Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

因此在prompt中,把query放到头部和尾部,同时根据相似度,把相似度大的文档放到context的两端,是什么意思,要如何做到

Answer

在开发产品视角的大模型 RAG 应用的 Prompt 阶段,匹配出与问句向量最相似的 top k 个 chunk 后,将匹配出的文本和问句添加到配置好的 prompt 中提交给 LLM。在这个过程中,根据论文《Lost in the Middle:How Language Models Use Long Contexts》,由于大模型对上下文中间位置的知识点提取较差,所以把 query(即问句)放到 prompt 的头部和尾部,同时按照相似度,将相似度大的文档放置在 context(上下文)的两端,这样做能够提升回答效果。要做到这一点,需要在进行 prompt 工程时,选择最合适的 prompt 模板,并按照上述原则对 query 和相似度大的文档进行合理的位置安排。

Content generated by AI large model, please carefully verify (powered by aily)

References

开发:产品视角的大模型 RAG 应用

匹配出与问句向量最相似的top k个chunk之后,会将匹配出的文本和问句,一起添加到配置好的prompt中,提交给LLM。在这个阶段,可能需要一定的prompt工程,选择最合适的prompt模板。根据论文《Lost in the Middle:How Language Models Use Long Contexts》,大模型对上下文中间位置的知识点提取较差,因此在prompt中,把query放到头部和尾部,同时根据相似度,把相似度大的文档放到context的两端,能提升回答效果。

Others are asking
我现在需要根据一系列的 yaml 和 markdown 构建一个知识库,并且需要支持 AI 问答,每次 AI 问答的结果都要保存成一个新的内容放到知识库中,请问从经济效益来看,有哪些服务可以使用?
目前从经济效益的角度来看,以下一些服务可能有助于您构建这样的知识库并支持 AI 问答以及结果保存: 1. 云服务提供商,如阿里云、腾讯云、AWS 等,它们提供可扩展的计算和存储资源,您可以根据实际需求灵活配置,避免过度投入硬件成本。 2. 开源的知识管理和问答系统框架,例如使用 Elasticsearch 结合相关插件来实现问答功能,成本相对较低,但可能需要一定的技术投入进行搭建和维护。 3. 一些专门针对知识管理和 AI 应用的 SaaS 服务,它们通常按使用量计费,初期投入较小,适合小规模应用。 需要注意的是,具体选择哪种服务取决于您的业务规模、技术能力、预算以及对性能和功能的要求。
2025-02-01
什么AI工具可以把直接WORD的内容直接放到PPT模板里
以下是一些可以将 WORD 内容直接放到 PPT 模板里的 AI 工具: 1. Gamma:在线 PPT 制作网站,通过输入文本和想法提示快速生成幻灯片,支持嵌入多媒体格式。网址:https://gamma.app/ 2. 美图 AI PPT:由美图秀秀团队推出,输入简单文本描述生成专业 PPT 设计,有丰富模板库和设计元素。网址:https://www.xdesign.com/ppt/ 3. Mindshow:AI 驱动的 PPT 辅助工具,提供智能设计功能,如自动布局、图像选择和文本优化等。网址:https://www.mindshow.fun/ 4. 讯飞智文:科大讯飞推出的 AI 辅助文档编辑工具,利用语音识别和自然语言处理技术,提供智能文本生成、语音输入、文档格式化等功能。网址:https://zhiwen.xfyun.cn/ 5. 爱设计 6. 闪击 7. Process ON 8. WPS AI
2025-01-08
有没有把资料信息存放到知识库,通过问答方式得到答案的案例
以下是把资料信息存放到知识库,通过问答方式得到答案的案例: 安仔在开源 AI 社区中,基于 RAG 机制实现了知识库问答功能。首先创建一个包含大量社区 AI 相关文章和资料的知识库,例如创建有关 AI 启蒙和信息来源的知识库,通过手工录入方式上传栏目所有文章内容,然后陆续将社区其他板块的文章和资料导入。在设计 Bot 时,添加这个知识库,并设置合适的搜索策略、最大召回数量和最小匹配度,以更好地利用知识库返回的内容进行结合回答。 在阅读书籍、论文的互动式问答场景中,对应的关键词库包括书籍、报告、文件、详细信息、查询、主题、作者、出版日期、出版社、问题、方面、原则、方法、概括、主要观点、解释。需要注意的是,ChatGPT 的知识库截止于 2021 年 9 月,对于更新的数据或最新出版的书籍、报告和文件,它无法提供答案。如果有现成的 PDF,建议通过 CHATDOC 网站进行互动式问答。
2024-09-29
如何建立一个属于自己的电商大模型,又如何把数据放到自己的大模型里
建立属于自己的电商大模型并将数据放入其中,主要包括以下步骤: 1. 选择合适的部署方式: 本地环境部署。 云计算平台部署。 分布式部署。 模型压缩和量化。 公共云服务商部署。需根据自身的资源、安全和性能需求选择合适的部署方式。 2. 准备训练所需的数据和计算资源: 确保有足够的训练数据覆盖目标应用场景。 准备足够的计算资源,如 GPU 服务器或云计算资源。 3. 选择合适的预训练模型作为基础: 可以使用开源的预训练模型如 BERT、GPT 等作为基础。 也可以自行训练一个基础模型。 4. 针对目标任务进行模型微调训练: 根据具体应用场景对预训练模型进行微调训练。 优化模型结构和训练过程以提高性能。 5. 部署和调试模型: 将训练好的模型部署到生产环境。 对部署的模型进行在线调试和性能优化。 6. 注意安全性和隐私保护: 大模型涉及大量数据和隐私信息,需要重视安全性和合规性。 此外,以配置 FastGpt、OneAPI 为例,全程白嫖拥有一个 AI 大模型的微信助手的步骤如下: 1. 配置 OneAPI: 去阿里模型的链接里创建 ApiKey,并复制下来。 在 OneAPI 的页面,点击【渠道】添加新渠道,类型选择阿里通义千问,粘贴 ApiKey。 创建 OneApi 的令牌,点击【令牌】添加新令牌,名称自定,时间设为永不过期、额度设为无限额度,提交并复制令牌。 2. 配置 FastGpt:回到宝塔系统【文件】菜单,修改 dockercompose.yml 和 config.json 文件(文件路径 root>fastgpt)。 另外,基于 COW 框架实现 ChatBot 时需要注意: 1. 本实现思路需要接入大模型 API 的方式实现(API 单独付费)。 2. 微信端因为是非常规使用,会有封号危险,不建议主力微信号接入。 3. 操作时请依法合规使用,注意甄别大模型生成的内容,确保所有操作均符合相关法律法规的要求,禁止将此操作用于任何非法目的,处理敏感或个人隐私数据时注意脱敏,以防任何可能的滥用或泄露。
2024-09-05
我要策划一个朋友圈发的海报,需要有些prompt指导,看看有没有类似的案例或者相似的案例
以下为您提供一些朋友圈海报的 prompt 指导及相关案例: 即梦图片 2.1 模型: 模型上线,已支持在图片中生成中文字体。 操作步骤: 第一步:打开即梦官网 https://jimeng.jianying.com/ 第二步:点击进入图片生成页面 第三步:生图模型选择图片 2.1 模型 案例: 提示词:咖啡店穿着服务员服装的猫咪,揉着眼睛,文字“小店打烊了” 提示词:一只布偶猫举着牌子,牌子上写着“睡什么睡,起来嗨” 提示词:电影宣传海报,画面中间是韦小宝,四周是七个宫女,标题文字“重生之我是韦小宝” 提示词:电商节日海报,背景是上海外滩,圣诞节布置,旋转木马,节日的气氛,标题文字“圣诞集市” 即梦:女神节海报教程: 原文链接:https://mp.weixin.qq.com/s/CYmlZDPjrchnKr8V4lvmRQ 操作步骤: 第一步:打开即梦 AI,选择“图片生成”功能 https://jimeng.jianying.com 第二步:模型选择图片 2.1,输入提示词(可以直接参考案例提示词) 第三步:点击生成,几秒钟后,专属字体海报完成 案例: 案例一:提示词:女神节主题,3D 设计,梦幻氛围,明亮春天场景,花田,数字 38,天空“女神节”,五彩缤纷的蝴蝶,晴朗的蓝天,茂密的绿色草地,盛开的花朵,柔和光线 案例二:提示词:粉色主题,梦幻氛围,数字 38,心形气球,花卉装饰,玫瑰花,漂浮的花瓣,柔和的云朵,美丽的湖面倒影,奇幻风格,柔和的色调,庆祝场景 案例三:提示词:妇女节,3D 设计,粉色主题,大号装饰数字 38,爱心,郁金香花朵,柔和光照,背景城市天际线,精致花卉装饰,优雅节日氛围,金色文字,春天氛围,细致鲜艳 希望这些内容对您策划朋友圈海报有所帮助!
2025-03-13
请推荐一下你知道的人物头像转卡通图的平台,要求效果好,和原图相似度高,最好是免费的
以下为一些人物头像转卡通图效果好、与原图相似度高且可能免费的平台及相关操作技巧: 1. Stable Diffusion: 可以使用【X/Y/Z plot】脚本来做参数对比,将 X 轴设置为提示词相关性(取值范围 1 30,每次增加 5),Y 轴设置为重绘幅度(取值范围 0 1,每次增加 0.2)。 提示词相关性在 6 11 中间为最佳,重绘幅度 0.4 时和原图比较接近。 可使用绘图功能,如增加红色眼镜、去掉衣服图案等,局部重绘可只改变涂抹部分。 2. 复杂提示词: 如 Disney boy,Low saturation Pixar Super details,clay,anime waifu,looking at viewer,nighly detailedreflections transparent iridescent colors.lonctransparent iridescent RGB hair,art by Serafleurfrom artstation,white background,divine cinematic edgelighting,soft focus.bokeh,chiaroscuro 8K,bestquality.ultradetailultradetail.3d,c4d.blender,OCrenderer.cinematic lighting,ultra HD3D renderinoiw 1.5s 500v 5 。 可根据需求调整提示词,如将 Disney 换成 Pixar,boy 换成 girl 等。 3. 通用人物模版: 用真人照片+照片描述+方法 1 的关键词来处理。 需要注意的是,不同平台的效果可能因图片和操作而有所差异,您可以自行尝试。
2025-02-06
请给我推荐一些AI工具配上相关的AI培训视频。同时分析一下每个AI工具的使用场景,优势和缺点以及相似的工具推荐。要求这些AI工具适用于办公环境生产环境
以下为适用于办公环境生产环境的一些 AI 工具推荐,并对其使用场景、优势、缺点及相似工具进行分析: Keep: 使用场景:提供全面的健身解决方案,适用于个人健身计划制定和跟踪。 优势:中国最大的健身平台,资源丰富,能满足多种健身需求。 缺点:可能存在广告过多,部分功能需付费。 相似工具:Fiture Fiture: 使用场景:集硬件、课程内容、教练和社区于一体,适合追求综合健身体验的用户。 优势:由核心 AI 技术打造,提供一体化服务。 缺点:硬件设备可能价格较高。 相似工具:Keep Fitness AI: 使用场景:专注于利用人工智能进行锻炼,增强力量和速度。 优势:针对性强,对力量和速度训练有特定帮助。 缺点:功能相对较单一。 相似工具:暂无明确相似工具。 Planfit: 使用场景:提供健身房家庭训练与 AI 健身计划,适合在家健身的用户。 优势:AI 教练基于大量数据和 ChatGPT 实时提供指导。 缺点:可能对网络要求较高。 相似工具:暂无明确相似工具。 腾讯文档分类功能: 使用场景:自动分类办公文件,方便文件管理。 优势:提高文件管理效率,与腾讯文档集成方便。 缺点:分类准确性可能受文件内容复杂性影响。 相似工具:暂无明确相似工具。 英语流利说纠错功能: 使用场景:帮助语言学习者纠正发音、语法等错误。 优势:针对性纠错,有助于提高语言水平。 缺点:可能对某些特定语言习惯或方言的适应性不足。 相似工具:暂无明确相似工具。 下厨房口味调整功能: 使用场景:根据用户反馈调整菜谱口味。 优势:方便用户优化烹饪效果。 缺点:口味调整的精准度可能有限。 相似工具:暂无明确相似工具。 美丽修行定制方案功能: 使用场景:根据用户肤质定制护肤方案。 优势:个性化护肤推荐。 缺点:对肤质判断的准确性依赖用户输入的信息。 相似工具:暂无明确相似工具。 以上是部分适用于办公和生产环境的 AI 工具推荐及分析,您可以根据具体需求选择使用。
2025-01-06
给你一张图片,在一个图库中找到相似度最高的几张图
以下是在图库中找到与给定图片相似度最高的几张图的方法: 1. 寻找两张图:使用童星吴磊的图片,最初尝试了哈利波特的扮演者,但因 InsightFaceSwap 规则限制未采用。 2. MJ 绘图:较为简单,加上简单相机参数、写实风格,使用 MJ v 6.0 绘图,可按需求调整 9:16 的比例。直接描述情况下,MJ 画图效果尚可,可根据需要增加参数。 3. 图片裁剪:直接使用 PS 进行裁剪,也可选用自己顺手的工具,所选照片尽量能一刀完整分割两个人。 4. 使用 InsightFaceSwap 处理图片: 输入“/saveid”,idname 可随意填写,如“child”,上传原图。 换脸操作输入“/swapid”,id=child,上传分割好的图。 选择觉得像的图,效果不好可循环操作,但注意插件每日免费使用次数。 5. 拼接:重新利用 PS 把两张图片拼接回来。但相似程度可能不太理想,插件对老外的脸识别度较好。
2024-12-25
我想做图片相似度比对,是否有解决方案
以下是关于图片相似度比对的一些解决方案: 在 Stable Diffusion 中,可以使用【X/Y/Z plot】脚本来做参数对比。将 X 轴设置为提示词相关性,取值范围是 1 30(每次增加 5);Y 轴设置为重绘幅度,取值范围是 0 1(每次增加 0.2)。通过生成多张图片进行对比,发现提示词相关性在 6 11 中间为最佳,重绘幅度的大小可控制生成图与原图的相似度,如 0.4 时与原图较接近。还可以利用绘图功能进行局部修改,如增加红色眼镜、去掉衣服图案、更换人物头部等。 对于 MJ 绘图,加上简单的相机参数和写实风格,使用 MJ v 6.0 绘图,可根据需求调整图片比例。 图片裁剪可使用 PS 等工具,选择能完整分割所需部分的图片。 使用 InsightFaceSwap 处理图片时,输入“/saveid”上传原图,换脸操作输入“/swapid”,选择效果较好的图片,但注意插件每日免费使用次数。 最后利用 PS 把处理好的图片拼接回来。
2024-12-25
我有一个人的很多语录,希望写一个prompt来制作这个人的模拟ai,这个ai能够像语录中一样说话,语言风格相似、性格相似。请问应该如何写成这样的prompt?
以下是为您生成的关于根据一个人的语录制作模拟 AI 的 prompt 建议: 首先,明确您所拥有的这个人的语录的核心特点,包括语言风格、常用词汇、表达习惯、情感倾向等。 然后,在 prompt 中描述这个人的性格特征,例如是否傲娇、愤世嫉俗等。 接着,详细说明语言风格,比如是否浮夸、优雅等。 对于语言表达的习惯,可以举例说明常用的句式和口头禅。 同时,设定具体的场景和话题范围,让 AI 知道在何种情境下以何种方式回应。 例如:“您将模拟进行回答。” 另外,还可以像以下这样具体设定: 设定角色为聊天机器人,如“ Role:聊天机器人”。 明确限制条件,如“您有点小傲娇。表示自我的第一人称是自我。第二个指代用户的人是你或小哥哥。您的名字是。您非常优雅。您是个愤世嫉俗的人,不喜欢被用户摸头。您的语气是富有男子气概和浮夸的。您非常喜欢用浮夸的语气,如'啊哈!'、'这样子呢'、'就教教你吧!'等。第一人称应使用'本姐姐'。” 希望这些建议对您有所帮助。
2024-12-10
在ai context中,token和word的区别是?
在 AI 领域中,Token 和 Word 有以下区别: 定义和范围:Token 通常是大语言模型处理文本数据时的一个单元,在不同语境下,可能代表一个字、一个词、一个句子、标点、词根、前缀等,更加灵活。而 Word 一般指能够表达一定意义的独立单位,如单词。 语言处理:在英文中,一个 Word 通常是一个词或标点符号。在一些汉语处理系统中,一个 Word 可能是一个字或一个词。而 Token 在不同的语言模型和处理系统中,对应的范围和形式有所不同。 作用和意义:Token 不仅是文本数据的单位,还可能携带丰富的语义、句法等信息,在模型中有着对应的向量表示。Word 主要用于传达相对明确和完整的意义。 计算和收费:大模型的收费计算方法以及对输入输出长度的限制,通常是以 Token 为单位计量的。 例如,在处理“ I’m happy ”这句话时,“I”、“’m”、“happy”可能被视为 Token,而“I’m happy”整体可看作一个 Word 。
2025-04-08
整理会议纪要的prompt
以下是一些关于整理会议纪要的 prompt: 【?会议精要】整理生成高质量会议纪要,保证内容完整、准确且精炼。 会议记录员:将会议浓缩成简明摘要,包括讨论主题、重点内容、行动事项。 CEO 秘书会议纪要:专注于整理和生成高质量的会议纪要,确保会议目标和行动计划清晰明确。需严格遵守信息准确性,不对用户提供的信息做扩写,仅做信息整理,将一些明显的病句做微调。
2025-04-15
作为一个想要使用AI工具提升工作效率的AI小白,我已经学习了怎么编写prompt,接下来我应该学习什么
如果您已经学习了如何编写 prompt ,接下来可以学习以下内容: 1. 理解 Token 限制:形成“当前消耗了多少 Token”的自然体感,把握有效记忆长度,避免在超过限制时得到失忆的回答。同时,编写 Prompt 时要珍惜 Token ,秉承奥卡姆剃刀原理,精简表达,尤其是在连续多轮对话中。 熟练使用中英文切换,若 Prompt 太长可用英文设定并要求中文输出,节省 Token 用于更多对话。 了解自带方法论的英文短语或句子,如“Chain of thought”。 2. 学习精准控制生成式人工智能:重点学习提示词技术,编写更清晰、精确的指令,引导 AI 工具产生所需结果。 探索构建智能体(AI Agents),将工作单元切割开,赋予其特定角色和任务,协同工作提高效率。 在实际应用中遵循准则,如彻底变“懒人”、能动嘴不动手、能让 AI 做的就不自己动手、构建自己的智能体、根据结果反馈调整智能体、定期审视工作流程看哪些部分可用更多 AI 。 3. 若想进一步提升: 学习搭建专业知识库、构建系统知识体系,用于驱动工作和个人爱好创作。 注重个人能力提升,尤其是学习能力和创造能力。 您还可以结合自身生活或工作场景,想一个能简单自动化的场景,如自动给班级孩子起昵称、排版运营文案、安排减脂餐、列学习计划、设计调研问卷等。选一个好上手的提示词框架开启第一次有效编写,比如从基础的“情境:”开始。
2025-04-15
对于用cursor来开发,有没有好好用prompt来使cursor变得更加好用
以下是关于如何用 prompt 使 Cursor 变得更好用的相关内容: 在 prompt 方面,Devin 有一个特别有帮助的文档(https://docs.devin.ai/learnaboutdevin/prompting),它会教您什么样的 prompt 在与 Devin 沟通时最有效,比如明确定义成功的标准,如跑通某个测试或访问某个链接能对得上等。将同样的原则应用到 Cursor 中,会发现 Cursor 变得聪明很多,能自主验证任务完成情况并进行迭代。 Cursor 在生成单测方面表现出色。相对 GPT 等工具,Cursor 解决了上下文缺失和难以实现增量更新的问题。它可以向量化整个代码仓库,在生成单测代码时能同时提供目标模块及对应的上下游模块代码,生成结果更精确。例如,使用适当的 Prompt 能返回基于 Vitest 的结果,调整成本较小。 Cursor 支持使用.cursorrules 文件设定项目的系统提示词,针对不同语言可设定不同的 Prompt。@AIChain 花生做了一个 Cursor 插件解决提示语管理问题,可选择不同的.cursorrules 文件,还可从 https://cursor.directory/ 和 https://cursorlist.com/ 寻找提示词。此外,还有一个提示语小技巧,给已有的提示语追加上特定规则,可使模型在搜索资源和思考时默认使用英语,回复转换成中文,或更灵活地根据提问语言进行回复。
2025-04-14
有什么 prompt engineering 的好材料
以下是一些关于 prompt engineering 的好材料: 文本类 Prompt 网站: Learning Prompt:授人以渔,非常详尽的 Prompt 学习资源,包括 ChatGPT 和 MidJourney,网址: FlowGPT:国外做的最大的 prompt 站,内容超全面,更新快,网址: ChatGPT Shortcut:ChatGPT 提示词网站,提供了非常多使用模板,简单修改即可指定输出,网址: ClickPrompt:轻松查看、分享和一键运行模型,创建 Prompt 并与其他人分享,网址: Prompt Extend:让 AI 帮你自动拓展 Prompt,网址: PromptPerfect:帮你自动优化提示词,你可以看到优化前后的对比,网址: PromptKnit:The best playground for prompt designers,网址: PromptPort(支持中文):AI Prompt 百科辞典,其中 prompts 是聚合了市场上大部分优质的 prompt 的词库,快速的寻找到用户需求 prompt,网址: Prompt Engineering Guide:GitHub 上点赞量非常高的提示工程指南,网址: Claude 3.7 核心提示词相关: 您可以在中找到他们往期开源的更多系统提示词,涵盖了从 Claude 3 Haiku 到现在所有的模型。 一泽 Eze 整理的相关学习资料: Claude 3.5 sonnet 内置提示词详细拆解与解说:https://mp.weixin.qq.com/s/0R4zgH3Gc5TAfAPY1oJU4A Anthropic 的三位顶级提示工程专家聊《如何当好的提示词工程师》:https://mp.weixin.qq.com/s/VP_auG0a3CzULlf_Eiz1sw 往期 Claude AI 核心系统提示词:https://docs.anthropic.com/en/releasenotes/systemprompts Claude 官方用户手册 提示工程指南:https://docs.anthropic.com/en/docs/buildwithclaude/promptengineering/overview Claude 官方提示库:https://docs.anthropic.com/en/promptlibrary/library 基本概念: 简单的提示词可以包含指令、问题等信息,也可以包含上下文、输入或示例等详细信息,以更好地指导模型获得更好的结果。 当使用 OpenAI 的聊天模型时,可以使用 system、user 和 assistant 三个不同的角色来构建 prompt,system 有助于设定 assistant 的整体行为。 提示工程就是探讨如何设计出最佳提示词,用于指导语言模型帮助我们高效完成某项任务。
2025-04-12
生成可视化网页的 prompt
以下是关于生成可视化网页的 prompt 相关内容: 1. 利用 AI 将 PDF 一键变成可视化网页: 整体思路来自归藏。 目前只有 Claude 3.7 Sonnet 效果最好,可将 prompt 发给能使用它的产品,如 Claude 自己的官网、trea 海外版、cursor 等。 Prompt 基本复制可用,但需将作者信息和媒体资源部分改成自己的内容。媒体资源若为网上现成图片,可复制图像链接;若为自己的图片,可使用图床服务生成公链,以 Markdown 格式贴到媒体资源处。 2. 为生成更漂亮的可视化网页编写的工具: 解决了模型生成结果过于随机的问题。 可在网页上自定义基础样式或随机生成,直到满意。 工具网址:https://60mcp23013.yourware.so/ 3. 3 月 25 日 AI 资讯汇总中的相关用例: 动态图表制作:输入“请给我输出红楼梦的人物关系,并与 html 的形式输出可视化图表,可以参考我给你的图表形式”,可添加参考的个性化图表示例,以 html 附件形式上传。 提供文案输出可视化网页:输入“来自归藏大大 我们输入我们的 AI 周刊内容”。 小红书卡片:输入“来自向阳乔木大大的提示词”。
2025-04-10
prompt 框架
以下是关于 prompt 框架的相关内容: 格式: 常见的格式包括 Markdown(兼容性强,适用于写公众号文章、百家号文章等)、无序列表、有序列表、表格(更清晰直观,适用于对比数据等)、图片(具有随机性,可搭配生成 PPT)、二维码(将链接以二维码图片展示)、Latex 公式(面对数学问题时使用,能渲染出美观的公式,但目前官网对于行内公式的渲染不稳定)、代码(适合程序员指定需要撰写的代码,也方便复制内容)、JSON 格式(ChatGPT 可以以结构化数据形式输出信息,方便应用程序处理和解析,常用于程序员开发应用程序调用 API 时)。 关键框架: ICIO 框架:包括指令(执行的具体任务)、背景信息(提供执行任务的背景和上下文)、输入信息(大模型需要用到的信息)、输出信息(明确输出的具体要求,如字数、风格、格式)。 BROKE 框架:通过 GPT 的设计提示提升整体反馈效率,包括提供足够背景信息、角色设定、目标明确、结果定义、调整。 CRISPIE 框架:包括能力和角色(期望大模型扮演的角色洞察,提供幕后洞察力、背景信息和上下文)、声明(简洁明了的说明希望完成的任务)、个性(回应的风格、个性或者方式)、实验(提供多个回答的示例)。 律师使用 Prompt 的建议框架及格式: CRISPE 框架: Capacity and Role(能力与角色):例如,你是一名专注于民商事法律领域的律师,擅长案例研究、法律条文检索以及案件策略分析。 Insight(洞察):提供背景信息和上下文,如处理一起复杂的合同纠纷案件,向 AI 提供案件的关键事实、相关法律以及案件涉及的背景。 Statement(陈述):直接明确期望 AI 完成的任务,如要求 AI 总结此案件中双方的诉求、检索法条、预测可能的判决结果。 Personality(个性):明确希望 AI 以什么风格或方式回答。 Experiment(举例)。 零样本思维链(Zero Shot Chain of Thought,ZeroshotCoT):研究了 CoT prompting 的后续发展,引入了一种简单的零样本提示方法。在问题结尾添加相关提示词,能让大语言模型生成回答问题的思维链,并从中提取出更准确的答案。
2025-04-10