Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

中国头部的大模型公司有哪些?

Answer

以下是中国头部的大模型公司:

  • 北京:
    • 百度(文心一言):https://wenxin.baidu.com
    • 抖音(云雀大模型):https://www.doubao.com
    • 智谱 AI(GLM 大模型):https://chatglm.cn
    • 中科院(紫东太初大模型):https://xihe.mindspore.cn
    • 百川智能(百川大模型):https://www.baichuan-ai.com/
  • 上海:
    • 商汤(日日新大模型):https://www.sensetime.com/
    • MiniMax(ABAB 大模型):https://api.minimax.chat
    • 上海人工智能实验室(书生通用大模型):https://intern-ai.org.cn

此外,字节和腾讯都有团队在和外部大模型合作。创业公司中表现出色的有:

  • 智谱:一年间推出了 4 代 GLM,一直是国内能力最好的模型之一。
  • MiniMax:推出了 MoE 架构的新模型,和“星野”这个目前国内最成功的 AI 陪聊 APP。
  • 月之暗面:专注长 Token 能力,在记忆力和长 Token 能力上可圈可点。

通过 SuperCLUE 测评结果发现,国内大模型的第一梯队还有文心一言 4.0、通义千问 2.0 引领研发进度。从国内 TOP19 大模型的数量来看,创业公司和大厂的占比几乎持平。

Content generated by AI large model, please carefully verify (powered by aily)

References

8月正式上线的国内大模型

5⃣️五家北京企业机构:百度(文心一言)https://wenxin.baidu.com抖音(云雀大模型)https://www.doubao.com智谱AI(GLM大模型)https://chatglm.cn中科院(紫东太初大模型)https://xihe.mindspore.cn百川智能(百川大模型)https://www.baichuan-ai.com/3⃣️三家上海企业机构:商汤(日日新大模型)https://www.sensetime.com/MiniMax(ABAB大模型)https://api.minimax.chat上海人工智能实验室(书生通用大模型)https://intern-ai.org.cn今天这8个大模型,在聊天状态下——能生成Markdown格式的:智谱清言、商量Sensechat、MiniMax目前不能进行自然语言交流的:昇思(可以对文本进行是否由AI生成的检测,类似论文查重,准确度不错)、书生受限制使用:MiniMax(无法对生成的文本进行复制输出,且只有15元的预充值额度进行体验,完成企业认证后可以进行充值)特色功能:昇思——生图,MiniMax——语音合成

AGI万字长文(上)| 2023回顾与反思

另外,字节和腾讯都有团队在和外部大模型合作,很多外服务和产品也不是用的自己的模型。创业公司。目前明确看到有好模型、好产品的第一梯队公司大概如下:智谱:一年间推出了4代GLM,一直是国内能力最好的模型之一MiniMax:推出了MoE架构的新模型,和”星野“这个目前国内最成功的AI陪聊APP月之暗面:专注长Token能力,在记忆力和长Token能力上可圈可点

2023年度中文大模型基准测评报告.pdf

[title]VIRTUAL中文大模型基准测评2023年度报告[heading2]国内外大模型总体表现[heading3]国内大模型竞争格局国内大模型综合表现-SuperCLUE通过SuperCLUE测评结果发现,国内大模型的第一梯队有了更多新的模型加入。头部模型如文心一言4.0、通义千问2.0引领国内大模型的研发进度,部分高质量大模型紧追不舍,分别在闭源应用和开源生态中形成自己独特的优势。创业公司(9)vs大厂(10)创业公司大厂•从国内TOP19大模型的数量来看,创业公司和大厂的占比几乎持平。大厂和创业公司平均成绩对比

Others are asking
再来几个头部ai公众号
以下是一些头部的 AI 公众号: 超时空视角 赛博禅心 302.AI 产研负责人(产品官网:https://302.ai ) 01Founder(小红书:2205271258,公众号:01Founder,即刻:Max_means_best,微信:Max_Deze) 和 AI 一起进化(公众号:kaixindelele) 星际码仔(公众号:星际码仔) AI 大同学(微抖红手:AI 大同学,2 年老站能不更新就不更新:https://openai.mbmzone.com/mbmgpt/ ) PlayWithAI(小红书:PlayWithAI) 少女的 AI 大冒险(公众号:少女的 AI 大冒险)
2025-02-20
国内头部的AI产品有哪些
国内头部的 AI 产品包括以下这些: 在 APP 端:夸克和豆包的历史总下载量已过亿。单月新增方面,夸克、豆包和 Kimi 智能助手月增长可达到千万级。DAU 方面,夸克 DAU 超过 2600 万,豆包、Kimi、天天跳绳和文小言 DAU 超百万。用户粘性方面,夸克和叨叨三日留存率超过 30%。 在 Web 端:月总访问量超千万的产品包括夸克、腾讯文档、百度文库、Kimi 智能助手、文心一言、豆包和通义。在用户活跃度上,夸克、Notion 和百度文库的 MAU 超过千万。 在生成 Logo 方面的 AI 产品有: Looka:在线 Logo 设计平台,使用 AI 理解用户品牌信息和设计偏好,生成多个设计方案供选择和定制。 Tailor Brands:AI 驱动的品牌创建工具,通过用户回答问题生成 Logo 选项。 Designhill:Logo 制作器使用 AI 技术创建个性化 Logo 设计。 LogoMakr:提供简单易用的 Logo 设计工具,可利用 AI 建议的元素和颜色方案。 Canva:广受欢迎的在线设计工具,提供 Logo 设计模板和元素,有 AI 辅助设计建议。 LogoAI by Tailor Brands:Tailor Brands 推出的 AI Logo 设计工具,根据用户输入生成设计方案。 标小智:中文 AI Logo 设计工具,利用人工智能技术创建个性化 Logo。 此外,还有一些其他的 AI 产品,如 GPTs 用对话引导获取用户信息,Jasper 拆解场景流程按步骤收集信息,Leonardo 用画布和实时反馈加速 Prompt 提升,Novel 用交互式、渐进式续写,c.ai 卷生态卷模型,筑梦岛探索更多场景的对话玩法,FlowGPT 以 Prompt 的分享为核心,小悟空数据驱动优化 Prompt 等。这些产品致力于以更低的门槛帮助用户获得更高质量的 Prompt,从而更好地驱动模型。但当前阶段的 AI 产品还普遍体现出初级产品化、强行产品化的特征。
2025-02-03
AI教育头部产品
以下是 4 月、6 月的 AI 教育头部产品相关数据: 4 月访问量排名: 1. QChat,分类为教育,访问量 14220 万,相对 3 月变化 0.068 2. CheggMate,教育,4906 万,0.042 3. Khanmigo,教育,4570 万,0.015 4. Brainly:AI Homework Helper,教育,3102 万,0.023 5. Turnitin,教育,1677 万,0.149 6. WolframAlpha,教育,983 万,0.054 7. gauthmath,教育,656 万,0.558 8. Socratic by Google,教育,467 万,0.037 9. Aistote,教育,321 万,0.207 10. PTE APEUni,教育,321 万,0.198 6 月访问量排名: 1. QChat,教育,8482 万,0.293 2. Duolingo,教育,7595 万,0.049 3. Khanmigo,教育,3994 万,0.135 4. 微软 Copliot,教育,3258 万,0.174 5. CheggMate,教育,2340 万,0.285 6. Preply,教育,2069 万,0.037 7. Brainly:AI Homework Helper,教育,1984 万,0.267 8. Course Hero,教育,1730 万,0.311 9. Mathway,教育,1564 万,0.319 10. Turnitin,教育,1156 万,0.293 6 月语言教育类 APP 下载量排名: 1. Duolingo,语言教育,14955 千,0.155 2. Buddy Al,语言教育,1343 千,0.049 3. Praktika,语言教育,1252 千,0.019 4. Quizlet,语言教育,1073 千,0.036 5. Mondly,语言教育,393 千,0.324 6. Speak,语言教育,298 千,0.045 7. Stimuler,语言教育,294 千,0.02 8. Preply,语言教育,293 千,0.206 9. TalkAI 练口语,语言教育,201 千,0.047 10. Pimsleur,语言教育,148 千,0.173 11. 流利说,语言教育,123 千,0.054 12. SuperChinese,语言教育,122 千,0.164 13. Animal Jam,语言教育,89 千,0.226 14. Mikan,语言教育,70 千,0.103 15. talkpal,语言教育,60 千,0.032 16. LOLA Speak,语言教育,53 千,0.485 17. Abceed,语言教育,52 千,0.088
2024-12-02
我想通过AI帮我找工作,首先我想要了解当前存在哪些行业?这些行业下面的各自有哪5家头部企业?
目前存在众多行业,以下为您列举部分常见行业及其头部企业(排名不分先后): 1. 互联网行业:阿里巴巴、腾讯、百度、字节跳动、京东。 2. 金融行业:中国工商银行、中国建设银行、中国农业银行、中国银行、交通银行。 3. 制造业:华为、海尔、格力、美的、三一重工。 4. 医疗行业:恒瑞医药、迈瑞医疗、药明康德、复星医药、云南白药。 5. 能源行业:中国石油、中国石化、国家电网、中国海油、中国神华。 需要注意的是,行业的划分和头部企业的认定会随着市场变化而有所不同。您可以根据自身的专业和兴趣,进一步利用 AI 工具深入了解特定行业和企业的招聘信息。
2024-09-29
中国头部的大模型公司分别是哪几家?
以下是中国头部的大模型公司: 北京: 百度(文心一言):https://wenxin.baidu.com 抖音(云雀大模型):https://www.doubao.com 智谱 AI(GLM 大模型):https://chatglm.cn 中科院(紫东太初大模型):https://xihe.mindspore.cn 百川智能(百川大模型):https://www.baichuanai.com/ 上海: 商汤(日日新大模型):https://www.sensetime.com/ MiniMax(ABAB 大模型):https://api.minimax.chat 上海人工智能实验室(书生通用大模型):https://internai.org.cn 此外,字节和腾讯都有团队在和外部大模型合作。创业公司中表现出色的有: 智谱:一年间推出了 4 代 GLM,一直是国内能力最好的模型之一。 MiniMax:推出了 MoE 架构的新模型,和“星野”这个目前国内最成功的 AI 陪聊 APP。 月之暗面:专注长 Token 能力,在记忆力和长 Token 能力上可圈可点。 通过 SuperCLUE 测评结果发现,文心一言 4.0、通义千问 2.0 引领国内大模型的研发进度,部分高质量大模型也在闭源应用和开源生态中形成自己独特的优势。从国内 TOP19 大模型的数量来看,创业公司和大厂的占比几乎持平。
2024-09-05
头部公司为了AI话费多少钱
以下是关于头部公司为了 AI 花费情况的一些信息: OpenAI 已投入 10 亿美元(主要来自 Musk),虽然拥有王牌团队和崇高使命,但对如何实现目标曾毫无头绪。 去年,大部分企业的生成式人工智能支出来自“创新”预算和其他一次性资金池。到 2024 年,许多头部企业将这些支出重新分配到更为永久的软件预算项上。一家公司提到基于 LLM 技术的客户服务每通电话节省了约 6 美元,总体节省了约 90%的成本,这是增加八倍投资于生成式人工智能的原因之一。 在生成式 AI 领域,大部分的钱花在了三大云上:AWS、谷歌云(GCP)和微软 Azure。三大云每年花费超千亿美元的资本支出以确保拥有全面、可靠、具成本优势的云平台。迄今为止,生成式 AI 领域最大的幕后赢家可能是运行了绝大多数 AI 工作负载的英伟达(NVIDIA)。此外,甲骨文等挑战者已通过巨额资本支出和销售激励进军市场,一些初创公司也在快速发展。
2024-08-26
Manus的基础大模型是什么?
Manus 是一款由中国团队研发的全球首款通用型 AI 代理工具,于 2025 年 3 月 5 日正式发布。它区别于传统聊天机器人(如 ChatGPT),具备自主规划、执行复杂任务并直接交付完整成果的能力,被称为“首个真干活的 AI”。 Manus AI 代理工具的具体技术架构主要基于多智能体(Multiple Agent)架构,运行在独立的虚拟机中。这种架构通过规划、执行和验证三个子模块的分工协作,实现了对复杂任务的高效处理。具体来说,Manus AI 的核心功能由多个独立模型共同完成,这些模型分别专注于不同的任务或领域,如自然语言处理、数据分析、推理等。这种多模型驱动的设计不仅提高了系统的鲁棒性和准确性,还增强了其处理复杂任务的能力。 Manus AI 的技术架构还包括以下几个关键组件: 1. 虚拟机:Manus AI 运行在云端虚拟机中,用户可以随时查看任务进度,适合处理耗时任务。 2. 计算资源:Manus AI 利用计算资源生成算法,用于筛选简历等具体任务。 3. 生成物:Manus AI 能够生成各种类型的输出,如文本、表格、报告等。 4. 内置多个 agents:Manus AI 通过内置多个智能体,实现了任务的分解和协同工作。 此外,Manus AI 还采用了“少结构,多智能体”的设计哲学,强调在数据质量高、模型强大、架构灵活的情况下,自然涌现 AI 的能力。这种设计使得 Manus AI 在处理复杂任务时更加高效和准确。Manus AI 的技术架构通过多智能体协同工作、虚拟机运行和生成物输出等机制,实现了对复杂任务的高效处理和高质量输出。
2025-03-06
最新AI大模型
以下是关于最新 AI 大模型的相关知识: 1. 概念:生成式 AI 生成的内容称为 AIGC。 2. 概念与关系: AI 即人工智能。 机器学习是电脑找规律学习,包括监督学习、无监督学习、强化学习。 监督学习是利用有标签的训练数据,学习输入和输出之间的映射关系,包括分类和回归。 无监督学习是在学习的数据没有标签的情况下,算法自主发现规律,经典任务如聚类。 强化学习是从反馈中学习,以最大化奖励或最小化损失,类似训小狗。 深度学习是一种参照人脑有神经网络和神经元(因层数多而称为深度)的方法,神经网络可用于监督学习、无监督学习、强化学习。 生成式 AI 可以生成文本、图片、音频、视频等内容形式。 LLM 是大语言模型,对于生成式 AI,生成图像的扩散模型不是大语言模型;对于大语言模型,生成只是其中一个处理任务,如谷歌的 BERT 模型,可用于语义理解(不擅长文本生成),如上下文理解、情感分析、文本分类。 3. 技术里程碑:2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型,它完全基于自注意力机制(SelfAttention)来处理序列数据,而不需要依赖于循环神经网络(RNN)或卷积神经网络(CNN)。
2025-03-06
我是经济学研究者,经常写作学术论文,投稿SSCI期刊,大模型幻觉太严重,在辅助文献综述写作方面,基本没有用处。你有好的用于文献综述写作的AI辅助工具吗?
以下是一些可能有助于您在文献综述写作中应对大模型幻觉问题的方法和工具: 1. 对于 ChatGPT ,您可以使用 temporary chat 功能,保证其在没有任何记忆的情况下生成最新鲜的回答。 2. 当发现模型回答不理想时,可以采取以下技巧: 告诉模型忘掉之前的所有内容,重新提问或新建会话窗口。 让模型退一步,重新审视整个结构,从零开始设计。 对于像 Claude 这种会自己猜测的模型,如果不确定,可以给它看日志,让其依据日志判断问题所在。 3. 您可以参考 Hallucination Leaderboard (大语言模型幻觉排行榜),了解不同模型的幻觉情况,该排行榜使用 Vectara 的 Hughes 幻觉评估模型计算各大模型在总结文档时引入幻觉的频率,用于评估 LLM 的事实一致性,并为 RAG 系统提供参考。完整榜单可通过查看。 4. Claude APP 即将添加网页搜索和推理功能,这或许意味着新模型即将发布,预计发布时间在一两周内。
2025-03-06
你用的大模型是?
我所使用的大模型相关信息未明确告知。但为您介绍一下大模型的相关知识: 大模型指的是用于表达 token 之间关系的参数多,主要是指模型中的权重(weight)与偏置(bias),例如 GPT3 拥有 1750 亿参数,其中权重数量达到了这一量级,而词汇表 token 数只有 5 万左右。以 Transform 为代表的大模型采用自注意力(Selfattention)机制来学习不同 token 之间的依赖关系,生成高质量 embedding。 通俗来讲,大模型就是输入大量语料,来让计算机获得类似人类的“思考”能力,使之能够理解自然语言,能够进行“文本生成”“推理问答”“对话”“文档摘要”等工作。 大模型的训练和使用过程可以类比为“上学参加工作”: 1. 找学校:训练 LLM 需要大量的计算,因此 GPU 更合适,只有购买得起大量 GPU 的才有资本训练自己的大模型。 2. 确定教材:大模型顾名思义就是大,需要的数据量特别多,几千亿序列(Token)的输入基本是标配。 3. 找老师:即用什么样的算法讲述“书本”中的内容,让大模型能够更好理解 Token 之间的关系。 4. 就业指导:学完书本中的知识后,为了让大模型能够更好胜任某一行业,需要进行微调(fine tuning)指导。 5. 搬砖:就业指导完成后,下面就要正式干活了,比如进行一次翻译、问答等,在大模型里称之为推导(infer)。 在 LLM 中,Token 被视为模型处理和生成的文本单位。它们可以代表单个字符、单词、子单词,甚至更大的语言单位,具体取决于所使用的分词方法(Tokenization)。Token 是原始文本数据与 LLM 可以使用的数字表示之间的桥梁。在将输入进行分词时,会对其进行数字化,形成一个词汇表。比如:The cat sat on the mat,会被分割成“The”“cat”“sat”等的同时,会生成相应的词汇表。
2025-03-06
yolov 和resnet咋做成大模型?
要将 YOLOv 和 ResNet 做成大模型,需要考虑以下几个方面: 1. 数据准备:收集大量的相关数据,并进行清洗、预处理和标注,以满足模型训练的需求。 2. 模型架构调整:根据具体任务和数据特点,对 YOLOv 和 ResNet 的架构进行适当的修改和优化,例如增加层数、调整通道数等。 3. 训练策略:选择合适的优化算法、学习率调整策略等,以提高训练效果和收敛速度。 4. 计算资源:大模型的训练需要强大的计算资源,包括硬件设施和云计算平台等。 此外,从相关的研究和趋势来看,大模型架构呈现出日益明显的混合趋势,多种有代表性的技术路径在不同程度保留 Transformer 架构优势的基础上,结合 RNN、CNN 等思想做出创新发展。例如类循环神经网络模型(以 RWKV 为代表)、状态空间模型(以 Mamba 为代表)、层次化卷积模型(以 UniRepLKNet 为代表)、多尺度保持机制模型(以 RetNet 为代表)、液体神经网络模型(以 LFM 为代表)等。但需要注意的是,将 YOLOv 和 ResNet 做成大模型是一个复杂的过程,需要深入的研究和实践。
2025-03-06
大模型调优
大模型调优的方法主要包括以下几个方面: 1. 更换大模型:例如从 ChatGLM26B 替换成 baichuan213b,针对特定场景,后者性能可能提升一倍左右。 2. 更换 embedding 模型:将默认的 embedding 模型如 LangChain Chatchat 的 m3ebase 替换为 bgelargezh,后者可能更优。 3. 测试不同 Top k 的值:比较 Top 5、Top 10、Top 15 的结果,发现 Top 10 时效果最优。 4. 对文档名称进行处理:人工对文件重命名,上传相同文件构建知识库,同时在构建时勾选【开启中文标题加强】选项,重命名文件对结果提升不明显,但勾选该选项后回答的无关信息减少,效果有所提升。 从产品视角考虑大模型调优,主要从以下两个维度分析问题: 1. Context optimization(上下文优化):所创建的 LLM 应用若需要特定数据、系统和流程等预训练 LLM 中缺失的知识和信息,需进行上下文优化,如企业内部智能问答机器人,应将相关知识提供给大模型,RAG 是解决该问题的技术。 2. LLM optimization(大模型优化):在进行足够的 prompt 工程后,若 LLM 应用在垂直领域表现仍不足或希望输出特定格式风格等稳定性不及预期,可考虑微调,且需与良好的 prompt 工程结合。 大模型的安全保障可通过对齐,也叫指令调优实现,包括监督微调、获取 reward model 与进行强化学习调整输出分布。但即使如 GPT4 和 Claude 等模型已几乎不回复危险问题,Alignment 仍不足以防护所有安全问题,存在越狱现象。LLAMA2 专门使用安全有监督微调确保语言模型安全。强化学习能让模型根据人类反馈调整分布,面对训练分布外数据也可能学会拒绝不当回答。
2025-03-06
AI怎么跟公司行政工作相结合
AI 与公司行政工作相结合具有一定的挑战性,但也存在可能的方向。目前大多数的“AI 应用/AI 转型”在行政工作方面还在走“数字化转型”的老路,把 AI 往现有流程上套,讲“固化流程”“节约成本”的故事。但在技术加速迭代的当下,这样做可能导致成果过时,剥夺企业主动进化的能力。 YCombinator 的圆桌讨论认为,垂直 AI 智能体的市场潜力巨大,其专注于特定领域,能提供定制化服务并自动化重复任务,从而提高效率和降低成本。创业者应关注行政任务领域,这或许能为 AI 与行政工作的结合提供思路。 然而,AI 并非万能,我们和 AGI 还差得很远。不能仅因对 AI 的焦虑就希望其拿来即用、马上见效。AI 的力量不应只用于现有业务流程的优化,而更应用于对未来业务的重新定义。比如像电力发明时,不应从“如何让电力赋能马车”出发,而应从“电力能创造和满足什么新的需求”出发。
2025-03-06
我是一个公司的平面设计师,经常设计海报一类的工作,怎样才能用人工智能帮助到我。
作为一名平面设计师,您可以通过以下方式利用人工智能来辅助您的工作: 一、使用 AI 海报生成工具 1. Canva(可画):https://www.canva.cn/ 这是一个非常受欢迎的在线设计工具,提供大量模板和设计元素,用户可通过简单拖放操作创建海报,其 AI 功能能帮助选择合适颜色搭配和字体样式。 2. 稿定设计:https://www.gaoding.com/ 稿定智能设计工具采用先进人工智能技术,自动分析和生成设计方案,稍作调整即可完成完美设计。 3. VistaCreate:https://create.vista.com/ 简单易用的设计平台,提供大量设计模板和元素,用户可使用 AI 工具创建个性化海报,智能建议功能可帮助快速找到合适设计元素。 4. Microsoft Designer:https://designer.microsoft.com/ 通过简单拖放界面,能快速创建演示文稿、社交媒体帖子等视觉内容,还集成丰富模板库和自动图像编辑功能,如智能布局和文字优化,简化设计流程。 二、参考案例分享 以东阿阿胶海报设计为例,拆解步骤如下: 1. 得到需求——提取元素——绘制线稿——用 controlnet 转绘上色——ps 优化——定稿。 2. 需求元素:风格要潮流插画,还要有唐代元素和国潮(前期基本上是沟通成本,主要定线稿)。 3. 提取元素:获取的信息需要体现产品图,需要体现唐代元素,需要 logo 在中心位置,按照需求开始绘制线稿。 4. 线稿绘制:沟通的元素是牡丹花、驴子(最后换成了琵琶)、人参和产品图和 logo,所以进行线稿调整绘制(中间很多细节沟通)最终定下线稿(里面很多元素都是拼接的)。 5. 拆分元素线稿:这一步非常重要,因为会涉及到后续元素替换等问题,比如单个 logo、产品等,提取出单独元素,进行绘制,最后进行替换。 6. 单个元素绘制:这样会让单个元素更加精致,也方便后期替换。 7. 然后利用拼接好的线稿进行大量跑图抽卡,选出一张最合适的进行 ps 优化。 8. 整体拼接上色后的效果(将单独跑的元素在 ps 里替换优化,再过一遍 sd 进行溶图放大)得到以下效果。 9. 最终客户把驴子去掉了,换成了一把琵琶,也是同产品图一样的做法,最后把琵琶替换掉驴子,得到定稿图。 三、相关模型和关键词 上色运用的大模型:GhostMix 鬼混_V2.0 。 lora 模型:“盒子系列——平面国潮插画_v1.0:182ba9e2f576 。 controlnet 模型:“Module:lineart_coarse,Model:contr 。 关键词:yellow background,Fashion,international blockbusters,fashion posters,fantasy,yellow,black and red tones,yellow background,peonies,donkeys,product packaging expert master,<lora:盒子系列——平面国潮插画_v1.0:0.3> 。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-03-06
怎么分辨那些事中国公司做的ai软件
要分辨哪些是中国公司做的 AI 软件,可以通过以下几个方面: 1. 查看相关的月度榜单,例如“AI 智库|月度榜单”,其中会明确列出公司所属的国家。 2. 关注公司的注册地和总部所在地信息。 3. 了解公司的创始人或 CEO 的国籍背景。 例如,在提供的榜单中,爱思软件、看见概念、尽微致广、同花顺、小冰公司、网易、恒图科技、生数科技、西湖心辰、网旭科技、秘塔网络、回响科技、稿定科技、ANSWER AI、奇点星宇等都是中国公司。
2025-03-05
小公司, 想部署一个本地ai系统,希望它能够, 对运维, 运营, 客服, 美术, 策划, 程序都能够有很大的帮助, 目前市面上那款 ai 模型比较合适
对于小公司想要部署一个能对运维、运营、客服、美术、策划、程序都有帮助的本地 AI 系统,以下是一些相关信息: 线上和线下本地部署的 AI 特点: 线上部署的优势在于出图速度快,不依赖本地显卡配置,无需下载大型模型,还能参考其他创作者的作品,但出图尺寸受限。线下部署的优势是可添加插件,出图质量高,但使用时电脑可能宕机,配置不高可能爆显存导致出图失败。建议线上用于找参考、测试模型,线下作为主要出图工具。 Ollama: 支持多种大型语言模型,包括通义千问、Llama 2、Mistral 和 Gemma 等,适用于不同场景。 易于使用,适用于 macOS、Windows 和 Linux 系统,支持 CPU 和 GPU。 提供模型库,用户可从中下载不同模型,满足不同需求和硬件条件。 支持自定义模型,可调整参数。 提供 REST API 用于运行和管理模型,以及与其他应用集成。 社区贡献丰富,有多种集成插件和界面。 Google Gemma: 是 Google 发布的家用版小模型,有 2b(20 亿参数)和 7b(70 亿参数)版本。小模型可能不适合复杂任务,但适合提升基础操作效率。部署环境友好,可通过 ollama 方便部署,支持热加载模型文件。2b 反应速度快但互动话题有限,7b 输出质量高但可能卡顿,对非英文语种反馈不稳定。 综合考虑,如果您的公司对出图质量要求较高,且有较好的硬件配置,可以选择线下部署结合线上测试的方式。在语言模型方面,Ollama 具有较多优势,可根据具体需求选择合适的模型进行部署。
2025-03-04
小游戏公司, 想部署一个本地ai系统,希望它能够, 对运维, 运营, 客服, 策划, 程序都能够有很大的帮助, 目前市面上那款 ai 模型比较合适
对于小游戏公司部署本地 AI 系统以帮助运维、运营、客服、策划和程序等方面,以下是一些建议和相关信息: 目前市面上的 AI 模型各有特点。线上 AI 具有出图速度快、不依赖本地显卡配置、无需下载大型模型以及能参考其他创作者作品等优势,但出图尺寸受限。线下部署的 AI 可以添加插件、出图质量高,但可能导致电脑宕机且对配置要求高。 在游戏领域,AI 大模型带来了诸多变化,如游戏内容辅助生成(包括文、图、3D 和音乐),可应用于游戏策划人和美术设计师。文生图和图生图能提高创作效率,动画辅助渲染可改变角色风格,游戏智能运营涵盖智能 NPC 互动、客服、攻略问答和代码脚本生成等,适用于产品经理、运营经理和社区运营经理。 Google 刚刚发布的家用版小模型 Gemma 有 2b(20 亿参数)和 7b(70 亿参数)版本。相对千亿参数的大模型,这类小模型可能不太适合处理复杂任务,但代表了模型本地化提升基础操作效率的趋势。Ollama 是一个开源的大型语言模型服务,方便部署最新版本的 GPT 模型并通过接口使用,支持热加载模型文件,且像小型的 llama 也支持本地部署。部署时,需进入 ollama.com 下载程序并安装,通过命令提示符进行操作和切换模型。2b 反应速度快但互动话题有限,7b 输出质量高但可能卡顿,且对非英文语种反馈不太稳定。 综合考虑,小游戏公司可以根据自身需求和硬件配置选择合适的 AI 模型。如果对出图质量要求高且有较好的硬件配置,可尝试线下部署;若更注重效率和便捷性,线上模型可能更适合。同时,也可以考虑像 Gemma 这样的小模型进行本地化部署以提升基础操作效率。
2025-03-04
小游戏公司, 想部署一个本地ai系统,希望它能够, 对运维, 运营, 客服, 美术, 策划, 程序都能够有很大的帮助, 目前市面上那款 ai 模型比较合适
对于小游戏公司部署本地 AI 系统以帮助运维、运营、客服、美术、策划、程序等方面,以下是一些建议和目前市面上合适的 AI 模型分析: 线上 AI 平台的优势在于出图速度快,对本地显卡配置要求低,无需下载大型模型,还能参考其他创作者的作品,但出图分辨率有限制。 线下部署的优势是可以添加插件,出图质量高,但使用时电脑可能宕机,配置不高还可能爆显存导致出图失败。 综合考虑,建议充分发挥线上和线下平台的优势。线上可用于找参考、测试模型,线下作为主要出图工具。 在图像生成方面,2022 年主流生成式图像应用如 DALLE 2.0、Stable Diffusion 和 Midjourney 使图像生成精细化程度提升,提示对图像生成结果的控制能力增强。 在 3D 模型生成中,AI 能完成 3D 模型生成流程的“一步到位”,大大提升效率。 在游戏开发中,AI 可用于游戏内容辅助生成(如文、图、3D、音乐)、动画辅助渲染、游戏智能运营(包括智能 NPC 互动、客服、攻略问答、代码和脚本生成)等。 对于小游戏公司,Stable Diffusion 可能是一个较为合适的选择,它在 2D 美术素材辅助生成方面能够提高创作效率、降低成本,并且有多种应用场景,如文生图、图生图等。同时,也可以考虑结合线上平台进行参考和测试。
2025-03-04
中国大模型与世界差距
目前中国大模型与世界仍存在差距,但也有了显著进步。 在 2023 年度中文大模型基准测评中,国外的 GPT4 Turbo 总分 90.63 分遥遥领先,国内最好的模型文心一言 4.0(API)总分 79.02 分,与 GPT4 Turbo 有 11.61 分的差距,与 GPT4(网页)有 4.9 分的差距。国外模型平均成绩为 69.42 分,国内模型平均成绩为 65.95 分,差距在 4 分左右。 不过,过去 1 年国内大模型进步明显,综合能力超过 GPT 3.5 和 GeminiPro 的模型有 11 个,如百度的文心一言 4.0、阿里云的通义千问 2.0 等都有较好表现。在专业与技能方面,GPT4 Turbo 领先幅度较大,但国内的文心一言 4.0 表现不俗。总体来看,国内第一梯队大模型与国外最好模型在专业与知识能力上仍有较大距离,但差距正在不断缩小。 另外,国内开源模型在中文上表现优于国外开源模型。从国内 TOP19 大模型的数量来看,创业公司和大厂的占比几乎持平。
2025-02-27
市场营销中需要用到的AI工具?最好是中国的或者免费的
以下是一些在市场营销中可以用到的中国或免费的 AI 工具: 1. 图像类: 可灵:由快手团队开发,可生成高质量的图像和视频,但价格相对较高,对于轻度用户有每日免费点数和较便宜的包月选项。 通义万相:在中文理解和处理方面表现出色,可选择多种艺术和图像风格,操作界面简洁直观,重点是现在免费,每天签到获取灵感值即可。 2. 营销内容创作类: Synthesia:允许创建由 AI 生成的高质量视频,包括数字人视频,提供多种定价计划,有免费和商业级不等。 HeyGen:基于云的 AI 视频制作平台,可从 100 多个 AI 头像库中选择,并通过输入文本生成数字人视频。 Jasper AI:人工智能写作助手,可用于生成营销文案、博客内容、电子邮件等,提供多种语气和风格选择。 Copy.ai:AI 营销文案生成工具,可快速生成广告文案、社交媒体帖子、电子邮件等营销内容,有免费和付费计划。 Writesonic:AI 写作助手,专注于营销内容创作,如博客文章、产品描述、视频脚本等,提供多种语气和行业定制选项。 更多的营销产品可以查看 WaytoAGI 网站:https://www.waytoagi.com/sites?tag=8 。总的来说,这些 AI 工具能够帮助营销人员高效创作各种营销内容,提高工作效率。用户可根据实际需求选择合适的工具。
2025-02-27
2024 年中国人工智能+产业规模
目前关于 2024 年中国人工智能+产业规模的相关信息如下: 国家统计局数据显示,2022 年全国研究与试验发展(R&D)经费投入总量首次超过 3 万亿元,达到 30782.9 亿元,比上年增加 2826.6 亿元,增长 10.1%,表明国家对科技创新和算力设施的重视和持续投入。我国算力设施产业链规模巨大,已达到万亿元级别。2022 年我国算力核心产业规模达到 1.8 万亿元,预计到 2023 年,中国算力产业规模将超过 3 万亿元。 在企业数量方面,截至 2024 年 3 月,全国算力存量企业共有 75,343 家。其中,广东省、北京市和江苏省的企业数量位居前三,分别有 10,315 家、7,167 家和 6,728 家。此外,人工智能企业数量也超过 4400 家。 德勤的报告指出,中国 AI 产业快速发展,得益于政策支持、经济增长和技术创新。成长型 AI 企业作为产业创新的重要力量,数量占比高达九成,活跃于各行业领域。预计到 2025 年,中国人工智能核心产业规模将突破 5000 亿元。 在影视行业,若假设 2027 年 AI 影视市场可以获得国内总市场份额的 10%,则国内 AI 影视总市场规模预计将达约 380 亿元以上;若假设 2030 年可以获得 25%以上市场份额,则国内 AI 影视总市场规模将达千亿级别。 营销行业或成生成式 AI 最早实现商业化落地的行业之一,未来,AI 技术还将持续推动营销行业的深刻变革。
2025-02-20
我想给我的品牌设计一整套的门店设计方案,现在哪个AI工具最合适,我需要中国内地的AI工具
以下是一些适合用于品牌门店设计的中国内地 AI 工具: 1. 藏师傅推荐的流程:通过获取 Logo 图片的描述、生成图片提示词,并输入 Comfyui 工作生成。相关链接:https://www.coze.cn/s/iDec2U13/ 2. 月度榜单中的相关工具: 美图公司的开拍,具有视频生成功能。 贝因科技的妙笔工坊,属于原生个人助理。 惊叹科技的 TalkAI 练口语,用于教育。 美图公司的美图设计室,具备图片生成功能。 秘塔网络的秘塔 AI 搜索,属于智慧搜索。 3. 生成 Logo 的 AI 产品: Looka:在线 Logo 设计平台,根据用户品牌信息和设计偏好生成方案。 Tailor Brands:通过回答问题生成 Logo 选项。 Designhill:基于用户输入生成个性化 Logo 设计。 LogoMakr:提供简单易用的设计工具和 AI 建议。 Canva:提供模板和元素,有 AI 辅助设计建议。 LogoAI by Tailor Brands:根据输入快速生成 Logo 方案。 标小智:中文 AI Logo 设计工具。 您可以访问网站的 AI 生成 Logo 工具版块获取更多好用的工具:https://waytoagi.com/category/20 。在选择工具时,建议您根据自身品牌理念和视觉偏好进行尝试和定制。
2025-02-11
明略科技:2024年中国AI Agent行业研究
以下是关于 2024 年中国 AI Agent 行业的相关研究报告: 2024 年 9 月: 《》 《》 2024 年 8 月: 《》深入分析了 AI Agent 的市场定义、发展阶段、核心组件及其在企业用户场景中的应用。 《》指出企业实施 AI Agent 的主要目标是降低运营成本,尤其是在知识库管理、数据分析、营销与客户服务等领域。 2024 年 5 月: 《》提到 AI Agent 市场处于早期阶段,其商业价值在于提升工作均值、实现行业知识库构建、改变工作流程及生产关系。未来,AI Agent 将作为数字生产力,通过与工作流的结合,成为企业知识资产积累与复用的关键角色,推动技术革命。
2025-02-10