM大模型)https://chatglm.cn中科院(紫东太初大模型)https://xihe.mindspore.cn百川智能(百川大模型)https://www.baichuan-ai.com/3⃣️三家上海企业机构:商汤(日日新大模型)https://www.sensetime.com/MiniMax(ABAB大模型)https://api.minimax.chat上海人工智能实验室(书生通用大模型)https://intern-ai.org.cn今天这8个大模型,在聊天状态下——能生成Markdown格式的:智谱清言、商量Sensechat、MiniMax目前不能进行自然语言交流的:昇思(可以对文本进行是否由AI生成的检测,类似论文查重,准确度不错)、书生受限制使用:MiniMax(无法对生成的文本进行复制输出,且只有15元的预充值额度进行体验,完成企业认证后可以进行充值)特色功能:昇思——生图,MiniMax——语音合成

AGI万字长文(上)| 2023回顾与反思

大厂。大厂们无论是人才、GPU、数据,还是资金储备都是可以冲击AGI的,不过从实际效果上来看还并没有明确亮点。但与此同时,受内部短期考核压力的裹挟,大多数力量应该都放在卷新产品圈地盘和向上汇报工作上了。从另一个角度,这些模型虽然能力一般,但和业务的结合都是比较充分的。最后,大厂们同时背负了太多其他业务和政治考量:对于是否做大模型的出头鸟,很多公司都是要三思的。具体来讲,百度和阿里是大厂里比较高调:百度的“文心4.0”是当前国内能力最好的模型之一,即将发布的阿里的“通义千问” QwenVL-MAX和Qwen2.0也都有比较好的指标。另外,阿里千问和钉钉的结合,百度文心和搜索的结合也都可圈可点。字节的“云雀”和腾讯的“混元”比较低调,一方面是公司文化的特点,另一方面也大概是还没有明确的亮点。不过,字节在卷产品和资源调动上是下了决心的:Flow部门有豆包、扣子;还将推出AI角色互动APP“话炉”、图片产品Picpic。朱文佳带Flow,洪定坤做模型,张楠去剪映,再加上裁掉游戏和VR……字节上下All in AI的决心和行动力可能是最强的。

AGI万字长文(上)| 2023回顾与反思

另外,字节和腾讯都有团队在和外部大模型合作,很多外服务和产品也不是用的自己的模型。创业公司。目前明确看到有好模型、好产品的第一梯队公司大概如下:智谱:一年间推出了4代GLM,一直是国内能力最好的模型之一MiniMax:推出了MoE架构的新模型,和”星野“这个目前国内最成功的AI陪聊APP月之暗面:专注长Token能力,在记忆力和长Token能力上可圈可点

Others are asking
AI教育头部产品
以下是 4 月、6 月的 AI 教育头部产品相关数据: 4 月访问量排名: 1. QChat,分类为教育,访问量 14220 万,相对 3 月变化 0.068 2. CheggMate,教育,4906 万,0.042 3. Khanmigo,教育,4570 万,0.015 4. Brainly:AI Homework Helper,教育,3102 万,0.023 5. Turnitin,教育,1677 万,0.149 6. WolframAlpha,教育,983 万,0.054 7. gauthmath,教育,656 万,0.558 8. Socratic by Google,教育,467 万,0.037 9. Aistote,教育,321 万,0.207 10. PTE APEUni,教育,321 万,0.198 6 月访问量排名: 1. QChat,教育,8482 万,0.293 2. Duolingo,教育,7595 万,0.049 3. Khanmigo,教育,3994 万,0.135 4. 微软 Copliot,教育,3258 万,0.174 5. CheggMate,教育,2340 万,0.285 6. Preply,教育,2069 万,0.037 7. Brainly:AI Homework Helper,教育,1984 万,0.267 8. Course Hero,教育,1730 万,0.311 9. Mathway,教育,1564 万,0.319 10. Turnitin,教育,1156 万,0.293 6 月语言教育类 APP 下载量排名: 1. Duolingo,语言教育,14955 千,0.155 2. Buddy Al,语言教育,1343 千,0.049 3. Praktika,语言教育,1252 千,0.019 4. Quizlet,语言教育,1073 千,0.036 5. Mondly,语言教育,393 千,0.324 6. Speak,语言教育,298 千,0.045 7. Stimuler,语言教育,294 千,0.02 8. Preply,语言教育,293 千,0.206 9. TalkAI 练口语,语言教育,201 千,0.047 10. Pimsleur,语言教育,148 千,0.173 11. 流利说,语言教育,123 千,0.054 12. SuperChinese,语言教育,122 千,0.164 13. Animal Jam,语言教育,89 千,0.226 14. Mikan,语言教育,70 千,0.103 15. talkpal,语言教育,60 千,0.032 16. LOLA Speak,语言教育,53 千,0.485 17. Abceed,语言教育,52 千,0.088
2024-12-02
我想通过AI帮我找工作,首先我想要了解当前存在哪些行业?这些行业下面的各自有哪5家头部企业?
目前存在众多行业,以下为您列举部分常见行业及其头部企业(排名不分先后): 1. 互联网行业:阿里巴巴、腾讯、百度、字节跳动、京东。 2. 金融行业:中国工商银行、中国建设银行、中国农业银行、中国银行、交通银行。 3. 制造业:华为、海尔、格力、美的、三一重工。 4. 医疗行业:恒瑞医药、迈瑞医疗、药明康德、复星医药、云南白药。 5. 能源行业:中国石油、中国石化、国家电网、中国海油、中国神华。 需要注意的是,行业的划分和头部企业的认定会随着市场变化而有所不同。您可以根据自身的专业和兴趣,进一步利用 AI 工具深入了解特定行业和企业的招聘信息。
2024-09-29
中国头部的大模型公司分别是哪几家?
以下是中国头部的大模型公司: 北京: 百度(文心一言):https://wenxin.baidu.com 抖音(云雀大模型):https://www.doubao.com 智谱 AI(GLM 大模型):https://chatglm.cn 中科院(紫东太初大模型):https://xihe.mindspore.cn 百川智能(百川大模型):https://www.baichuanai.com/ 上海: 商汤(日日新大模型):https://www.sensetime.com/ MiniMax(ABAB 大模型):https://api.minimax.chat 上海人工智能实验室(书生通用大模型):https://internai.org.cn 此外,字节和腾讯都有团队在和外部大模型合作。创业公司中表现出色的有: 智谱:一年间推出了 4 代 GLM,一直是国内能力最好的模型之一。 MiniMax:推出了 MoE 架构的新模型,和“星野”这个目前国内最成功的 AI 陪聊 APP。 月之暗面:专注长 Token 能力,在记忆力和长 Token 能力上可圈可点。 通过 SuperCLUE 测评结果发现,文心一言 4.0、通义千问 2.0 引领国内大模型的研发进度,部分高质量大模型也在闭源应用和开源生态中形成自己独特的优势。从国内 TOP19 大模型的数量来看,创业公司和大厂的占比几乎持平。
2024-09-05
中国头部的大模型公司有哪些?
以下是中国头部的大模型公司: 北京: 百度(文心一言):https://wenxin.baidu.com 抖音(云雀大模型):https://www.doubao.com 智谱 AI(GLM 大模型):https://chatglm.cn 中科院(紫东太初大模型):https://xihe.mindspore.cn 百川智能(百川大模型):https://www.baichuanai.com/ 上海: 商汤(日日新大模型):https://www.sensetime.com/ MiniMax(ABAB 大模型):https://api.minimax.chat 上海人工智能实验室(书生通用大模型):https://internai.org.cn 此外,字节和腾讯都有团队在和外部大模型合作。创业公司中表现出色的有: 智谱:一年间推出了 4 代 GLM,一直是国内能力最好的模型之一。 MiniMax:推出了 MoE 架构的新模型,和“星野”这个目前国内最成功的 AI 陪聊 APP。 月之暗面:专注长 Token 能力,在记忆力和长 Token 能力上可圈可点。 通过 SuperCLUE 测评结果发现,国内大模型的第一梯队还有文心一言 4.0、通义千问 2.0 引领研发进度。从国内 TOP19 大模型的数量来看,创业公司和大厂的占比几乎持平。
2024-09-05
头部公司为了AI话费多少钱
以下是关于头部公司为了 AI 花费情况的一些信息: OpenAI 已投入 10 亿美元(主要来自 Musk),虽然拥有王牌团队和崇高使命,但对如何实现目标曾毫无头绪。 去年,大部分企业的生成式人工智能支出来自“创新”预算和其他一次性资金池。到 2024 年,许多头部企业将这些支出重新分配到更为永久的软件预算项上。一家公司提到基于 LLM 技术的客户服务每通电话节省了约 6 美元,总体节省了约 90%的成本,这是增加八倍投资于生成式人工智能的原因之一。 在生成式 AI 领域,大部分的钱花在了三大云上:AWS、谷歌云(GCP)和微软 Azure。三大云每年花费超千亿美元的资本支出以确保拥有全面、可靠、具成本优势的云平台。迄今为止,生成式 AI 领域最大的幕后赢家可能是运行了绝大多数 AI 工作负载的英伟达(NVIDIA)。此外,甲骨文等挑战者已通过巨额资本支出和销售激励进军市场,一些初创公司也在快速发展。
2024-08-26
因此在prompt中,把query放到头部和尾部,同时根据相似度,把相似度大的文档放到context的两端,是什么意思,要如何做到
在开发产品视角的大模型 RAG 应用的 Prompt 阶段,匹配出与问句向量最相似的 top k 个 chunk 后,将匹配出的文本和问句添加到配置好的 prompt 中提交给 LLM。在这个过程中,根据论文《Lost in the Middle:How Language Models Use Long Contexts》,由于大模型对上下文中间位置的知识点提取较差,所以把 query(即问句)放到 prompt 的头部和尾部,同时按照相似度,将相似度大的文档放置在 context(上下文)的两端,这样做能够提升回答效果。要做到这一点,需要在进行 prompt 工程时,选择最合适的 prompt 模板,并按照上述原则对 query 和相似度大的文档进行合理的位置安排。
2024-08-19
模型成本
以下是关于模型成本的相关信息: GPT3.5 系列: gpt3.5turbo:功能强大,针对聊天优化,成本仅为 textdavinci003 的 1/10,最大 Token 数 4096,训练数据截至 2021 年 9 月。 gpt3.5turbo0301:gpt3.5turbo 2023 年 3 月 1 日的快照,不会更新,仅在 2023 年 6 月 1 日结束的三个月内提供支持,最大 Token 数 4096,训练数据截至 2021 年 9 月。 textdavinci003:能完成任何语言任务,支持在文本中插入补全,最大 Token 数 4097,训练数据截至 2021 年 6 月。 textdavinci002:与 textdavinci003 类似,使用监督微调训练,最大 Token 数 4097,训练数据截至 2021 年 6 月。 codedavinci002:针对代码完成任务优化,最大 Token 数 8001,训练数据截至 2021 年 6 月。 其他模型供应商: 智谱 GLM4V:通用视觉类大模型,拍立得最早使用,接口响应速度快,指令灵活性差些,一个接口支持图片/视频/文本,视频和图片类型不能同时输入,调用成本 0.05 元/千 tokens。 阿里云百炼 qwenvlplus:通用视觉类大模型,拍立得目前使用,指令灵活性丰富,接口调用入门流程长,密钥安全性高,调用成本 0.008 元/千 tokens,训练成本 0.03 元/千 tokens。 阶跃星辰:通用视觉类大模型,响应速度快,支持视频理解,输入成本 0.005 0.015 元/千 tokens,输出成本 0.02 0.07 元/千 tokens。 百度 PaddlePaddle:OCR,垂直小模型,文本识别能力补齐增强,私有化部署服务费,API 调用在 0.05 0.1 元/次。 Claude 3 系列: Opus:最智能,擅长处理复杂任务,输入成本 15 美元/百万 token,输出成本 75 美元/百万 token,上下文窗口 200K token(特定用途 1M token 可用,详情咨询),应用场景包括任务自动化、研发、策略分析等。 Sonnet:平衡,应用场景包括客户服务、内容审核、优化物流等,优势在于速度和成本效益。 此外,Claude 3 系列在设计上注重安全和可靠,持续改进减少模型偏见,提高公正性和中立性,被评定为 AI 安全等级 2(ASL2)。
2025-01-31
layer_xl_bg2ble.safetensors,layer_xl_transparent_conv.safetensors,vae_transparent_encoder.safetensors这一类是大模型,还是Lora?
layer_xl_bg2ble.safetensors、layer_xl_transparent_conv.safetensors、vae_transparent_encoder.safetensors 这类文件可能是大模型的一部分,也可能是 Lora 模型。 在 AI 模型中: 基础模型(英文名 Checkpoint)是生图必需的,任何生图操作必须要选定一个基础模型才能开始。 Lora 是低阶自适应模型,可以理解为基础模型的小插件,生图时可有可无,但在控制面部、材质、物品等细节方面有明显价值。 同时,VAE 是个编码器,功能类似于滤镜,可调整生图的饱和度。
2025-01-31
deepseek的多模态大模型?
DeepSeek 发布了大一统模型 JanusPro,将图像理解和生成统一在一个模型中。以下是关于该模型的一些重要信息: 最新消息:DeepSeek 深夜发布该模型,它是一个强大的框架。 特点: 统一了多模态理解和生成,通过将视觉编码解耦为独立路径解决先前方法的局限性,利用单一的统一 Transformer 架构进行处理,缓解了视觉编码器在理解和生成中的角色冲突,增强了框架的灵活性。 超越了之前的统一模型,匹配或超过了特定任务模型的性能,其简单性、高灵活性和有效性使其成为下一代统一多模态模型的有力候选者。 规模:提供 1B 和 7B 两种规模,适配多元应用场景。 开源及商用:全面开源,支持商用,采用 MIT 协议,部署使用便捷。 测试案例: 模型直接支持中文交互(图像理解+图像生成)。 云上 L4 测试,显存需 22GB。 图像生成速度约 15s/张。 图像理解质量方面,文字和信息识别基本准确,内容理解完整清晰,局部细节有欠缺。 Colab(需 Pro,因需 20GB 以上显存):https://colab.research.google.com/drive/1V3bH2oxhikj_B_EYy5yRG_9yqSqxxqgS?usp=sharing 模型地址: 7B 模型:https://huggingface.co/deepseekai/JanusPro7B 1B 模型:https://huggingface.co/deepseekai/JanusPro1B 下载地址:https://github.com/deepseekai/Janus
2025-01-30
怎样构建一个自己专业的AI小模型
构建一个自己专业的 AI 小模型可以参考以下步骤: 1. 搭建 OneAPI:这是为了汇聚整合多种大模型接口,方便后续更换使用各种大模型,同时了解如何白嫖大模型接口。 2. 搭建 FastGpt:这是一个知识库问答系统,将知识文件放入,接入上面的大模型作为分析知识库的大脑,最后回答问题。如果不想接到微信,搭建完此系统就可以,它也有问答界面。 3. 搭建 chatgptonwechat 并接入微信,配置 FastGpt 把知识库问答系统接入到微信,建议先用小号以防封禁风险。若想拓展功能,可参考 Yaki.eth 同学的教程,里面的 cow 插件能进行文件总结、MJ 绘画等。 部署和训练自己的 AI 开源模型的主要步骤如下: 1. 选择合适的部署方式,包括本地环境部署、云计算平台部署、分布式部署、模型压缩和量化、公共云服务商部署等,根据自身的资源、安全和性能需求进行选择。 2. 准备训练所需的数据和计算资源,确保有足够的训练数据覆盖目标应用场景,并准备足够的计算资源,如 GPU 服务器或云计算资源。 3. 选择合适的预训练模型作为基础,可以使用开源的预训练模型如 BERT、GPT 等,也可以自行训练一个基础模型。 4. 针对目标任务进行模型微调训练,根据具体应用场景对预训练模型进行微调训练,优化模型结构和训练过程以提高性能。 5. 部署和调试模型,将训练好的模型部署到生产环境,并对部署的模型进行在线调试和性能优化。 6. 注意安全性和隐私保护,大模型涉及大量数据和隐私信息,需要重视安全性和合规性。 大模型的构建过程包括: 1. 收集海量数据:像教孩子成为博学多才的人一样,让模型阅读大量的文本数据,如互联网上的文章、书籍、维基百科条目、社交媒体帖子等。 2. 预处理数据:清理和组织收集到的数据,如删除垃圾信息,纠正拼写错误,将文本分割成易于处理的片段。 3. 设计模型架构:为模型设计“大脑”结构,通常是一个复杂的神经网络,如使用 Transformer 架构。 4. 训练模型:让模型“阅读”提供的数据,通过反复尝试预测句子中的下一个词等方式,逐渐学会理解和生成人类语言。
2025-01-29
现在最好的AI大模型
目前较为出色的 AI 大模型包括: 1. GPT4(免费可用):是 OpenAI 在深度学习规模扩大方面的最新里程碑,是一个大型多模态模型,在各种专业和学术基准测试中表现出与人类相当的水平。 2. Midjourney v5(免费):具有极高的一致性,擅长以更高分辨率解释自然语言 prompt,并支持像使用 tile 这样的重复图案等高级功能,能生成令人惊叹的逼真 AI 图像。 3. DALL·E 3(免费可用):代表了生成完全符合文本的图像能力的一大飞跃,能轻松将想法转化为极其精准的图像。 4. Mistral 7B(免费):是一个具有 73 亿参数的模型,在所有基准测试上超越了 Llama 2 13B,在许多基准测试上超越了 Llama 1 34B,在代码任务上接近 CodeLlama 7B 的性能,同时在英语任务上表现良好。 此外,在主要的大语言模型方面: 1. OpenAI 系统:包括 3.5 和 4.0 版本,3.5 模型在 11 月启动了当前的 AI 热潮,4.0 模型功能更强大。微软的 Bing 使用 4 和 3.5 的混合,通常是 GPT4 家族中首个推出新功能的模型。 2. 谷歌:一直在测试自己的人工智能 Bard,由各种基础模型驱动,最近是一个名叫 PaLM 2 的模型。 3. Anthropic 发布了 Claude 2,其最值得注意的是有一个非常大的上下文窗口。
2025-01-29
你好,你是什么模型?
您好,我是一名 AI 知识专家,能够为您提供全面的 AI 知识指导和解答相关问题。 关于模型方面的知识: LoRA 和 LyCORIS 都属于微调模型,常用于控制画风、生成的角色、角色姿势等。它们的后缀均为.safetensors,体积较主模型小,一般在 4M 300M 之间,使用 LoRA 模型较多,LyCORIS 可调节范围更大,现在 SD 已内置。在 WebUl 中使用时,可在 LoRA 菜单中点击使用,也可直接使用 Prompt 调用。 在 Tusiart 中,首页有模型、帖子、排行榜,展示了大手子炼成的模型和图片。生图必需基础模型(Checkpoint),任何生图操作必须选定一个 Checkpoint 模型才能开始,lora 是低阶自适应模型,可有可无,但对细节控制有价值。ControlNet 可控制图片中特定图像,VAE 类似于滤镜调整生图饱和度,选择 840000 即可。Prompt 提示词是想要 AI 生成的内容,负向提示词是想要 AI 避免产生的内容。还有图生图,即上传图片后 SD 会根据相关信息重绘。 如果您想搭建类似的群问答机器人,可以参考以下内容:
2025-01-28
我是一家企业服务公司的负责人,我们业务的主要工作是给客户提供品牌策划,搭建新媒体矩阵账号,请问我应该如何学习ai才能运用ai技术提升工作效率
对于您这样的企业服务公司负责人,想要通过学习 AI 技术提升工作效率,可以从以下几个方面入手: 1. 了解 AI 基础知识:包括 AI 的基本概念、原理和应用领域,建立对 AI 的整体认知。 2. 学习自然语言处理(NLP):这对于品牌策划和新媒体矩阵账号的内容创作很有帮助,例如利用 NLP 技术进行文本分析、情感分析等。 3. 掌握 AI 工具:如 ChatGPT 等,学会如何利用这些工具生成创意文案、优化内容。 4. 研究 AI 绘画工具:用于为品牌策划和新媒体账号提供独特的视觉素材。 5. 探索自动化营销工具:借助 AI 实现营销流程的自动化,提高工作效率。 6. 参加相关培训课程:线上或线下的专业 AI 培训,系统学习 AI 知识和应用技巧。 7. 关注行业动态:了解最新的 AI 技术在品牌策划和新媒体领域的应用案例,借鉴他人经验。 8. 实践与实验:在实际工作中尝试应用 AI 技术,不断总结经验,优化工作流程。
2025-01-25
给我写一段AI产品经理板块的介绍,一小段话,用于在公司内部的科技论坛上
在公司内部的科技论坛上,为您介绍 AI 产品经理板块: AI 产品经理可大致分为三个层级: 1. 入门级:能通过 WaytoAGI 等开源网站或课程了解 AI 概念,使用 AI 产品并动手实践应用搭建。 2. 研究级:有技术研究和商业化研究两条路径,能根据需求场景选择解决方案,或利用 Hugging face 等工具验证想法。 3. 落地应用级:有成功落地应用案例并产生商业化价值。 传统互联网 PM 也有类似的三个层级: 1. 负责功能模块与执行细节。 2. 负责整体系统与产品架构。 3. 熟悉行业竞争格局与商业运营策略。 对 AI 产品经理的要求是懂得技术框架,关注场景、痛点和价值。同时,为您列举一些岗位技能要求,如本科及以上学历,计算机科学等相关专业背景,熟悉多种 AI 工具的使用及原理,具备创新思维等。我们身边也有相关案例,如枫 share、行远等都是从事相关工作的产品经理。
2025-01-23
ai产业链上市公司有哪些
以下是 2024 年美国融资金额超过 1 亿美元的部分 AI 产业链上市公司(截止 2024.10.15): |项目名称|融资时间|融资金额(亿美元)|轮次|估值(亿美元)|主营|产业链标签|话题标签|投资方|其他信息| ||||||||||| |Augment|20240424|2.27|B|10|AI 编码辅助|应用|编程|Lightspeed Venture Partners, Index Ventures, Sutter Hill Ventures| |Cognition|20240424|1.75||20|端到端软件 Agents|应用|编程|Founders Fund, Ramp 联合创始人 Eric Glyman, Stripe 联合创始人 Patrick 和 John Collison, DoorDash 联合创始人 Tony Xu| |Xaira Therapeutics|20240423|10|A||AI 药物研发|应用|医学|Foresite Capital, ARCH Venture Partners| |Cyera|20240409|3|C|14|AI 数据安全平台|应用|数据|Coatue, Sequoia, Redpoint, Accel| |Celestial AI|20240327|1.75|C||用于 AI 存储和计算的光互连技术平台|基础设施|芯片、硬件和云平台|Thomas Tull 美国创新技术基金, M Ventures, 淡马锡, Tyche Partners| |FundGuard|20240325|1|C|4|AI 投资会计系统|应用|金融|Key1Capital, Hamilton Lane, Blumberg Capital, Team8| |Codeium|20240829|1.5|C|12|AI 编码平台|应用|编程|General Catalyst, Kleiner Perkins, Greenoaks| |Groq|20240805|6.4|D|30|AI 芯片|基础设施|芯片|贝莱德, Type One Ventures, Verdure Capital Management, Neuberger Berman| |DevRev|202408|1|A|11|AI 支持代理|应用|企业服务|Khosla Ventures, Mayfield, Param Hansa Values| |Abnormal Security|202408|2.5||50|电子邮件安全|应用|数据|Wellington Management, Menlo Ventures, Greylock, Insight Partners| |Harvey|20240723|1|C|15|法律科技|应用|法律|Google Ventures, OpenAI, Kleiner Perkins, Sequoia| |Skild AI|20240709|3|A|15|机器人技术|应用|机器人|Lightspeed Venture Partners, Coatue, Bezos Expeditions, Sequoia, Menlo Ventures, General Catalyst| |Hebbia|20240708|1.3||7|生成式 AI 搜索|应用|企业服务|Andreessen Horowitz, Peter Thiel, Index Ventures, Google Ventures| |Zephyr AI|20240313|1.11|A||AI 药物发现和精准医疗|应用|医学|Revolution Growth, 礼来公司基金会, EPIQ Capital Group, Jeff Skoll| |Together AI|20240313|1.06|A|12|AI 基础设施和开源生成|模型|硬件和云平台|Salesforce Ventures, NEA, Kleiner Perkins, Lux Capital| |Glean|20240227|2.03|D|22|AI 驱动企业搜索|应用|企业服务|Lightspeed Venture Partners, Kleiner Perkins, Sequoia, Databricks Ventures| |Figure|20240224|6.75|B|27|AI 机器人|应用|机器人|Nvidia, OpenAI, 微软| |Abridge|20240223|1.5|C|8.5|AI 医疗对话转录|应用|医学|Redpoint, Lightspeed Venture Partners, USV, IVP, Spark Capital| |Recogni|20240220|1.02|C||AI 接口解决方案|基础设施|芯片|GreatPoint Ventures, Celesta Capital, Pledge Ventures, Mayfield, DNS Capital| 信息来源:Techcrunch
2025-01-21
AI 在保险公司的运用
AI 在保险公司的运用主要体现在以下几个方面: 1. 医疗大模型:与真人医生的治疗方案达到了 96%的一致性,有助于提升保险服务的准确性和可靠性。 2. 保险销售:GPT 可以作为业务人员的个人助理,帮助他们更专业地为用户提供服务,提升用户体验和满意度,从而建立信任关系。 3. 服务链优化:通过 AI 设计服务链,结合用户目标和服务设计,提供优质的服务内容和方案,实现用户财务需求与保险商品的双赢。 4. 改善用户体验:关注在线与远程服务的体验、非标签化的用户分类和数字化运营服务体系,同时考虑用户心理状态和路径设计,与保险营销员的实际需求相结合。 此外,AI 不仅在保险领域发挥作用,在生物制药和医疗保健领域也正在引发革命。AI 被应用于从药物设计、诊断到医疗保健交付和后勤功能的各个方面。在金融服务行业,生成式 AI 代表着重大飞跃,与传统的 AI/ML 侧重于基于现有数据进行预测或分类不同,生成式 AI 可以创造全新的内容,可能带来金融服务市场数十年来最大的变革,预计优秀的新公司和现有企业将立即开始接纳。
2025-01-21
waytoagi是哪个公司研发的,什么用处
WaytoAGI 是一个由一群热爱 AI 的专家和爱好者共同建设的 AI 开源社区。它的创建者是 AJ,产品经理。 WaytoAGI 具有以下特点和作用: 1. 是一个致力于人工智能学习的中文知识库和社区平台,为学习者提供系统全面的 AI 学习路径,覆盖从基础概念到实际应用的各个方面。 2. 汇集了上千个人工智能网站和工具,提供最新的 AI 工具、AI 应用、AI 智能体和行业资讯。 3. 提供丰富的学习资源,包括文章、教程、工具推荐以及最新的 AI 行业资讯等。 4. 定期组织活动,如视频挑战赛、模型创作大赛等,鼓励成员在实践中学习,促进交流与合作。 5. 引领并推广开放共享的知识体系,倡导共学共创等形式,孵化了 AI 春晚、离谱村等大型共创项目。 6. 在没有任何推广的情况下,短短一年间,已有超过 100 万用户和超千万次的访问量。 7. 目标是让每个人的学习过程少走弯路,让更多的人因 AI 而强大。 目前合作过的公司/产品包括阿里云、通义千问、淘宝、智谱、支付宝、豆包、火山引擎、marscode、coze、堆友、即梦、可灵、MiniMax 海螺 AI、阶跃星辰、百度、Kimi、吐司、liblib、华硕、美团、美的、360、伊利、魔搭、央视频、Civitai、Openart、Tripo3D、青椒云等。打开“waytoagi.com”即可找到社群。
2025-01-20
开AI公司需要具备那些条件
开 AI 公司通常需要具备以下条件: 1. 强大的资源支持:包括大量的资金投入,用于硬件设施和研发等方面。例如,OpenAI 的发展就需要呈指数级增长的功率,其模型的每一次迭代都需要巨大的资源,微软已向其投入了 130 亿美元。 2. 顶尖的人才团队:公司需要招募到顶尖的人才,包括研究人员和工程师等。如埃隆·马斯克提到,任何公司的成就最终取决于团队成员,要持续吸引最有才华的人,特别关注那些尚未完成研究生甚至本科学业但聪明的人。 3. 工程化的组织模式:需要改变企业文化,专注于扩大规模,不能让每个研究人员各自为政,要像一个工程组织一样运作。 4. 明确的目标和方向:例如 OpenAI 专注于追求 AGI 这一目标。 5. 数据收集和处理能力:为建立有效的模型,需要收集和处理大量的数据,并对其进行完善。
2025-01-18