直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

我想通过AI帮我找工作,首先我想要了解当前存在哪些行业?这些行业下面的各自有哪5家头部企业?

回答

目前存在众多行业,以下为您列举部分常见行业及其头部企业(排名不分先后):

  1. 互联网行业:阿里巴巴、腾讯、百度、字节跳动、京东。
  2. 金融行业:中国工商银行、中国建设银行、中国农业银行、中国银行、交通银行。
  3. 制造业:华为、海尔、格力、美的、三一重工。
  4. 医疗行业:恒瑞医药、迈瑞医疗、药明康德、复星医药、云南白药。
  5. 能源行业:中国石油、中国石化、国家电网、中国海油、中国神华。

需要注意的是,行业的划分和头部企业的认定会随着市场变化而有所不同。您可以根据自身的专业和兴趣,进一步利用 AI 工具深入了解特定行业和企业的招聘信息。

内容由 AI 大模型生成,请仔细甄别(powered by aily)
其他人在问
有哪些关于toB 营销的 ai应用
在 ToB 营销领域,目前常见的 AI 应用主要有以下几类: 1. 智能办公:在办公垂域场景中发挥作用,比如快速总结群聊内容或会议信息,为写公文提供结构模板参考等。 2. 智能客服:通常借助 agent 实现,接入企业的 QA 知识库,回应用户信息并下达诸如取消订单、催快递之类的 action 指令。 3. AI 导购:在用户和商家之间发挥作用,依据用户问题,结合产品介绍和评论信息等,为用户推荐更准确、精准的产品。 4. 智能营销:应用于营销环节,通过 AIGC 生成话术、物料、口播等内容,有些还会融入用户的个性化元素以指导物料生成。 5. 智能人力资源:主要利用模型进行简历初筛、JD 自动生成、数据分析等工作。 此外,在 AI 产品的发展中,还呈现出从通用能力到专业化细分的趋势,如图像生成的 Midjourney、Stable Diffusion 等,视频制作的 Pika、Runway 等,音频处理的各种 AI 配音、音乐生成工具等。商业模式上也有创新尝试,如 ToB 市场的深耕,如针对内容创作者的 ReadPo 等。
2024-11-16
AI写信息报道软件
以下为您推荐一些好用的 AI 写信息报道软件: 1. Copy.ai:是一款功能强大的 AI 写作助手,提供丰富的新闻写作模板和功能,可快速生成新闻标题、摘要、正文等内容,节省写作时间并提高效率。 2. Writesonic:专注于写作的 AI 工具,提供新闻稿件生成、标题生成、摘要提取等功能,其智能算法能根据用户提供的信息快速生成高质量新闻内容,适合新闻写作和编辑人员使用。 3. Jasper AI:人工智能写作助手,虽主打博客和营销文案,但也可用于生成新闻类内容,写作质量较高,支持多种语言。 此外,随着人工智能技术的迅猛发展,小型企业在 2024 年也迎来了新的应用场景: 1. 聊天机器人:分为信息型和实用型,在企业网站上用于回答常见问题或执行特定任务,能大幅减少客户服务方面的人力成本。 2. AI 撰写内容:如 ChatGPT 等工具,为内容创作有困难或资源有限的小型企业提供高效解决方案,快速生成高质量文本内容。 3. 语音搜索优化:小型企业需优化网站以适应语音搜索普及的趋势,确保内容清晰准确,使用架构标记等技术提高语音助手理解度。 4. 网站个性化:为每位访客提供定制化体验,增强客户参与度和忠诚度。 5. 利用 AI 分析客户数据:通过机器学习算法进行预测性分析,发现模式和趋势,为营销活动或个性化体验提供有价值洞见。 6. 社交媒体管理与情绪分析:利用情绪分析工具深入了解客户反馈,调整产品和营销策略。 以下是 1 月 3 日的一些 AI 相关资讯: 1. 微软研究团队利用合成数据训练 AI,减少成本和偏见,生成 100 种语言的文本数据提高训练效率。论文链接:https://arxiv.org/abs/2401.00368 。 2. Pile:开源的 AI 日记软件,界面美观,集成 OpenAI API,有 AI 搜索和问题解答功能,保证安全隐私。下载链接:https://udara.io/pile/ ,项目源码:https://github.com/UdaraJay/Pile 。 3. VCoder:视觉编码器增强模型,增强 LLM 的视觉理解和分析能力,处理分割图和深度图,改善对象感知,在对象识别任务中表现优于 GPT4V。项目链接:https://praeclarumjj3.github.io/vcoder/ ,代码库:https://github.com/SHILabs/VCoder 。 4. M2UGen:多模态音乐理解生成模型,能理解音乐风格、乐器、情感,进行音乐问答,根据文本、图像、视频生成音乐,由腾讯与新加坡国立大学开发。 5. DreamTalk:人物头像动画生成开源,使人物照片头像根据音频说话或唱歌,保持嘴型和表情一致。代码库:https://github.com/alivilab/dreamtalk 。 内容由 AI 大模型生成,请仔细甄别。
2024-11-16
AI学习从哪开始?
对于新手学习 AI ,可以从以下几个方面开始: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 对于中学生学习 AI ,建议: 1. 从编程语言入手学习: 可以从 Python、JavaScript 等编程语言开始学习,学习编程语法、数据结构、算法等基础知识。 2. 尝试使用 AI 工具和平台: 可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2024-11-16
我如何才能更快的成为AI领域的专家
要更快地成为 AI 领域的专家,您可以参考以下几个方面: 1. 学习基础:像预医学生一样,从相关的基础课程开始,例如数学、统计学、计算机科学等,为深入学习 AI 奠定坚实的基础。 2. 实践经验:通过参与实际项目、实习或研究工作,积累实践经验,从实践中获取那些书本上没有的知识和直觉。 3. 模型训练:采用堆叠模型的训练方式,而非单纯依赖大量数据和生成模型。例如,先训练基础学科的模型,如生物学、化学等,再添加特定领域的数据点。 4. 开发特定领域模型:创建专门针对特定领域的 AI 模型,如医疗保健领域的专家 AI,而不是追求全能的通用 AI。 5. 多样化方法:在编码、数据和测试方面采用多样化的方法,创建多个专家 AI 并在需要时提供不同意见。 6. 现实世界互动:让人类专家配备可穿戴设备,收集现实世界的互动数据供 AI 学习,使 AI 接触到多样化的视角,避免偏见。 总之,成为 AI 领域的专家需要系统的学习、丰富的实践和不断的探索创新。
2024-11-16
有没有用Stata的最小二乘法处理相关的AI
目前在 AI 领域中,较少直接将 Stata 的最小二乘法与 AI 进行特定的结合应用。Stata 的最小二乘法主要用于传统的统计分析,而在 AI 中,更多采用的是基于机器学习和深度学习的算法和模型。但如果您是在处理某些与数据相关的任务,最小二乘法的原理和思路在一定程度上可能对您理解和设计 AI 中的数据处理方法有所帮助。
2024-11-16
有没有自动AI样机的工具 mockup
目前在 AI 领域,暂时没有特别知名的专门用于生成自动 AI 样机的工具 mockup。但随着技术的不断发展,未来可能会出现相关的创新工具。您可以持续关注 AI 技术的最新动态,以获取相关信息。
2024-11-16
AI 在教育行业的落地场景有哪些
AI 在教育行业的落地场景主要包括以下几个方面: 1. 个性化学习:通过集成算法和大数据分析,如 Knewton 平台,实时跟踪学生学习进度,诊断学习难点,提供定制化的学习建议和资源。 2. 自动评估:利用自然语言处理技术(NLP),如 Pearson 的 Intelligent Essay Assessor,自动批改学生的作文和开放性答案题,减轻教师批改负担,提高评估效率和一致性。 3. 智能辅助教学:例如 Google 的 AI 教育工具 AutoML,创建定制的学习内容,引导学生通过对话学习,提供即时反馈,提高学习动机和知识掌握程度。 4. 虚拟现实(VR)和增强现实(AR):如 Labster 的虚拟实验室平台,提供虚拟实验场景,让学生安全进行实验操作并获得 AI 系统反馈。 5. 协助评估学生学习情况,为职业规划提供建议。 6. 针对学生情况和兴趣定制学习内容。 7. 论文相关:包括论文初稿搭建及论文审核。 8. 帮助低收入国家/家庭获得平等的教育资源。
2024-11-15
国内AI行业最新发展状况
以下是关于国内 AI 行业最新发展状况的介绍: OpenAI 的 o1 模型主导:OpenAI 最新推出的 o1 模型正在重新定义 AI 在数学、科学和推理方面的极限,使竞争对手困惑甚至“破产”。 中国的 AI 崛起:无视制裁,中国的模型凭借坚韧和战略智慧正在“屠榜”,证明他们仍在牌桌之上。 生成式 AI 的数十亿繁荣:AI 初创公司正赚得盆满钵满,但可持续性难以捉摸。 AI 产业链中的机会分析: 1. 基础设施层:布局投入确定性强,但资金投入量大,入行资源门槛高,未来更多由“国家队”负责,普通人可考虑“合作生态”切入机会。 2. 技术层:技术迭代迅速,小规模团队或个人须慎重考虑技术迭代风险,基础通用大模型非巨无霸公司不建议考虑,竞争激烈,最终赢家通吃。 3. 应用层:是广阔蓝海,当前成熟应用产品不多,“杀手级”应用凤毛麟角,普通个体和小团队推荐重点布局,发展空间巨大。 AI 产品发展的未来展望: 1. 更深度的行业整合:AI 技术将与各行各业更紧密结合。 2. 用户体验的持续优化:易用性和稳定性将进一步提升。 3. 新兴应用场景的出现:可能在智能家居、自动驾驶等领域找到新突破口。 相关报告及解读链接: (报告 212 页)
2024-11-14
ai如何赋能在装修行业
AI 在装修行业的赋能主要体现在以下方面: AI 房地产装修设计平台:例如酷家乐装修设计软件,利用图像生成和机器学习技术,为用户提供装修设计方案,用户可根据自身喜好进行选择和调整。 目前大多数的“AI 应用/AI 转型”在装修等行业还存在一些问题,很多还在走“数字化转型”的老路,把 AI 往现有流程上套用,讲“固化流程”“节约成本”的故事。但在技术加速迭代的当下,这样做可能导致“做出来就是过时的”,限制企业的主动进化能力。我们应从“AI 能创造和满足装修行业的什么新需求”出发,重新定义未来业务模式。
2024-11-14
视频生成行业做的好的产品推荐
以下是一些在视频生成行业表现出色的产品推荐: 1. Pika:是一款出色的文本生成视频 AI 工具,擅长动画制作且支持视频编辑。 2. SVD:若熟悉 Stable Diffusion,可安装此最新插件,能在图片基础上直接生成视频,由 Stability AI 开源。 3. Runway:老牌 AI 视频生成工具,提供实时涂抹修改视频功能,但需收费。 4. Kaiber:视频转视频 AI,能将原视频转换成各种风格的视频。 5. Sora:由 OpenAI 开发,可生成长达 1 分钟以上的视频。 6. 可灵:国产应用,在视频生成质量、生成速度和国内用户的可访问性方面具有显著优势。 7. 从生成方式分类: 文生视频、图生视频:Runway、Pika labs、SD + Deforum、SD + Infinite zoom、SD + AnimateDiff、Warpfusion、Stability Animation。 视频生视频: 逐帧生成:SD + Mov2Mov。 关键帧+补帧:SD + Ebsynth、Rerender A Video。 动态捕捉:Deep motion、Move AI、Wonder Dynamics。 视频修复:Topaz Video AI。 AI Avatar+语音生成:Synthesia、HeyGen AI、DID。 长视频生短视频:Opus Clip。 脚本生成+视频匹配:Invideo AI。 剧情生成:Showrunner AI。
2024-11-12
AI 在教育行业的落地场景有哪些?
AI 在教育行业的落地场景主要包括以下方面: 1. 个性化学习:通过集成算法和大数据分析,如 Knewton 平台,实时跟踪学生学习进度,诊断学习难点,提供个性化学习建议和资源。 2. 自动评估:利用自然语言处理技术(NLP)自动批改学生的作文和开放性答案题,如 Pearson 的 Intelligent Essay Assessor,减轻教师批改负担,提高评估效率和一致性。 3. 智能辅助教学:例如 Google 的 AI 教育工具 AutoML 用于创建定制学习内容,通过有趣方式加深学生对学科概念的理解。 4. 虚拟现实(VR)和增强现实(AR):学生可通过 VR 头盔进入虚拟实验室进行实验操作并获得 AI 系统反馈,如 Labster 的虚拟实验室平台。 5. 协助评估学生学习情况,为职业规划提供建议。 6. 针对学生情况和兴趣定制学习内容。 7. 论文初稿搭建及论文审核。 8. 帮助低收入国家/家庭获得平等教育资源。
2024-11-12
汽车行业AI应用
以下是人工智能在汽车行业的一些应用: 1. 自动驾驶技术:利用 AI 进行图像识别、传感器数据分析和决策制定,如特斯拉、Waymo 和 Cruise 等公司都在开发和测试自动驾驶汽车,实现自主导航和驾驶。 2. 车辆安全系统:AI 用于增强车辆的安全性能,如自动紧急制动、车道保持辅助和盲点检测系统,通过分析摄像头和传感器数据预防事故。 3. 个性化用户体验:根据驾驶员的偏好和习惯调整车辆设置,包括座椅位置、音乐选择和导航系统,提供更个性化和舒适的驾驶体验。 4. 预测性维护:分析车辆实时数据预测潜在故障和维护需求,减少停机时间和维修成本,提高车辆可靠性和效率。 5. 生产自动化:在汽车制造中用于自动化生产线,提高生产效率和质量控制,监测设备状态并优化生产流程,减少人为错误。 6. 销售和市场分析:汽车公司用 AI 分析市场趋势、消费者行为和销售数据,以理解客户需求、制定营销策略和优化产品定价。 7. 电动化和能源管理:在电动汽车的电池管理和充电策略中发挥作用,优化电池使用和充电时间,提高能源效率和延长电池寿命。 8. 共享出行服务:如 Uber 和 Lyft 等共享出行平台使用 AI 优化路线规划、调度车辆和定价策略,提高服务效率和用户满意度。 9. 语音助手和车载娱乐:AI 驱动的语音助手允许驾驶员通过语音命令控制车辆功能、获取信息和娱乐内容。 10. 车辆远程监控和诊断:AI 系统远程监控车辆状态,提供实时诊断和支持,帮助车主及时了解车辆状况并采取措施。 此外,还有一些相关的 AI 应用案例,如汽车之家车商城利用 AI 分析用户购车需求和预算,为用户推荐合适的汽车品牌和车型,并提供购车优惠和金融服务。
2024-11-11
中国头部的大模型公司分别是哪几家?
以下是中国头部的大模型公司: 北京: 百度(文心一言):https://wenxin.baidu.com 抖音(云雀大模型):https://www.doubao.com 智谱 AI(GLM 大模型):https://chatglm.cn 中科院(紫东太初大模型):https://xihe.mindspore.cn 百川智能(百川大模型):https://www.baichuanai.com/ 上海: 商汤(日日新大模型):https://www.sensetime.com/ MiniMax(ABAB 大模型):https://api.minimax.chat 上海人工智能实验室(书生通用大模型):https://internai.org.cn 此外,字节和腾讯都有团队在和外部大模型合作。创业公司中表现出色的有: 智谱:一年间推出了 4 代 GLM,一直是国内能力最好的模型之一。 MiniMax:推出了 MoE 架构的新模型,和“星野”这个目前国内最成功的 AI 陪聊 APP。 月之暗面:专注长 Token 能力,在记忆力和长 Token 能力上可圈可点。 通过 SuperCLUE 测评结果发现,文心一言 4.0、通义千问 2.0 引领国内大模型的研发进度,部分高质量大模型也在闭源应用和开源生态中形成自己独特的优势。从国内 TOP19 大模型的数量来看,创业公司和大厂的占比几乎持平。
2024-09-05
中国头部的大模型公司有哪些?
以下是中国头部的大模型公司: 北京: 百度(文心一言):https://wenxin.baidu.com 抖音(云雀大模型):https://www.doubao.com 智谱 AI(GLM 大模型):https://chatglm.cn 中科院(紫东太初大模型):https://xihe.mindspore.cn 百川智能(百川大模型):https://www.baichuanai.com/ 上海: 商汤(日日新大模型):https://www.sensetime.com/ MiniMax(ABAB 大模型):https://api.minimax.chat 上海人工智能实验室(书生通用大模型):https://internai.org.cn 此外,字节和腾讯都有团队在和外部大模型合作。创业公司中表现出色的有: 智谱:一年间推出了 4 代 GLM,一直是国内能力最好的模型之一。 MiniMax:推出了 MoE 架构的新模型,和“星野”这个目前国内最成功的 AI 陪聊 APP。 月之暗面:专注长 Token 能力,在记忆力和长 Token 能力上可圈可点。 通过 SuperCLUE 测评结果发现,国内大模型的第一梯队还有文心一言 4.0、通义千问 2.0 引领研发进度。从国内 TOP19 大模型的数量来看,创业公司和大厂的占比几乎持平。
2024-09-05
头部公司为了AI话费多少钱
以下是关于头部公司为了 AI 花费情况的一些信息: OpenAI 已投入 10 亿美元(主要来自 Musk),虽然拥有王牌团队和崇高使命,但对如何实现目标曾毫无头绪。 去年,大部分企业的生成式人工智能支出来自“创新”预算和其他一次性资金池。到 2024 年,许多头部企业将这些支出重新分配到更为永久的软件预算项上。一家公司提到基于 LLM 技术的客户服务每通电话节省了约 6 美元,总体节省了约 90%的成本,这是增加八倍投资于生成式人工智能的原因之一。 在生成式 AI 领域,大部分的钱花在了三大云上:AWS、谷歌云(GCP)和微软 Azure。三大云每年花费超千亿美元的资本支出以确保拥有全面、可靠、具成本优势的云平台。迄今为止,生成式 AI 领域最大的幕后赢家可能是运行了绝大多数 AI 工作负载的英伟达(NVIDIA)。此外,甲骨文等挑战者已通过巨额资本支出和销售激励进军市场,一些初创公司也在快速发展。
2024-08-26
因此在prompt中,把query放到头部和尾部,同时根据相似度,把相似度大的文档放到context的两端,是什么意思,要如何做到
在开发产品视角的大模型 RAG 应用的 Prompt 阶段,匹配出与问句向量最相似的 top k 个 chunk 后,将匹配出的文本和问句添加到配置好的 prompt 中提交给 LLM。在这个过程中,根据论文《Lost in the Middle:How Language Models Use Long Contexts》,由于大模型对上下文中间位置的知识点提取较差,所以把 query(即问句)放到 prompt 的头部和尾部,同时按照相似度,将相似度大的文档放置在 context(上下文)的两端,这样做能够提升回答效果。要做到这一点,需要在进行 prompt 工程时,选择最合适的 prompt 模板,并按照上述原则对 query 和相似度大的文档进行合理的位置安排。
2024-08-19
大模型的头部公司都有哪些
目前,大模型的头部公司有很多,以下是一些知名的公司: 百度:其文心一言是当前国内能力较好的模型之一。 抖音:云雀大模型具有一定的影响力。 智谱 AI:推出了多代 GLM 模型,在国内表现出色。 中科院:紫东太初大模型也备受关注。 百川智能:其百川大模型具有一定的特色。 商汤:日日新大模型在市场上有一定的知名度。 MiniMax:推出了具有特色的模型和产品。 这些公司在大模型领域都有一定的技术实力和市场影响力,但随着技术的不断发展,其他公司也可能会崛起。在选择使用大模型时,用户可以根据自己的需求和应用场景进行评估和选择。
2024-07-04
我想要让ai生成svg代码,如何保证其生成质量
目前知识库中没有关于如何保证让 AI 生成 SVG 代码质量的相关内容。但一般来说,要保证 AI 生成 SVG 代码的质量,可以从以下几个方面考虑: 1. 清晰明确地向 AI 描述您的需求,包括图形的特征、尺寸、颜色、线条样式等具体要求。 2. 提供足够的示例或参考资料,让 AI 更好地理解您期望的代码风格和质量标准。 3. 对生成的代码进行多次测试和验证,检查其在不同场景下的显示效果和兼容性。 4. 尝试使用不同的 AI 模型或工具,并比较它们生成的 SVG 代码质量,选择最适合您需求的。
2024-11-15
我想要让ai生成svg图片,如何保证其生成质量
要保证 AI 生成 SVG 图片的质量,您可以参考以下方法: 在使用 AI 生成图片时,可能会遇到即使输入相同关键词,生成的图片仍有很强随机性的情况。为了让生成的图片更加可控,可以利用 seed 参数进行反向生成。 首先,从官方文档中了解 seed 参数的作用:Midjourney 会用一个种子号来绘图,把这个种子作为生成初始图像的起点。种子号为每张图随机生成,但可以使用 Seed 或 same eseed 参数指定。使用相同的种子号和提示符将产生类似的结尾图片。详细参数可查看官方文档: 默认情况下,种子是随机给定的。若想要获得比较相似的图,需要将 seed 固定下来。简单来说,使用时在关键词后添加 seed 参数即可,具体数字在 0–4294967295 范围内均可。例如:caiyunyiueji is a cute sports anime girl,style by Miyazaki Hayao,emoji,expression sheet,8k seed 8888 这样就能保证每次生成的都是相同的图。此外,还可以反向利用这个特性对已经确定的效果图进行微调。比如当发现有一张图已比较接近目标,还需要一些微调时,可以利用确定图片的 seed,在此基础上添加新的关键词来实现。
2024-11-15
我想要翻译最准确的教学领域的AI
以下是关于生成式人工智能在教学领域应用的相关内容: 生成式人工智能在教学中的应用包括: 央馆数 20 万长上下文联网总结。 如 Perplexity 这类付费且高质量的工具。 教师根据不同教学场景设计恰当提示词,用其辅助教学,例如宝⽟ XP 的翻译提示词不断迭代。 常见的应用有 AI 搜索总结、AI 思维导图、AI PPT 制作、AI 论文润色、AI 专业翻译、AI 摘要重点、AI 会议纪要、AI 公文撰写等。 可以收集整理语料,将蓝色字体替换成不同语种和场景。 教学应用举例:收集整理语料。 自适应学习、智慧课程清华的探索、AI 助教帮助精准回答学生问题。 涉及不同时代的教育特点,如口传时代传授生存技能传承部落文化,通过口诀、歌谣、神话故事等在生活场景和部落仪式中口耳相传、言传身教;手抄时代掌握典籍知识培养识字写字能力;印刷时代的启蒙教育、专业教育等;电子媒体时代的多学科知识实用技能等。 不同时代的教育组织形态和教学方式也有所不同,如私塾、官学、书院等,以及背诵领会、注疏评点等方式。
2024-11-11
我希望用即梦来生成一张图片,我想要实现的效果是:空中有悬浮的大理石加金子材质的悬浮台。请协助我生成提示词
以下是为您生成的使用即梦生成空中悬浮的大理石加金子材质悬浮台图片的提示词相关步骤: 1. 工具选择:即梦、可灵、Runway、Suno、剪映。 即梦:是最简单易用的图片重绘工具,云端访问且无需付费。 可灵:具有极强的运动笔刷控制力。 Runway:能很好地实现泼墨和画面上色。 Suno:可尝试新的使用视频制作歌曲的效果。 2. 即梦使用步骤: 使用即梦的图片生成功能,上传同一张图片 2 次,一次选择边缘轮廓,一次选择人物姿势(或者单独使用边缘轮廓也可以)。 在此场景下,不要添加景深,否则会出现“文物感”效果,而非所需的写实风。 可稍微提升精细度,由于原图是竖版,选择竖版切割,所得图片更适合用作首尾帧。 3. Runway 提示词:Static shot:colorful paint splashed onto canvas,transforming into a vibrant,lifelike display 4. 可灵提示词:一个帅气地老头从鹿背上跳下来,释放法术,漂浮在空中,非常自信,非常帅气。鹿向左走出了画面(鹿没有走出画面,但漂浮效果不错,决定不再抽卡,保留这个版本)。 希望这些信息对您有所帮助。
2024-11-10
如果我想要让AI回答高等数学相关的问题,请帮我推荐一下现在国内的哪个大模型更擅长?
在国内的大模型中,对于回答高等数学相关问题,以下几个大模型具有一定的优势: 通义千问(阿里):在翻译、电商、法律、推理、数学等方面表现较好。 讯飞星火(科大讯飞):在中小学教育学习、翻译等方面有一定能力。 需要注意的是,不同大模型的表现可能会因具体问题和使用场景而有所差异。您还可以参考第三方基准评测报告: 。但报告内容由 AI 大模型生成,请仔细甄别。
2024-11-09
如果我想要让AI回答高等数学相关的问题,适合用哪个大模型?
不同的大模型在处理高等数学相关问题时的能力有所差异。如果您编写的 AI 项目在处理高等数学问题时结果不如意,反复调试提示词也无明显改善,可以尝试更换大模型。 大型语言模型在处理数学计算,尤其是复杂的数学问题时可能会遇到困难,以下是一些解决办法: 1. 引入编程插件:将数学问题转化为编程问题,并引入编程插件来处理,通过编写代码执行数学计算后将结果返回给语言模型。 2. 教会模型数学法则:像教导小学生学习加法法则一样,让语言模型学习数学计算的规则。 3. 标准化自然数加法计算 prompt 模板:创建标准的自然数加法计算 prompt 模板,让模型按预定义规则和步骤执行加法计算。 4. 结合图像模型:对于涉及空间概念的数学问题,结合图像模型辅助处理。 5. 提供充足的语料和样本:为语言模型提供充足的数学计算样本和语料,以提高其数学计算能力。 在选择大模型时,如果您是 AI 应用开发者且使用 api,考虑到成本问题,应在工作流设计中,根据不同任务节点选择不同的大模型。基础性工作节点可使用免费或便宜的大模型,如普通的内容总结类工作;高价值性的工作节点则以性能优先,优先选择对应性能最好的大模型。 此外,在与大模型交互时,方法论不是关键,不断尝试和交互便是最佳方法。您可以在提示词里设定规则,也可临时更改,甚至无需遵循规则,重点是是否达成目的。使用 Markdown 格式清晰表达问题,有助于模型更好地理解您的意图,因其具有结构清晰、格式化强调和适用性广等优点。
2024-11-09