直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

因此在prompt中,把query放到头部和尾部,同时根据相似度,把相似度大的文档放到context的两端,是什么意思,要如何做到

回答

在开发产品视角的大模型 RAG 应用的 Prompt 阶段,匹配出与问句向量最相似的 top k 个 chunk 后,将匹配出的文本和问句添加到配置好的 prompt 中提交给 LLM。在这个过程中,根据论文《Lost in the Middle:How Language Models Use Long Contexts》,由于大模型对上下文中间位置的知识点提取较差,所以把 query(即问句)放到 prompt 的头部和尾部,同时按照相似度,将相似度大的文档放置在 context(上下文)的两端,这样做能够提升回答效果。要做到这一点,需要在进行 prompt 工程时,选择最合适的 prompt 模板,并按照上述原则对 query 和相似度大的文档进行合理的位置安排。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

开发:产品视角的大模型 RAG 应用

匹配出与问句向量最相似的top k个chunk之后,会将匹配出的文本和问句,一起添加到配置好的prompt中,提交给LLM。在这个阶段,可能需要一定的prompt工程,选择最合适的prompt模板。根据论文《Lost in the Middle:How Language Models Use Long Contexts》,大模型对上下文中间位置的知识点提取较差,因此在prompt中,把query放到头部和尾部,同时根据相似度,把相似度大的文档放到context的两端,能提升回答效果。

其他人在问
有没有把资料信息存放到知识库,通过问答方式得到答案的案例
以下是把资料信息存放到知识库,通过问答方式得到答案的案例: 安仔在开源 AI 社区中,基于 RAG 机制实现了知识库问答功能。首先创建一个包含大量社区 AI 相关文章和资料的知识库,例如创建有关 AI 启蒙和信息来源的知识库,通过手工录入方式上传栏目所有文章内容,然后陆续将社区其他板块的文章和资料导入。在设计 Bot 时,添加这个知识库,并设置合适的搜索策略、最大召回数量和最小匹配度,以更好地利用知识库返回的内容进行结合回答。 在阅读书籍、论文的互动式问答场景中,对应的关键词库包括书籍、报告、文件、详细信息、查询、主题、作者、出版日期、出版社、问题、方面、原则、方法、概括、主要观点、解释。需要注意的是,ChatGPT 的知识库截止于 2021 年 9 月,对于更新的数据或最新出版的书籍、报告和文件,它无法提供答案。如果有现成的 PDF,建议通过 CHATDOC 网站进行互动式问答。
2024-09-29
如何建立一个属于自己的电商大模型,又如何把数据放到自己的大模型里
建立属于自己的电商大模型并将数据放入其中,主要包括以下步骤: 1. 选择合适的部署方式: 本地环境部署。 云计算平台部署。 分布式部署。 模型压缩和量化。 公共云服务商部署。需根据自身的资源、安全和性能需求选择合适的部署方式。 2. 准备训练所需的数据和计算资源: 确保有足够的训练数据覆盖目标应用场景。 准备足够的计算资源,如 GPU 服务器或云计算资源。 3. 选择合适的预训练模型作为基础: 可以使用开源的预训练模型如 BERT、GPT 等作为基础。 也可以自行训练一个基础模型。 4. 针对目标任务进行模型微调训练: 根据具体应用场景对预训练模型进行微调训练。 优化模型结构和训练过程以提高性能。 5. 部署和调试模型: 将训练好的模型部署到生产环境。 对部署的模型进行在线调试和性能优化。 6. 注意安全性和隐私保护: 大模型涉及大量数据和隐私信息,需要重视安全性和合规性。 此外,以配置 FastGpt、OneAPI 为例,全程白嫖拥有一个 AI 大模型的微信助手的步骤如下: 1. 配置 OneAPI: 去阿里模型的链接里创建 ApiKey,并复制下来。 在 OneAPI 的页面,点击【渠道】添加新渠道,类型选择阿里通义千问,粘贴 ApiKey。 创建 OneApi 的令牌,点击【令牌】添加新令牌,名称自定,时间设为永不过期、额度设为无限额度,提交并复制令牌。 2. 配置 FastGpt:回到宝塔系统【文件】菜单,修改 dockercompose.yml 和 config.json 文件(文件路径 root>fastgpt)。 另外,基于 COW 框架实现 ChatBot 时需要注意: 1. 本实现思路需要接入大模型 API 的方式实现(API 单独付费)。 2. 微信端因为是非常规使用,会有封号危险,不建议主力微信号接入。 3. 操作时请依法合规使用,注意甄别大模型生成的内容,确保所有操作均符合相关法律法规的要求,禁止将此操作用于任何非法目的,处理敏感或个人隐私数据时注意脱敏,以防任何可能的滥用或泄露。
2024-09-05
生成AI形象照,即给它一张照片,或多张照片,还原本人相似度高的AI工具,或应用,或网站有哪些?
以下是一些能够根据照片生成相似度较高的 AI 形象的工具、应用或网站: 1. Artguru AI Art Generator:这是一个在线平台,能够生成逼真图像,为设计师提供灵感,丰富创作过程。 2. Retrato:一款 AI 工具,可将图片转换为非凡肖像,拥有 500 多种风格选择,适合制作个性头像。 3. Stable Diffusion Reimagine:新型 AI 工具,通过稳定扩散算法生成精细、具有细节的全新视觉作品。 4. Barbie Selfie Generator:专为喜欢梦幻童话风格的人设计的 AI 工具,能将上传的照片转换为芭比风格,效果出色。 这些 AI 模型通过组合如扩散模型、大型视觉转换器等技术,可以根据文本或参考图像生成具有创意且质量不错的相似图像输出,但可能存在性能不稳定、生成内容不当等局限。 此外,您还可以访问获取更多生成 logo 等相关的 AI 工具。 如果您想生成专属 AI 写真,可参考以下 Prompt:垫图 url + Chinese female model,upper body,clothes with collars,bright space natural pose,big earrings,Chinese traditional minimalism,flat illustration,geometric shapes,minimalism niji 6 ar 3:4 sw 200 sref url
2024-09-23
相似性度量的例子
以下是一些相似性度量的例子: 在商业化问答场景中,使用余弦相似性来计算问题向量和各个文档向量之间的相似度,以找出与问题内容最为接近的文档。 在评估 GPT4 生成答案的真实性时,使用包括 ROUGE、BLEU 和 BLEURT 等标准相似度度量标准,将生成的回答与提供的参考(「gold」)答案进行比较,若得分高于预先确定的阈值,则认为生成的回答是真实的。
2024-08-27
我需要将一个人物照片转换成提示词,可以作为即梦AI创作的提示词用,要求创作出来的人物高度相似,我提供照片
以下是将人物照片转换为即梦 AI 创作提示词的相关知识和步骤: 1. 一般的提示词格式:,。注意两张图片的背景颜色保持一致,有助于融合时的协调。 2. 在 Tusiart 中文生图的操作流程中: 定主题:明确生成图片的主题、风格和要表达的信息。 选择基础模型 Checkpoint:根据主题选择贴近的模型,如麦橘、墨幽的系列模型。 选择 lora:寻找内容重叠的 lora 来控制图片效果和质量。 ControlNet:可控制人物姿态等特定图像,属于高阶技能。 局部重绘:后续再学。 设置 VAE:选择 840000 即可。 Prompt 提示词:用英文写需求,使用单词和短语组合,不用管语法和长句,单词、短语之间用英文半角逗号隔开。 3. 在【SD】真人转二次元的图生图功能中,除了文本提词框还有图片框输入口。可通过图片反推提示词,如 CLIP 能反推出完整含义的句子,DeepBooru 能反推出关键词组。但反推的提示词可能有瑕疵,需要手动补充信息,调整宽度和高度使红框匹配图片。
2024-08-12
有没有把小红书的相似内容搜索整理成文档的AI工具
有一些AI工具可以帮助内容创作者在小红书等平台上提高创作效率,例如“红薯智语”,这是一个专为小红书内容创作者设计的智能文案生成工具,它能够根据上传的图片和输入的关键词快速生成文案。此外,还有其他一些AI工具,如“搭画快写”、“小红书种草文案生成器”、“AI神笔马良”和“小红书AI副编辑”,这些工具可以帮助用户生成小红书内容,但它们主要是文案生成工具,并不专门用于搜索和整理相似内容。 如果需要整理小红书的相似内容,可能需要结合使用小红书平台的搜索功能和第三方的内容管理工具,或者开发定制化的AI解决方案来实现这一需求。
2024-06-10
是否有对比两张人像相似度的工具
目前有一些可以对比两张人像相似度的工具和技术,它们主要基于计算机视觉和人脸识别技术。以下是一些常见的选择: 1. 在线人脸比对工具 网上有一些免费或付费的在线人脸比对工具,例如 Face++、澄云人脸核身等,可以上传两张人像图片,系统会给出一个相似度评分。 2. Python 人脸识别库 像 face_recognition、dlib、OpenCV 等 Python 库都内置了人脸识别和相似度计算的功能,你可以用几行代码实现图片人脸比对。 3. 人脸识别云服务 一些科技公司提供了人脸识别的云 API 服务,如亚马逊 Rekognition、微软 Azure Face API、百度 AI 云人体分析等,可通过调用 API 获取两张图片的相似度。 4. 开源人脸识别引擎 有些知名的开源人脸识别系统如 FaceNet、ArcFace、InsightFace 等,你可以下载源码在本地部署,利用它们的相似度判断能力。 5. 人工智能应用平台 一些面向普通用户的 AI 平台如 PandorAI、PicoGPT 等,集成了人脸比对的功能模块,提供在线体验或调用接口。 使用这些工具前,通常需要先完成注册和人脸数据采集等准备工作。在选择时你可以考虑性能、便捷性、隐私安全、成本等因素。目前的人脸识别技术虽已相当精准,但也面临一些道德和法律挑战,使用时需谨慎。
2024-04-19
批量生成风格相似但人物动作不同的图片的工具和方式
批量生成风格相似但人物动作不同的图片的工具是 mj,方式如下: 1. 喂参考图:先把自己喜欢的参考图上传,然后点开上传的图片,复制它的链接。然后在关键词的地方填上:图片链接+这张图的关键词; 2. 使用 panels 命令:选择基础模型 Checkpoint、lora、ControlNet、设置 VAE、局部重绘、Prompt 提示词等。
2024-04-17
一个 prompt 有 10 段文本内容,怎么标记不同段落的权重
当一个 prompt 有 10 段文本内容时,标记不同段落权重的方法如下: 使用双冒号“::”将提示分成不同部分,并在双冒号后面立即添加一个数字来指定该部分的相对权重。例如,“hot::2 dog”表示单词“hot”比“dog”重要度高出两倍。 在版本 1、2、3 中只接受整数作为权值,版本 4 能接受权值的小数位数。未指定权值时默认为 1。 负数权值可用于提示中以删除或排除不需要的元素,但所有权值的比必须是正数。 改变 tag 权重有多种方式: :数值从 0.1 到 100,低于 1 减弱,大于 1 加强。 括号,权重就重 1.1 倍;每加一层括号就反向减弱 1.1 倍。 小括号权重乘 1.1,如 a;中括号权重除以 1.1;小括号里面直接用冒号写权重也行;反斜杠可以让小括号的权重不生效当做一般字符串处理。 花括号写法,一个花括号权重为 1.05。 提示词其他常用语法:是画到一半的时候开始不画女孩。
2024-11-17
什么是prompt?
Prompt 是您给大模型的文本,用于引发相关输出,通常以问题或指示的形式出现。它可以是一套与大模型交互的语言模板,通过这个模板,您可以输出对大模型响应的指令,明确大模型应该做什么、完成什么任务以及如何处理具体任务,并最终获得期望的结果。大模型的本质是基于语言的概率模型,没有 Prompt 时,大模型随机给出答案,有了 Prompt 则相当于给了一个包含对模型要求、输入和输出限制的模板,让大模型在限制下得到概率最大的答案。此外,Prompt 是给到大模型输入的一段原始输入,能帮助模型更好地理解用户需求并按特定模式或规则进行响应。例如可以设定“假设你是一位医生,给出针对这种症状的建议”,后续对话会按此设定展开,还能在设定中要求模型按一定思路逻辑回答,如思维链(cot),也能让模型按特定格式(如 json)输出,使模型成为输出器。
2024-11-17
用 mj 做文生图,Prompt 模板
以下是使用 MJ 进行文生图的 Prompt 模板: 1. 定主题:明确您需要生成一张什么主题、什么风格、表达什么信息的图。 2. 选择基础模型 Checkpoint:按照主题,找内容贴近的 checkpoint。一般喜欢用模型大佬麦橘、墨幽的系列模型,如麦橘写实、麦橘男团、墨幽人造人等,效果较好。 3. 选择 lora:在想要生成的内容基础上,寻找内容重叠的 lora,以控制图片效果及质量。可多参考广场上好看的帖子中使用的 lora。 4. ControlNet:用于控制图片中特定的图像,如人物姿态、生成特定文字、艺术化二维码等,属于高阶技能,可后续学习。 5. 局部重绘:下篇再教。 6. 设置 VAE:无脑选择 840000 这个即可。 7. Prompt 提示词:用英文写想要 AI 生成的内容,使用单词和短语的组合,不用管语法,单词、短语之间用英文半角逗号隔开。 8. 负向提示词 Negative Prompt:用英文写想要 AI 避免产生的内容,同样不用管语法,只需单词和短语组合,中间用英文半角逗号隔开。 9. 采样算法:较复杂,一般选 DPM++ 2M Karras 较多。最稳妥的是留意 checkpoint 的详情页上模型作者是否有推荐采样器,使用推荐的采样器更有保障。 10. 采样次数:根据采样器特征,选 DPM++ 2M Karras 后,采样次数一般在 30 40 之间,多了意义不大且慢,少了出图效果差。 11. 尺寸:根据个人喜好和需求选择。 另外,使用 Stability AI 基于 Discord 的媒体生成和编辑工具进行文生图时: 1. 点击链接进入官方 DISCORD 服务器:https://discord.com/invite/stablediffusion 。 2. 进入 ARTISAN 频道,任意选择一个频道。 3. 输入/dream 会提示没有权限,点击链接,注册登录,填写信用卡信息以及地址,点击提交,会免费试用三天,三天后开始收费。 4. 输入/dream 提示词,这部分和 MJ 类似。 5. 和 MJ 手工输入参数不同,可选参数有五类: prompt:提示词,正常文字输入,必填项。 negative_prompt:负面提示词,填写负面提示词,选填项。 seed:种子值,可以自己填,选填项。 aspect:长宽比,选填项。 model:模型选择,SD3,Core 两种可选,选填项。 Images:张数,1 4 张,选填项。完成后选择其中一张。 在 MJ 应用篇儿童绘本制作、人物一致性方面: 1. 生成人物图片:确定人物形象,如“a little girl wearing a yellow floral skirt + 人物动作 + 风格词”,在 mj 中生成直到得到满意的人物图像。垫图 URL + “In the forest,a little girl wearing a yellow floral skirt is playing happily,super high details,HDsmooth,by Jon Burgerman,s 400 ar 3:4 niji 5 style expressive iw 2”,iw 取值范围,不填写默认 iw = 1,iw 值越大越接近垫的图像,反之更接近提示词。为确保人物一致性,取 iw 2 。 2. 合成人物和场景,垫图并重新生成:使用 PS 或者 Canva 将人物和场景合成到一张图,若色调不和谐(若画面和谐或 PS 技术足够,也可不用图生图),将合成后的图作为垫图(iw 2),mj 重新生图,如“prompt:垫图 url + Little girl wearing a yellow floral skirt,and her friend brown bear,taking shelter in the cave,rainstorm,super high details,HDsmooth,by Jon Burgerman,s 400 ar 3:4 niji 5 style expressive iw 2”。 3. 绘本展示。
2024-11-15
文生图的 Prompt 模板
以下是关于文生图的 Prompt 模板的相关内容: 通常描述逻辑包括人物及主体特征(如服饰、发型发色、五官、表情、动作),场景特征(如室内室外、大场景、小细节),环境光照(如白天黑夜、特定时段、光、天空),画幅视角(如距离、人物比例、观察视角、镜头类型),画质(如高画质、高分辨率),画风(如插画、二次元、写实)。通过这些详细的提示词,能更精确地控制 Stable Diffusion 的绘图。 对于新手,有功能型辅助网站帮助书写提示词,如 http://www.atoolbox.net/ ,可通过选项卡方式快速填写关键词信息;https://ai.dawnmark.cn/ ,每种参数有缩略图参考,方便直观选择提示词。还可以去 C 站(https://civitai.com/)抄作业,复制每一张图的详细参数并粘贴到正向提示词栏,然后点击生成按钮下的第一个按键,不过要注意图像作者使用的大模型和 LORA,不然即使参数一样,生成的图也会不同,也可只取其中较好的描述词使用。 在 Tusiart 中,文生图的操作流程如下: 定主题:确定要生成的图的主题、风格和表达的信息。 选择基础模型 Checkpoint:找内容贴近主题的 checkpoint,如麦橘、墨幽的系列模型。 选择 lora:寻找内容重叠的 lora 控制图片效果及质量。 ControlNet:控制图片中特定的图像,如人物姿态、特定文字、艺术化二维码等。 设置 VAE:无脑选择 840000 。 Prompt 提示词:用英文写需求,单词和短语组合,用英文半角逗号隔开,不用管语法和长句。 负向提示词 Negative Prompt:用英文写要避免的内容,单词和短语组合,用英文半角逗号隔开。 采样算法:如选 DPM++ 2M Karras,留意 checkpoint 详情页上模型作者推荐的采样器。 采样次数:根据采样器特征,如选 DPM++ 2M Karras 采样次数在 30 40 之间。 尺寸:根据喜好和需求选择。 在一些提示词中,括号和“:1.2”等是用来增加权重的,权重越高在画面中体现越充分,提示词的先后顺序也会影响权重。同时还有反向提示词,告诉 AI 不要的内容。
2024-11-15
关于儿童绘本的Prompt
以下是关于儿童绘本的 Prompt 相关内容: 对于儿童故事读物,通常需要具备以下特点: 1. 语言简单易懂,使用简洁的语言和短句子,便于孩子理解和跟随故事情节。 2. 具有丰富的想象力,充满奇幻和想象,带有魔法、奇妙的生物和奇异的世界,激发孩子的创造力和想象力。 3. 包含教育意义,常包含道德教训或生活启示,帮助孩子理解基本价值观。 4. 拥有生动的角色,包括可爱的动物、勇敢的英雄、善良的公主等,以有趣的人物形象吸引孩子注意力。 5. 经常使用重复的句子或韵律感强的语言,增强记忆力和语言的音乐感。 6. 具备互动性,许多儿童故事设计为互动式,鼓励孩子参与情节发展。 7. 有明确的情节结构,故事情节简单明了,有清晰的开始、发展和结局,方便孩子跟随和理解。 8. 配有丰富的插图和图画,增强视觉吸引力,帮助孩子更好地理解和记忆故事内容。 在让 LLM 生成故事时,需要限定生成的内容主题、风格、适合人群等的 prompt,例如生成「漫画小书虫📚🐛」的相关故事,并按照格式返回文本内容,以方便后续对数据解析、配图。 此外,小七姐在 K12 领域应用中提到儿童 PBL 项目 Prompt,原始设计思路包括: 1. 作为家长,获取 10 个生活中可能的 PBL 项目主题。 2. 对感兴趣的主题进一步拓展 5 个相关主题。 3. 选择主题后,设计包含目标、项目周期、项目阶段和任务、项目评估的 PBL 项目。 4. 根据反馈优化项目。 5. 设计测试评估孩子在项目中的知识与能力、提升可能、学习风格和兴趣点。 6. 根据孩子的真实反馈设计个性化学习方案。 7. 明确家长在项目中承担的角色和提供的支持。 8. 写一封信吸引孩子参与家长设计的学习项目。 例如为一位特别喜欢识认汽车品牌、喜欢交通工具、挖掘机等工程机械车的 3 岁小朋友设计一个包含能练习中、英文的 PBL 项目式学习任务,包含项目目标、项目周期、项目阶段和任务、项目评估。 在提示简介中,提示是给 Claude 的用于引发相关输出的文本,通常以问题或指示的形式出现,Claude 回答的文本被称为“响应”,有时也被称为“输出”或“完成”。
2024-11-15
prompt是什么
Prompt 是您给 AI(如 Claude)的文本,用于引发相关输出,通常以问题或指示的形式出现。例如:“Why is the sky blue?” 它是一段指令,用于指挥 AI 生成您所需要的内容,每个单独的提示词叫 tag(关键词)。支持的语言为英语,emoji 也可以用。语法规则包括用英文半角符号逗号分隔 tag,改变 tag 权重有两种写法,还可以进行 tag 的步数控制。此外,prompt 是给到大模型输入的一段原始输入,能够帮助模型更好地理解用户的需求并按照特定的模式或规则进行响应。比如可以设定“假设你是一位医生,给出针对这种症状的建议”,然后后续对话会按照这个设定展开,还能在 prompt 的设定中要求模型按照一定的思路逻辑回答,如思维链(cot),也能让模型按照特定格式(如 json)输出,将模型变成输出器。
2024-11-14