直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

大模型的头部公司都有哪些

回答

目前,大模型的头部公司有很多,以下是一些知名的公司:

  • 百度:其文心一言是当前国内能力较好的模型之一。
  • 抖音:云雀大模型具有一定的影响力。
  • 智谱 AI:推出了多代 GLM 模型,在国内表现出色。
  • 中科院:紫东太初大模型也备受关注。
  • 百川智能:其百川大模型具有一定的特色。
  • 商汤:日日新大模型在市场上有一定的知名度。
  • MiniMax:推出了具有特色的模型和产品。

这些公司在大模型领域都有一定的技术实力和市场影响力,但随着技术的不断发展,其他公司也可能会崛起。在选择使用大模型时,用户可以根据自己的需求和应用场景进行评估和选择。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

8月正式上线的国内大模型

5⃣️五家北京企业机构:百度(文心一言)https://wenxin.baidu.com抖音(云雀大模型)https://www.doubao.com智谱AI(GLM大模型)https://chatglm.cn中科院(紫东太初大模型)https://xihe.mindspore.cn百川智能(百川大模型)https://www.baichuan-ai.com/3⃣️三家上海企业机构:商汤(日日新大模型)https://www.sensetime.com/MiniMax(ABAB大模型)https://api.minimax.chat上海人工智能实验室(书生通用大模型)https://intern-ai.org.cn今天这8个大模型,在聊天状态下——能生成Markdown格式的:智谱清言、商量Sensechat、MiniMax目前不能进行自然语言交流的:昇思(可以对文本进行是否由AI生成的检测,类似论文查重,准确度不错)、书生受限制使用:MiniMax(无法对生成的文本进行复制输出,且只有15元的预充值额度进行体验,完成企业认证后可以进行充值)特色功能:昇思——生图,MiniMax——语音合成

AGI万字长文(上)| 2023回顾与反思

大厂。大厂们无论是人才、GPU、数据,还是资金储备都是可以冲击AGI的,不过从实际效果上来看还并没有明确亮点。但与此同时,受内部短期考核压力的裹挟,大多数力量应该都放在卷新产品圈地盘和向上汇报工作上了。从另一个角度,这些模型虽然能力一般,但和业务的结合都是比较充分的。最后,大厂们同时背负了太多其他业务和政治考量:对于是否做大模型的出头鸟,很多公司都是要三思的。具体来讲,百度和阿里是大厂里比较高调:百度的“文心4.0”是当前国内能力最好的模型之一,即将发布的阿里的“通义千问” QwenVL-MAX和Qwen2.0也都有比较好的指标。另外,阿里千问和钉钉的结合,百度文心和搜索的结合也都可圈可点。字节的“云雀”和腾讯的“混元”比较低调,一方面是公司文化的特点,另一方面也大概是还没有明确的亮点。不过,字节在卷产品和资源调动上是下了决心的:Flow部门有豆包、扣子;还将推出AI角色互动APP“话炉”、图片产品Picpic。朱文佳带Flow,洪定坤做模型,张楠去剪映,再加上裁掉游戏和VR……字节上下All in AI的决心和行动力可能是最强的。

AGI万字长文(上)| 2023回顾与反思

另外,字节和腾讯都有团队在和外部大模型合作,很多外服务和产品也不是用的自己的模型。创业公司。目前明确看到有好模型、好产品的第一梯队公司大概如下:智谱:一年间推出了4代GLM,一直是国内能力最好的模型之一MiniMax:推出了MoE架构的新模型,和”星野“这个目前国内最成功的AI陪聊APP月之暗面:专注长Token能力,在记忆力和长Token能力上可圈可点

其他人在问
我想通过AI帮我找工作,首先我想要了解当前存在哪些行业?这些行业下面的各自有哪5家头部企业?
目前存在众多行业,以下为您列举部分常见行业及其头部企业(排名不分先后): 1. 互联网行业:阿里巴巴、腾讯、百度、字节跳动、京东。 2. 金融行业:中国工商银行、中国建设银行、中国农业银行、中国银行、交通银行。 3. 制造业:华为、海尔、格力、美的、三一重工。 4. 医疗行业:恒瑞医药、迈瑞医疗、药明康德、复星医药、云南白药。 5. 能源行业:中国石油、中国石化、国家电网、中国海油、中国神华。 需要注意的是,行业的划分和头部企业的认定会随着市场变化而有所不同。您可以根据自身的专业和兴趣,进一步利用 AI 工具深入了解特定行业和企业的招聘信息。
2024-09-29
中国头部的大模型公司分别是哪几家?
以下是中国头部的大模型公司: 北京: 百度(文心一言):https://wenxin.baidu.com 抖音(云雀大模型):https://www.doubao.com 智谱 AI(GLM 大模型):https://chatglm.cn 中科院(紫东太初大模型):https://xihe.mindspore.cn 百川智能(百川大模型):https://www.baichuanai.com/ 上海: 商汤(日日新大模型):https://www.sensetime.com/ MiniMax(ABAB 大模型):https://api.minimax.chat 上海人工智能实验室(书生通用大模型):https://internai.org.cn 此外,字节和腾讯都有团队在和外部大模型合作。创业公司中表现出色的有: 智谱:一年间推出了 4 代 GLM,一直是国内能力最好的模型之一。 MiniMax:推出了 MoE 架构的新模型,和“星野”这个目前国内最成功的 AI 陪聊 APP。 月之暗面:专注长 Token 能力,在记忆力和长 Token 能力上可圈可点。 通过 SuperCLUE 测评结果发现,文心一言 4.0、通义千问 2.0 引领国内大模型的研发进度,部分高质量大模型也在闭源应用和开源生态中形成自己独特的优势。从国内 TOP19 大模型的数量来看,创业公司和大厂的占比几乎持平。
2024-09-05
中国头部的大模型公司有哪些?
以下是中国头部的大模型公司: 北京: 百度(文心一言):https://wenxin.baidu.com 抖音(云雀大模型):https://www.doubao.com 智谱 AI(GLM 大模型):https://chatglm.cn 中科院(紫东太初大模型):https://xihe.mindspore.cn 百川智能(百川大模型):https://www.baichuanai.com/ 上海: 商汤(日日新大模型):https://www.sensetime.com/ MiniMax(ABAB 大模型):https://api.minimax.chat 上海人工智能实验室(书生通用大模型):https://internai.org.cn 此外,字节和腾讯都有团队在和外部大模型合作。创业公司中表现出色的有: 智谱:一年间推出了 4 代 GLM,一直是国内能力最好的模型之一。 MiniMax:推出了 MoE 架构的新模型,和“星野”这个目前国内最成功的 AI 陪聊 APP。 月之暗面:专注长 Token 能力,在记忆力和长 Token 能力上可圈可点。 通过 SuperCLUE 测评结果发现,国内大模型的第一梯队还有文心一言 4.0、通义千问 2.0 引领研发进度。从国内 TOP19 大模型的数量来看,创业公司和大厂的占比几乎持平。
2024-09-05
头部公司为了AI话费多少钱
以下是关于头部公司为了 AI 花费情况的一些信息: OpenAI 已投入 10 亿美元(主要来自 Musk),虽然拥有王牌团队和崇高使命,但对如何实现目标曾毫无头绪。 去年,大部分企业的生成式人工智能支出来自“创新”预算和其他一次性资金池。到 2024 年,许多头部企业将这些支出重新分配到更为永久的软件预算项上。一家公司提到基于 LLM 技术的客户服务每通电话节省了约 6 美元,总体节省了约 90%的成本,这是增加八倍投资于生成式人工智能的原因之一。 在生成式 AI 领域,大部分的钱花在了三大云上:AWS、谷歌云(GCP)和微软 Azure。三大云每年花费超千亿美元的资本支出以确保拥有全面、可靠、具成本优势的云平台。迄今为止,生成式 AI 领域最大的幕后赢家可能是运行了绝大多数 AI 工作负载的英伟达(NVIDIA)。此外,甲骨文等挑战者已通过巨额资本支出和销售激励进军市场,一些初创公司也在快速发展。
2024-08-26
因此在prompt中,把query放到头部和尾部,同时根据相似度,把相似度大的文档放到context的两端,是什么意思,要如何做到
在开发产品视角的大模型 RAG 应用的 Prompt 阶段,匹配出与问句向量最相似的 top k 个 chunk 后,将匹配出的文本和问句添加到配置好的 prompt 中提交给 LLM。在这个过程中,根据论文《Lost in the Middle:How Language Models Use Long Contexts》,由于大模型对上下文中间位置的知识点提取较差,所以把 query(即问句)放到 prompt 的头部和尾部,同时按照相似度,将相似度大的文档放置在 context(上下文)的两端,这样做能够提升回答效果。要做到这一点,需要在进行 prompt 工程时,选择最合适的 prompt 模板,并按照上述原则对 query 和相似度大的文档进行合理的位置安排。
2024-08-19
chilloutmix模型
以下是关于 chilloutmix 模型的相关信息: 在腊八节相关的生成中,模型为 chilloutmix_NiPrunedFp32Fix,生成尺寸与草稿图保持一致,有正、负面关键词及 ControlNet 设置等具体参数。 在猫猫相关的生成中,虽然作者建议使用 chilloutmix_NiPrunedFp32Fix 模型,但也可以尝试其他模型。 在 AIGC Weekly 09 中,提到从 civitai 下载 ChilloutMix 模型并放到整合包 models\\Stablediffusion 目录里启动 web UI 切换模型。
2024-11-17
SD好的模型分享
以下是为您分享的关于 SD 模型的相关内容: 对于 SDXL 的 ControlNet 模型中的 Canny 硬边缘模型,有不同型号,如 4080ti 笔记本测试中,12G 显存下,sdxl base+refiner 模型,使用 diffusers 的 2.5Gfull 模型绘制 10241024 尺寸图片需 2 分 57 秒,320Mb 的 small 模型用时 34s,质量差距不大但时间优势明显。其他作者如 kohya 的用时 33 秒,更接近真实质感。sai 的 128lora 和 256lora 分别用时 39 秒和 1 分 08 秒,偏绘画感觉。t2i 的用时 34s,偏插画。关闭 refiner 能节省一半左右时间,平均 17 秒左右。 在 Depth 深度模型测试中,图形尺寸 6641024,diffusers 的 full 模型用时 2 分 48 秒,small 模型用时 23s,kohya 模型用时 42 秒,sai 模型用时 1 分 12 秒,sargezt 模型用时 1 分 52 秒。 用 Stable Diffusion 时,要先确定照片风格,如生成真人 AI 小姐姐可选用 chilloutmix 的大模型。部分常用大模型可在分享的链接中根据文件夹名称找到。文章第三部分会详细介绍模型下载位置和存放位置。 对于 ControlNet 中线条约束类的预处理器和模型,作者已整理好,如需获取可添加公众号【白马与少年】回复【SD】。同时作者还附上一张图帮助理解 ControlNet 模型的命名规则。
2024-11-17
sd模型
Stable Diffusion(SD)模型是由 Stability AI 和 LAION 等公司共同开发的生成式模型,参数量约 1B,可用于文生图、图生图、图像 inpainting、ControlNet 控制生成、图像超分等任务。 文生图任务是将一段文本输入到 SD 模型中,经过一定迭代次数生成符合文本描述的图片。例如输入“天堂,巨大的,海滩”,模型生成美丽沙滩的图片。 图生图任务在输入文本基础上再输入一张图片,模型根据文本提示将输入图片重绘以更符合文本描述。比如在之前生成的沙滩图片上添加“海盗船”。 输入的文本信息需通过“桥梁”CLIP Text Encoder 模型转换为机器数学信息。该模型作为 SD 模型中的前置模块,将输入文本信息编码,生成 Text Embeddings 特征矩阵,用于控制图像生成。 CLIP 模型包含 Text Encoder 和 Image Encoder 两个模型,在 Stable Diffusion 中主要使用 Text Encoder 模型。它将输入的文本 Prompt 编码转换成 Text Embeddings(文本的语义信息),通过 UNet 网络中的 CrossAttention 模块嵌入 Stable Diffusion 中作为 Condition,对生成图像的内容进行控制与引导。目前 SD 模型使用的是中的 Text Encoder 模型。 CLIP ViTL/14 中的 Text Encoder 是只包含 Transformer 结构的模型,由 12 个 CLIPEncoderLayer 模块组成,模型参数大小是 123M,输出的 Text Embeddings 维度为 77x768。 以下是相关资源获取方式: SD 模型权重百度云网盘:关注 Rocky 的公众号 WeThinkIn,后台回复:SD 模型,即可获得包含多种模型权重的资源链接。 SD 保姆级训练资源百度云网盘:关注 Rocky 的公众号 WeThinkIn,后台回复:SDTrain,即可获得包含数据处理、模型微调训练及基于 SD 的 LoRA 模型训练代码等全套资源。 Stable Diffusion 中 VAE,UNet 和 CLIP 三大模型的可视化网络结构图下载:关注 Rocky 的公众号 WeThinkIn,后台回复:SD 网络结构,即可获得网络结构图资源链接。
2024-11-17
我是一名高中历史老师,请问用什么大模型能帮我做教学设计
以下为您推荐一些利用大模型辅助高中历史教学设计的案例: 有一位历史老师使用 GPT 给学生讲课,通过 GPT 生成一个“沉浸式”历史片段游戏,让学生扮演一个角色“设身处地”地做决策,学生的作业是找出 GPT 的错误。例如明朝灭亡、南京、1645 年 5 月的相关案例,您可以参考:https://chat.openai.com/share/86815f4e674c4410893c4ae3f1b7412e/continue 。 对于历史专业的学生,当他们遇到像 ChatGPT 这样的语言模型时,已经训练有素能够识别一些常见的陷阱,如事实不准确等,并通过事实核查、分析体裁和受众、在相关来源中搜索等技能来解决这些问题。 语言模型对于历史学家和历史专业的学生是有益的,但对于历史老师和其他教育工作者在短期内可能会带来一些问题,需要重新思考许多作业的布置方式。 您可以尝试借鉴这些案例,根据您的教学需求和学生特点,对大模型的应用进行调整和优化。
2024-11-17
大模型可以修复老旧的分辨率低的视频吗
大模型在修复老旧低分辨率视频方面是可行的,但具体效果因模型和方法而异。 例如,使用 StabilityAI 官方的 Stable Diffusion V2.1 512 EMA 模型、StableSR 模块和 VQVAE 等,通过不同的放大方法进行测试。如“Ultimate SD upscale”脚本放大,重绘幅度不同效果有别,重绘幅度大可能导致人物失真。“后期处理”的放大方法能使眼神更锐利,但对模糊的头发改善有限。而 StableSR 的放大则需要进行相应的模型和参数调整。 另外,像 Sora 这样的大型视觉模型,能够在原始尺寸上训练、理解和生成视频及图像。它可以处理不同格式和分辨率的视觉数据,保持原始宽高比,改善生成视频的构图和框架。其基础模型用于低分辨率视频生成,通过级联扩散模型细化提高分辨率,采用 3D UNet 架构,结合多种技术和方法,能生成高保真度且具有可控性的视频。
2024-11-17
如何可以使用到chatgpto1大模型
目前 ChatGPT 没有 ChatGPT1 这个大模型。ChatGPT 有多个版本,如 ChatGPT3、ChatGPT3.5、ChatGPT4 等。您可以通过以下方式使用 ChatGPT 相关模型: 1. 访问 OpenAI 的官方网站,按照其指引进行注册和使用。 2. 部分应用和平台可能集成了 ChatGPT 的接口,您可以在这些应用中体验其功能。 需要注意的是,使用 ChatGPT 时应遵循相关的使用规则和法律法规。
2024-11-16
perplexity公司
Perplexity 是一家专注于开发新一代 AI 搜索引擎的公司,创立于 2022 年 8 月,由前 OpenAI 研究科学家 Aravind Srinivas 与前 Meta 研究科学家 Denis Yarats(Perplexity CTO)等合伙人共同创办。 其优势包括: 1. 理解能力强:能够深入理解查询的语义,而非仅仅匹配关键词,提供更准确和相关的结果。 2. 生成式回答:可以生成通顺的自然语言回答,而非简单返回网页链接和片段,使结果更易于理解和使用。 3. 个性化和上下文感知:能根据用户的历史查询和偏好个性化结果,提供更贴合需求的答复。 劣势有: 1. 训练成本高:训练大型 LLM 模型需要大量计算资源和高质量训练数据,成本较高。 2. 可解释性差:LLM 的工作原理较为黑箱,难以解释为何给出某个结果,缺乏透明度。 3. 潜在的偏差和不当内容:由于训练数据的局限性,可能产生偏见或不当内容。 独特之处在于将 LLM 技术应用于搜索引擎领域,试图颠覆传统基于关键词匹配的搜索范式,为用户提供更自然和智能的搜索体验,还融合了个性化和上下文感知等功能,努力成为新一代的“智能助手”。 在成立的 18 个月内,Perplexity 达到了 10 亿美元估值。但它与其他由 LLM 驱动的服务一样面临着幻觉问题等挑战,同时人工智能驱动的搜索也存在可靠性问题。
2024-11-14
有哪些著名的AI咨询公司?提供方案解决的那种
以下是一些著名的提供方案解决的 AI 咨询公司及相关信息: 在 AI 心理咨询产品方面,有 Woebot、Replika、Talkspace、Wysa、Moodfit、Youper 等。Woebot 是基于聊天机器人的心理健康平台,使用认知行为疗法原理引导用户。Replika 是 AI 驱动的个人朋友,提供情感支持和指导。Talkspace 是在线心理咨询平台,使用 AI 技术匹配咨询师。Wysa 提供情绪管理和心理健康支持。Moodfit 分析用户情绪模式并提供建议。Youper 结合 AI 和虚拟现实改善心理健康。但对于严重心理问题仍需专业帮助,且应作为传统咨询的补充。 在其他 AI 应用方面,如 14 号的小红书穿搭推荐,是 AI 时尚穿搭建议平台,利用图像识别和数据分析,根据用户身材和风格提供穿搭建议。15 号的蚂蚁财富智能理财助手,通过数据分析和机器学习为用户提供专业投资建议。16 号的法信智能法律咨询,运用自然语言处理和知识图谱解答法律问题。17 号的慧植农当家等是 AI 农业病虫害识别系统,借助图像识别和机器学习帮助农民识别病虫害。18 号的小米智能家居系统,基于物联网技术和机器学习实现家居设备智能化控制。19 号的文案狗等是 AI 广告文案生成工具,通过自然语言处理快速生成吸引人的广告文案。 在生成式 AI 平台的基础设施供应商方面,英伟达是目前该领域最大的幕后赢家,其数据中心 GPU 收入可观,建立了坚固的护城河。同时也有其他供应商,如甲骨文等挑战者,以及一些提供针对大模型开发人员解决方案的初创公司,如 Coreweave 和 Lambda Labs 等。此外还有谷歌张量处理单元(TPU)、AMD Instinct GPU、AWS Inferentia 和 Trainium 芯片,以及来自 Cerebras、Sambanova 和 Graphcore 等初创公司的 AI 加速器,英特尔也带着高端芯片进入市场,但新芯片占据的市场份额有限。
2024-11-13
最近有什么值得关注的AI公司
以下是一些值得关注的 AI 公司: 在移动应用领域,ChatGPT 占据榜首位置,其月活跃用户数大幅领先。此外,微软 Edge、Photomath、微软基于 AI 技术全新打造的搜索引擎 Bing 以及照片美化和虚拟形象制作工具 Remini 也在移动应用前五强中。同时,有五家 AI 公司实现了“双线作战”,其网页端、移动端应用双双跻身前 50 强榜单,分别是 ChatGPT、Character.AI、chatbot 平台 Poe、图片编辑应用 Photoroom 和 Pixelcut。 AI Friendship 是令人惊讶的应用之一,其用户和使用指标显示出强烈的用户喜爱。 工作流程自动化平台 ServiceNow 通过 AI 驱动的 Now Assist 实现了近 20%的事件避免率。Palo Alto Networks 利用 AI 降低了处理费用的成本。Hubspot 利用 AI 扩大了能够支持的用户规模。瑞典金融科技公司 Klarna 通过将 AI 融入用户支持,在运行率方面节省了 4000 多万美元。
2024-10-29
中国上市公司在ai应用方面的进展
目前,中国上市公司在 AI 应用方面取得了一定进展。 一方面,许多公司正将 AI 融入其工作流程,以快速达成 KPI、扩张规模和降低成本。例如,工作流程自动化平台 ServiceNow 通过 AI 驱动的 Now Assist,实现了近 20%的事件避免率;Palo Alto Networks 利用 AI 降低了处理费用的成本;Hubspot 利用 AI 扩大了能够支持的用户规模。瑞典金融科技公司 Klarna 最近宣布,通过将 AI 融入用户支持,他们在运行率方面节省了 4000 多万美元。 另一方面,对于 AI 应用层的创业者来说,存在一些问题和探索。中国企业软件的发展曾受人均 GDP 不够高、人力成本等因素限制,但如果 AI 能极大降低软件成本并提高效率,可能带来价值突破。我们期待中国 2B 的 AI 软件应用实现跨越式发展。 此外,还有一些相关的资源可供参考,如 2022 2024 年融资 2000 万美金以上的公司列表和详细公司分析、AI Grant 公司列表和详细公司分析、AIGC 行业与商业观察等。同时,也有关于 AI 变革公司/产业实践探索的相关内容,如 2023 年年报中中国上市公司对生成式 AI 的使用,以及安克创新的 AI 实践分析等。
2024-10-28
近期融资的ai行业上市公司
以下是近期融资的 AI 行业上市公司的相关信息: Celestial AI 融资 1 亿美元,用于使用基于光的互连传输数据。 Zenarate 融资 1500 万美元,是提供 AI 模拟培训平台的公司。 Augmedics 获得 8250 万美元,用于使用 AR 和 AI 进行脊柱手术。 CalypsoAI 筹集了 2300 万美元,用于生成 AI 模型的护栏。 2024 年美国融资金额超过 1 亿美元的 AI 公司(截止 2024.10.15): |项目名称|融资时间|融资金额(亿美元)|轮次|估值(亿美元)|主营|产业链标签|话题标签|投资方|其他信息| ||||||||||| |Weka|20240513|1.4|E|16|AI 原生数据平台|应用|数据|Valor Equity Partners, 高通创投, Nvidia, 日立创投| |CoreWeave|20240501|11|C|190|GPU 基础设施|基础设施|硬件和云平台|Coatue, Fidelity, Altimeter Capital, Magnetar Capital| |Scale AI|202405|10|F|140|数据标记服务|应用|数据|Accel, Tiger Global, Spark Capital, 亚马逊| |Blaize|20240429|1.06|D||AI 边缘计算平台|基础设施|硬件和云平台|淡马锡, 富兰克林邓普顿, Bess Ventures| |Augment|20240424|2.27|B|10|AI 编码辅助|应用|编程|Lightspeed Venture Partners, Index Ventures, Sutter Hill Ventures| |Cognition|20240424|1.75||20|端到端软件 Agents|应用|编程|Founders Fund, Ramp 联合创始人 Eric Glyman, Stripe 联合创始人 Patrick 和 John Collison, DoorDash 联合创始人 Tony Xu| |Xaira Therapeutics|20240423|10|A||AI 药物研发|应用|医学|Foresite Capital, ARCH Venture Partners| 近期热门融资 AI 产品速递 1 st : You.com 已完成多轮融资,包括来自 Salesforce CEO Marc Benioff 的 2000 万美元资金和 4500 万美元的募资。目前,You.com 用户数量稳定增长,已超过 10 万。体验链接:www.you.com
2024-10-28
AI公司的评测标准
以下是为您整理的关于 AI 公司评测标准的相关内容: 在 AI 领域,对公司的评测可能涉及多个方面。例如,从宏观角度来看,一个国家在 AI 方面的领先地位可能取决于其研究基础、高校培养的专业人才、创新者的创造力以及政府的长期投资和支持。同时,良好的监管环境对于确保创新者能够发展并应对 AI 带来的风险至关重要。 在具体的活动如麦乐园 AI 选美大赛中,评审标准包括审美(美的人、服装、场景)、创意(令人耳目一新)、氛围(情绪和故事性饱满,令人回味)、技术(精致执行,无明显瑕疵)。但需要注意的是,这只是特定活动中的评审标准,不能完全代表对 AI 公司的普遍评测标准。 总体而言,AI 公司的评测标准是复杂且多维度的,会因具体的应用场景和行业需求而有所不同。
2024-10-23