Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

ai agent与gpts有什么关系

Answer

AI Agent 与 GPT 的关系是什么?

AI Agent 是一种智能体,它可以自主地执行任务并与环境进行交互。而 GPT(Generative Pre-trained Transformer)是一种大规模预训练的语言模型,它可以生成自然语言文本。

虽然 AI Agent 和 GPT 是不同的概念,但它们可以相互配合使用。例如,GPT 可以作为 AI Agent 的语言生成模块,为其提供自然语言文本生成能力。同时,AI Agent 可以使用 GPT 生成的文本作为输入,执行各种任务,如问答、对话、文本摘要等。

此外,GPT 还可以作为 AI Agent 的知识来源,为其提供各种领域的知识和信息。通过将 GPT 与 AI Agent 相结合,可以实现更加智能、灵活和高效的 AI 应用。

总的来说,AI Agent 和 GPT 是相互补充的概念,它们可以结合使用,为人工智能的发展提供更广阔的前景。

Content generated by AI large model, please carefully verify (powered by aily)

References

像高手一样编写 GPT:从基础到实践,学习使用 GPT 的 Action

“大型语言模型的潜力不仅仅在于创作出流畅的文本、故事、论文和程序;它还可以被视为一个强大的通用问题解决工具。”和开头提到的计算机领域的通用比,Lilian进一步具体化了Agent的能力模型:在Lilian看来,Agent的能力被具象为三大类:1.规划2.记忆3.使用工具(工具+行为Action)你可能有印象——在之前的GPT-4,画图工具Dall-E,Bing搜索,插件,和代码解释器,都需要切换不同的会话/窗口实现的。后来GPT-4成为了GPT:All-Tools,可以在一个会话里根据用户需求和上下文自行选择工具,并且做出行动——这个行动,就是OpenAI定义的“Action”,如下图:当你在让它搜索,画图的时候,GPT会先思考决定怎么使用工具,然后会出现一个小图示,告诉你他尝试使用工具来完成你的任务。现在你应该能够认清AI-Agent、GPT和Action之间的联系了:GPT(All-Tools,也是现在大家正在开发的“GPTs”),是OpenAI之于传统Agent定义交上的一份答卷——具体的描绘了在大语言模型(LLM)驱动下Agent的系统实现方式。即:使用LLM驱动,通过外部API获取信息和执行的行动(Action),也是本文后半部提到的Action的定义,如下:

AIGC Weekly #46

解释了GPTs目前还不是真正的智能代理,但它可以通过结构化提示完成一些有用的任务。随后介绍了如何通过对话与AI交互来构建GPT模型,以及如何修改和完善结构化提示来提升GPT模型的功能。文章还提到GPTs可以连接到其他系统中,比如邮箱或购物网站,从而让AI能够完成更广泛的任务,预示着下一代更智能的AI将要来临。同时也指出连接到更多系统会带来更高的安全风险。文章重点介绍了如何利用GPTs为教育和工作创造有用的工具。比如通过GPT为写作指导创建一个交互式写作辅导工具。同时也提到如何为自己教授的课程创建定制化的GPT助教。

质朴发言:从 GPTs 聊到 Agent、LLMOps 以及开源的新机会|Z 沙龙第 1 期

本文不代表智谱认同文中任何观点。为鼓励自由发言,我们也暂时不披露参与者个人信息,不做流水账,抛开敏感信息,分类整理如下。后面继续办,一起来聊!🌊以下为本文目录,建议结合要点进行针对性阅读。一、Agent什么是Agent?具备什么能力?观点一:狭义的Agent,由OpenAI定义观点二:广义的Agent,具有基础智能、角色管理、技能调用、复杂思维、及未来更多的可扩展性Agent在B端的落地到底情况如何?观点一:设想与现实之间的gap有多大?人和大模型长期共存观点二:在Autonomy Agent或multi-agent成熟之前,大模型应从“对外业务”和“简单功能”切入To B服务观点三:大模型要做专家知识,还是通用知识?观点四:人机边界识别,工程落地能力,基座模型能力,并驾齐驱,同样重要未来可能有机会的方向二、在DevDay之后,国产大模型和OpenAI之间的差距是扩大了还是缩小了?三、AI LLMOps及开源社区OpenAI对AI Ops的态度如何?观点一:中间件挡住了Open AI的数据飞轮,注定会被吞没,开源中间件是在帮助OpenAI打磨产品那么,什么形态的AI Ops会/不会挡住OpenAI数据飞轮?观点一:哪些AI Ops会挡住OpenAI数据飞轮观点二:哪些AI Ops不会挡住OpenAI数据飞轮AI Ops公司们应该怎样调整入场姿势?

Others are asking
agent和copilot的区别
Copilot 和 Agent 主要有以下区别: 1. 核心功能: Copilot 更像是辅助驾驶员,依赖人类指导和提示完成任务,功能局限于给定框架内。 Agent 像初级主驾驶,具有更高自主性和决策能力,能根据目标自主规划处理流程并自我迭代调整。 2. 流程决策: Copilot 处理流程依赖人类确定,是静态的,参与更多在局部环节。 Agent 解决问题流程由 AI 自主确定,是动态的,能自行规划任务步骤并根据反馈调整流程。 3. 应用范围: Copilot 主要用于处理简单、特定任务,作为工具或助手存在,需要人类引导监督。 Agent 能够处理复杂、大型任务,并在 LLM 薄弱阶段使用工具或 API 增强。 4. 开发重点: Copilot 主要依赖 LLM 性能,开发重点在于 Prompt Engineering。 Agent 同样依赖 LLM 性能,开发重点在于 Flow Engineering,把外围流程和框架系统化。 此外,Agent 具备“决策权”,可自主处理问题,无需确认;Copilot 需要人类确认才能执行任务。业界普遍认为,Copilot 更适合各行业现有软件大厂,而 AI Agent 为创业公司提供了探索空间。
2025-02-18
AI agent 是什么?
AI Agent 是基于大型语言模型(LLM)和其他技术实现的智能实体,其核心功能在于自主理解、规划决策、执行复杂任务。 AI Agent 包括以下几个概念: 1. Chain:通常一个 AI Agent 可能由多个 Chain 组成。一个 Chain 视作是一个步骤,可以接受一些输入变量,产生一些输出变量。大部分的 Chain 是大语言模型完成的 LLM Chain。 2. Router:我们可以使用一些判定(甚至可以用 LLM 来判定),然后让 Agent 走向不同的 Chain。例如:如果这是一个图片,则 a;否则 b。 3. Tool:Agent 上可以进行的一次工具调用。例如,对互联网的一次搜索,对数据库的一次检索。 总结下来我们需要三个 Agent: 1. Responser Agent:主 agent,用于回复用户(伪多模态) 2. Background Agent:背景 agent,用于推进角色当前状态(例如进入下一个剧本,抽检生成增长的记忆体) 3. Daily Agent:每日 agent,用于生成剧本,配套的图片,以及每日朋友圈 这三个 Agent 每隔一段时间运行一次(默认 3 分钟),运行时会分析期间的历史对话,变更人物关系(亲密度,了解度等),变更反感度,如果超标则拉黑用户,抽简对话内容,提取人物和用户的信息成为“增长的记忆体”,按照时间推进人物剧本,有概率主动聊天(与亲密度正相关,跳过夜间时间)。 此外,心灵社会理论认为,智能是由许多简单的 Agent(分等级、分功能的计算单元)共同工作和相互作用的结果。这些 Agent 在不同层次上执行不同的功能,通过协作实现复杂的智能行为。心灵社会将智能划分为多个层次,从低层次的感知和反应到高层次的规划和决策,每个层次由多个 Agent 负责。每个 Agent 类似于功能模块,专门处理特定类型的信息或执行特定任务,如视觉处理、语言理解、运动控制等。智能不是集中在单一的核心处理单元,而是通过多个相互关联的 Agent 共同实现。这种分布式智能能够提高系统的灵活性和鲁棒性,应对复杂和多变的环境。同时,在《心灵社会》中,还存在专家 Agent(拥有特定领域知识和技能,负责处理复杂的任务和解决特定问题)、管理 Agent(协调和控制其他 Agent 的活动,确保整体系统协调一致地运行)、学习 Agent(通过经验和交互,不断调整和优化自身行为,提高系统在不断变化环境中的适应能力)。 从达特茅斯会议开始讨论人工智能(Artificial Intelligence),到马文·明斯基引入“Agent”概念,往后,我们都将其称之为 AI Agent。
2025-02-17
有关agent的介绍
AI Agent 是当前 AI 领域中较为热门的概念,被认为是大模型未来的主要发展方向之一。 从原理上看,中间的“智能体”通常是 LLM(语言模型)或大模型。为其增加的四个能力分别是工具、记忆、行动和规划。目前行业中主要使用 langchain 框架,将 LLM 与 LLM 之间以及 LLM 与工具之间通过代码或 prompt 的形式进行串接。例如,给大模型提供长期记忆,相当于给予一个数据库工具让其记录重要信息;规划和行动则是在大模型的 prompt 层进行逻辑设计,如将目标拆解并输出不同的固定格式 action 指令给工具。 从产品角度,Agent 可以有不同的设定。比如是一个历史新闻探索向导,身份为历史新闻探索向导,性格知识渊博、温暖亲切、富有同情心,角色是主导新闻解析和历史背景分析,还可以为其设计背景故事使其更加生动。 在人工智能领域,Agent 智能代理是一种能够感知环境并根据感知信息做出决策以实现特定目标的系统,能够自动执行任务,如搜索信息、监控系统状态或与用户交互。
2025-02-16
AIagent的发展方向
AI Agent 被认为是大模型未来的主要发展方向之一,其发展具有以下特点和阶段: 从原理上看,中间的“智能体”通常是 LLM 或大模型,为其增加了工具、记忆、行动、规划四个能力。目前行业里主要用到的是 langchain 框架,它通过代码或 prompt 的形式将 LLM 与 LLM 之间以及 LLM 与工具之间进行串接。 在人工智能的发展历程中,AI Agent 并非一蹴而就,其发展可分为几个阶段,并受到符号主义、连接主义、行为主义的影响。在人工智能的黎明时期,符号人工智能作为主导范式,以对符号逻辑的依赖著称,代表之作是基于知识的专家系统。其特点是基于逻辑和规则系统,使用符号来表示知识,通过符号操作进行推理。优点是推理过程明确、可解释性强,缺点是知识获取困难、缺乏常识、难以处理模糊性。时间为 20 世纪 50 70 年代。 近期出现的各类 AI 搜索引擎不断颠覆传统搜索引擎,如 perplexity.ai、metaso、360 搜索、ThinkAny 等。AI Agent 在辅助高效处理信息和简便信息表达方面表现出色,例如智能摘要能辅助快速筛选信息,自然语言描述可生成美观可用的图片。在工作流方面,每个人应根据自身情况找到适合的工具,如产品经理可使用 AI 进行用户画像、竞品调研、设计产品测试用例、绘制产品功能流程图等。关于 AI Agent 的未来,曾被认为异想天开的想法都可能成为现实,技术迭代会不断向前。
2025-02-15
AI Agent 或者 工作流, 落地的场景
以下是 AI Agent 或工作流的一些落地场景: Long horizon task 长期任务执行:Agent 能像称职的项目经理,分解大任务为小步骤,保持目标导向并适时调整策略。 多模态理解:Agent 能同时理解文字、图像、声音等多种交流方式,全方位感知世界和任务上下文。 记忆与行动:通过先进的记忆机制,Agent 能积累经验,记住对话、操作步骤和效果,行动更精准高效。 自适应学习:从每次交互中吸取经验,不断完善策略,实现“智慧成长”。 在技术层面,有两条技术路线:以自主决策为核心的 LLM 控制流和以工作流(Workflow)编排为重点的工具集成系统。Anthropic 提出的 MCP(Model Context Protocol)提供了通用接口协议,将外部资源抽象为“上下文提供者”,便于模型与外部世界交互。 工作流驱动的 Agent 搭建,简单情况分为 3 个步骤:规划,包括制定任务关键方法、总结目标与执行形式、分解子任务等;实施,在 Coze 上搭建框架并分步构建和测试功能;完善,全面评估并优化效果。 典型例子如利用 Kimi Chat 进行网页搜索和总结分析。 包括 Agent 自行规划任务执行的工作流路径,适用于简单或线性流程。 多 Agent 协作,如吴恩达通过开源项目 ChatDev 举例,让大语言模型扮演不同角色共同开发应用或复杂程序。 OpenAI 研究主管 Lilian Weng 提出 Agent 的基础架构为“Agent=LLM+规划+记忆+工具使用”,规划包括子目标分解、反思与改进。
2025-02-15
腾讯agent开发
AppAgent 是由腾讯开发的一种基于大型语言模型(LLM)的多模态 Agent 框架。 其主要特点和功能包括: 多模态代理:能够处理和理解多种类型的信息(如文本、图像、触控操作等)。 直观交互:通过模仿人类的直观动作(如点击和滑动屏幕)来与手机应用程序交互,能够在手机上执行各种任务,例如在社交媒体上发帖、帮用户撰写和发送邮件、使用地图、在线购物,甚至进行复杂的图像编辑等。 对于之后模仿数据的反利用也有不错的应用场景,例如互联网或 AI 或涉及到原型+UE 的工作都可以在基于模仿数据的基础上进行反推,进而让设计出的产品原型和 UE 交互更优解。 AppAgent 在 50 个任务上进行了广泛测试,涵盖了 10 种不同的应用程序。该项目由腾讯和德州大学达拉斯分校的研究团开发。 相关链接: 官方网站:https://appagentofficial.github.io 相关报道:https://x.com/xiaohuggg/status/1738083914193965528?s=20
2025-02-14
我要做一个关于ai赋能社会组织的线上培训
以下是关于 AI 赋能社会组织线上培训的相关信息: 社区 AI 讲师招募: 招募背景:随着 AIGC 技术的快速发展,传统企业亟需通过 AI 转型实现降本增效与业务创新。工信部大数据产业人才基地计划为传统行业客户提供 AI 技术培训等服务,现面向社区招募具备实战经验的 AI 讲师与咨询专家。 涉及业务: 公开课:针对 B 端渠道持续展开公益科普,形式免费,部分渠道有经费,内容包括企业端的 AI 应用场景案例和 AI 通识类科普分享,目的是建立与企业渠道的信任及构建收费培训/咨询的转化通道。 线下培训:通过培训转化或直接招生,分成两天一夜、三天两夜的培训班,50 人以上开班,建议 100 人。 咨询服务:针对企业的咨询陪跑服务,包括 AI 营销能力搭建等。 近期安排: 商会公开课:时间暂定 2.22 日,线上直播,用户群体是商会会员,公开课主题为《AI 获客》。 重庆区域公开课:时间暂定 2.9 日,线上直播,用户群体是重庆地区相关领导,公开课主题为《Deepseek 引发的商业思考》。 民营经济大讲堂:时间与讲师团商量调整,线下付费,需评估讲师资历和案例,主题包括但不限于 AI 通识培训、AI 企业增长打法等。 省商会公开课:时间待定,线上直播,用户群体是商会会员,公开课主题为《AI 获客》。 SaaS 平台企业公开课:时间待定,线上直播,用户是 SaaS 平台上的企业,主题待定。 杭州市城投线下培训:时间 2 月底,针对城投内部线下培训,付费,主题可与讲师商量。 万人期待的字节 Trae Windows 版正式推出,免费: 重磅福利: AI 编程重磅直播:会邀请在 AI 编程领域取得成绩的嘉宾深度交流,由黄叔亲自主持,还邀请了 Eric 等嘉宾。 AI 编程训练营:WaytoAGI 和 AI 编程社推出为期 2 周左右的共学营,包含图文教程、视频、直播,社群内有老师答疑,完全免费。 相关链接:Trae Windows 版本已经上线,Mac 版本也可下载,官网地址:https://www.trae.ai/
2025-02-18
图片转视频的国产AI推荐
以下是为您推荐的国产图片转视频的 AI 工具: 1. 可灵:由快手团队开发,生成的图像和视频质量高。在视频生成方面,其视频生成质量卓越,画面清晰、连贯且内容丰富,生成速度快,对于国内用户可访问性强。但价格相对较高,重度用户年费可能达几千元,轻度用户有免费点数和较便宜的包月选项。 2. 通义万相:作为国产 AI 工具,在中文理解和处理方面表现出色,可选择多种艺术和图像风格,操作界面简洁直观,用户友好度高,且目前免费,每天签到获取灵感值即可。但为符合国内监管要求,某些类型图像无法生成,处理非中文语言或国际化内容可能不够出色,处理多元文化内容时可能存在偏差。 更多相关网站可以查看: 内容由 AI 大模型生成,请仔细甄别。
2025-02-18
图片转视频的AI推荐
以下是为您推荐的图片转视频的 AI 工具: 1. Pika:出色的文本生成视频 AI 工具,擅长动画制作,并支持视频编辑。 2. SVD:如果熟悉 Stable Diffusion,可以安装这款最新的插件,在图片基础上直接生成视频,它是由 Stability AI 开源的 video model。 3. Runway:老牌 AI 视频生成工具,提供实时涂抹修改视频的功能,但需要收费。 4. Kaiber:视频转视频 AI,能够将原视频转换成各种风格的视频。 5. Sora:由 OpenAI 开发,可以生成长达 1 分钟以上的视频。 更多的相关网站可以查看:https://www.waytoagi.com/category/38 。 另外,在视频转绘制作视频过程中,Topaz Video AI 是一个不错的插件,用于消除视频抖动和运动模糊。其使用方法如下: 解压对应文件,推荐使用绿色版,右键管理员运行 VideoAIportable.exe 文件,导入处理好的视频。主界面左边是原视频,右边是待处理视频,下面是对应的视频轨道。右边部分是主要对视频处理的方式,预设部分主要是放大视频、提升画质、提升帧率等。稳定 AI 模式分为自动裁切和完整帧,做转绘选择完整帧,强度在 60 左右,抖动需要开启,次数一般选择 2 保持默认不变。 在制作新年表情包时,生成新年场景可以输入关键词“新年、中国新年、喜庆热闹、恭喜发财”之类的词汇得到合适的新年背景。然后使用可灵 AI 1.6 图生视频工具让场景动起来,抽卡性价比不错,简单效果一般抽两三次即可。
2025-02-18
作为前端开发人员,推荐学习哪些AI技术呢
作为前端开发人员,以下是一些推荐学习的 AI 技术: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能、机器学习、深度学习、自然语言处理等主要分支及其联系。 浏览入门文章,了解 AI 的历史、当前应用和未来发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,可根据兴趣选择特定模块深入学习。 掌握提示词的技巧,其上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库查看大家实践后的作品、文章分享,并进行自己实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品如 ChatGPT、Kimi Chat、智谱、文心一言等聊天机器人互动,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验。 此外,如果希望继续精进,对于 AI,可以尝试了解以下内容作为基础: 1. AI 背景知识: 基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。 历史发展:简要回顾 AI 的发展历程和重要里程碑。 2. 数学基础: 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:了解向量、矩阵等线性代数基本概念。 概率论:基础的概率论知识,如条件概率、贝叶斯定理。 3. 算法和模型: 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:熟悉聚类、降维等算法。 强化学习:简介强化学习的基本概念。 4. 评估和调优: 性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。 模型调优:学习如何使用网格搜索等技术优化模型参数。 5. 神经网络基础: 网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。 如果偏向技术研究方向: 1. 数学基础:线性代数、概率论、优化理论等。 2. 机器学习基础:监督学习、无监督学习、强化学习等。 3. 深度学习:神经网络、卷积网络、递归网络、注意力机制等。 4. 自然语言处理:语言模型、文本分类、机器翻译等。 5. 计算机视觉:图像分类、目标检测、语义分割等。 6. 前沿领域:大模型、多模态 AI、自监督学习、小样本学习等。 7. 科研实践:论文阅读、模型实现、实验设计等。 如果偏向应用方向: 1. 编程基础:Python、C++等。 2. 机器学习基础:监督学习、无监督学习等。 3. 深度学习框架:TensorFlow、PyTorch 等。 4. 应用领域:自然语言处理、计算机视觉、推荐系统等。 5. 数据处理:数据采集、清洗、特征工程等。 6. 模型部署:模型优化、模型服务等。 7. 行业实践:项目实战、案例分析等。 无论是技术研究还是应用实践,数学和编程基础都是必不可少的。同时需要紧跟前沿技术发展动态,并结合实际问题进行实践锻炼。请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-02-18
动漫制作中如何使用ai辅助工作
在动漫制作中使用 AI 辅助工作,大致流程如下: 1. 面临时间和金钱的双重压力,需找到适合的制作捷径。AI 目前主要是辅助工具,负责搞定图和片,其他部分仍依赖人工。 2. 效率至关重要。和视频相关的所有内容、资料都记录在飞书文档里。 3. 分工方面,有人负责前期的内容构思和脚本编写,有人主要负责图片、视频生成和视频剪辑。 4. Midjourney 提示词围绕皮克斯、迪士尼、3D 风格来写,例如:"a small white Chiense dragon,anthropomorphic,Smile with surprise,wearing a school uniform,looking at a blurry gift box in the foreground,super closeup shot,camera focus on his face,3D render,Unreal Engine,Pixar 3D style,blurry classroom scene,bright sunshinear 16:9niji 6",重点是"a small white Chiense dragon,anthropomorphic,3D render,Unreal Engine,Pixar 3D style",尺寸比例 16:9,模型选择 niji 6,其他根据需求调整。 5. 动画制作主要使用 Runway,因其控制笔刷有优势。
2025-02-18
传统AI、大模型、AGI的区别
传统 AI、大模型、AGI 存在以下区别: 传统 AI: 语音技能 NLU 通常通过一系列规则、分词策略等训练而成。 运作逻辑规律可观测,具有 ifelse 式的逻辑性。 大模型: 凭借海量数据在向量空间中学习知识的关联性。 运作逻辑难以观测,脱离了 ifelse 的层面。 Transformer 是其底层结构,是一个大参数(千亿级别)的回归方程,底层是 function loss 损失函数,能在一定 prompt condition 情况下,repeat 曾经出现过的数据内容,实现“生成”能力。 大语言模型是一个 perfect memory,repeat 曾经出现的内容。与 Alpha Go 相比,Alpha Go 是增强学习模型,有推理能力,而大语言模型这块很弱。 AGI(通用人工智能): 部分人觉得 LLM(大语言模型)具有 AGI 潜力,但 LeCun 反对。 目前对于能否到达 AGI 阶段尚不明确。 在公众传播层面: AIGC 指用 Stable Diffusion 或 Midjourney 生成图像内容,后来泛指用 AI 生成音乐、图像、视频等内容。 LLM 指 NLP 领域的大语言模型,如 ChatGPT。 GenAI 是生成式人工智能模型,国内官方政策文件使用这个词相对科学,涵盖了 LLM 和 AIGC。 公众传播一般会混用上述名词,但底层是 transformer 结构。
2025-02-18
可以查看GPTs是怎么设置的吗
以下是关于 GPTs 设置的详细步骤: 1. 放入完整的 Schema,并点击 Format 进行验证,如果不报错并显示出 Available Action 的列表,则代表成功。 2. 进行授权,输入 ClientID YOUR_ACCESS_KEY,如 ClientID 123456,并点击 Save。 3. 点击对应 Action 的 Test 验证 Action 是否可以调用。如果遇到返回数据过多造成异常的情况,也代表成功,只需在提示词中限定接口返回的数量即可。 4. 为了 GPTs 后期发布和分享,需要配置 Privacy Policy,其位置一般在网站的底部或者菜单的底部。复制 Privacy Policy 网页地址,如 Privacy policy 地址为:https://unsplash.com/privacy 。 5. 完善 GPTs 的基本配置。 6. 提示词调用方面,根据图片中各个对应关系,执行的操作需要指定 action 的名称,需要显示的字段名称指定具体的位置,比如图片作者,则使用 user.name,这样更加精确,不容易出错。完整提示词如下。注意,如果遇到图片目前无法直接显示,可以使用下载链接的方式查看,如下为应对方案的提示词和效果。如果有更好的方案,欢迎提供。 实操配置 Gapier Actions API 的步骤如下: 1. 登录地址:,点击 Copy Link 进行复制 Actions API 链接。 2. 打开 ChatGPT,点击创建 GPTs>Configure>Create new action。了解平台上支持的功能,输入来自 Gapier 的 Actions API 并点击 Import,导入成功。 3. 在 Gapier 复制授权码用于授权。在 Authentication 下选择配置图标,进入授权页面。开始配置授权码: Authentication Type:选择 API Key Auth Type:选择 Basic 输入从网站上复制的授权码,并点击 Save。若需要分享给他人或者公开发布,需要配置隐私策略码,在网页上寻找并复制,回到 GPT 上进行配置。 4. 确定调用的 Action,并在 Prompt 中引用。查看 Action 的方式分为两种,方式一:GPTs>Configure>Actions 页面;方式二:网页查看,地址为。回到 GPT>Configure 页面,引用 Action,比如调用思维导图的 API,直接输入调用 GenerateMindMap API 即可。此外,另外一种引用的方式是:只要在 Instructions 中申明清楚需求,GPT 会自动选择合适的 API。保存后试用。 创建一个 Http 服务让 GPTs 调用的步骤如下: 1. 创建一个每次产生一个随机数的 Http 服务,体验地址如下:https://gptaction.iaiuse.com/api/random 。 2. 直接在 Instructions 里面写,让它去调用接口。窗口最下面有个 Actions,这里就可以设置它和外部系统的接口。 3. 打孔 Add actions 界面,录入相关代码在 Schema 里面。点击下面的 Test 按钮,就能看到 ChatGPT 如何和服务进行交互。第一次允许它会提示是否允许外部服务,点击右边的小三角可以看到对话框,最右边那个隐私政策就是前面设置的。针对每个 action 都可以设置独立的隐私政策。通过这样一个简单的示例,了解 GPTs 如何和外部的服务进行交互,扩展它的能力。
2025-02-09
我要做GPTs
做 GPTs 的原因主要有以下几点: 1. 从社会层面看,虽然 AI 信息充斥,但大多数人对其了解有限,直接面对大模型时交流有限。而 Character.ai 因创造具体角色,数据居高不下,这表明需要明确的引导,而 GPTs 的创作者们可以做到这一点。 2. 对于平台来说,需要场景反哺产品,也需要先行者带动,形成双赢的共存生态。 3. 从从业者角度,如作者自身,虽有丰富经验,但在做 LLMs 应用时面临诸多问题,如找不到落脚点、技术与业务的断档等。懂技术的人不懂业务,熟悉业务的人对新技术没概念。 4. 从产品角度,普通用户的简单交流大模型难以明白其意图,而 GPTs 通过对话引导逐步获取用户信息,将生成高质量 Prompt 的过程拆解为以一轮对话为最小单元任务的重复,解决了用户说什么以及低门槛生成高质量 Prompt 的问题。
2024-11-21
GPTs 结构化提示词模板
以下是为您整理的关于 GPTs 结构化提示词模板的相关内容: 简单的提示词模板:最终目标是把需求说清楚。例如,“Act like a ”。 GPTs 教程及案例拆解 开源:一些 GPTs 的 prompt 中,如超强 LOGO 生成器,其使用方法为设计一个 logo 生成工具,允许用户上传多张 logo 图片作为参考,通过提示询问用户是否使用这些图片来创建新的 logo 设计,可自定义提示词风格和设定图片参考权重,利用 GPT4 Vision 的识图能力生成新 logo 设计,若用户不满意则重新生成,创作完后提示用户是否满意,满意则提供转 LOGO 矢量图的链接。 GPTs 教程及案例拆解 精选:GPTs 项目包括 Reviewer2Pal,可帮用户将直白的英文论文回应转换为专业回复;方法论专家 Methodology Expert,辅助用户使用方法论解决相关问题;灵感专家 Brainstorming Expert,辅助用户进行灵感思考和提出发散性角度;自动结构化框架,由小七姐编写,欢迎关注其公众号“AI 中文百科”领取更多好玩的 GPT 工具。
2024-11-07
My GPTs使用技巧
以下是关于 GPTs 的使用技巧: 教育方面:一位历史老师用 GPT 给学生讲课,需注意模拟历史存在不准确之处,有时幻觉可能是特点而非缺陷。文末提供了可用于模拟不同历史设置的详细提示链接,也可用于 Claude 或 ChatGPT(免费版效果相当,GPT4 效果最佳)。 入门方法: 创建方式: 点击 Explore。 点击 Create a GPT 进入配置页面。 进入自定义 GPT 配置界面。 选择 Configure 进入配置页面,栏位详细解释包括添加图像、Name(GPT 名称)、Instructions(提供提示词)、Conversation starters(提示用户开始对话的示例)、Knowledge(允许提供文件作为额外上下文)、Capabilities(启用网页浏览、DALL·E 图像生成和高级数据分析等功能)、Actions(使用第三方 API 或现有的插件)。 上传个人 Logo 等图片。 填写相关信息,如无外部知识作为上下文,可不填写 Knowledge 和 Actions。 填写完自动保存,试用。 上传图片开始分析。 多次测试满意后,可在右上角点击 Save 进行发布,发布方式有 Only me(只有自己可用)、Only people with a link(通过链接访问)、Public(所有人可访问,需开启个人名称和绑定公共域名)。 其他尝试: 小七姐提到 GPTs 原理是调用 Code Interpreter 检查字数和扩写 Prompt,提供了 GPTs 地址。 也可通过代码调用 OpenAI 官方 API 实现同样效果。 还提到了一些不太正经的办法,如情绪勒索等。省事可用分治法分段输出,程序员可选择 API 方式。
2024-10-06
怎么做gpts
GPTs 是一种无需编程经验,通过简单的对话聊天方式或者配置一些参数就可以快速构建的具备专属技能的工具。创建 GPTs 的步骤如下: 1. 点击 Explore。 2. 点击 Create a GPT 进入配置页面。 3. 进入自定义 GPT 配置界面。 4. 默认进入 Create 页面,选择 Configure 进入配置页面,栏位的详细解释如下: 添加图像:上传自己的图像。 Name:GPT 的名称。 Instructions:提供提示词。 Conversation starters:提示用户开始对话的示例。 Knowledge:允许提供文件作为额外的上下文,供 GPT 参考。 Capabilities:启用网页浏览、DALL·E 图像生成和高级数据分析将允许 GPT 执行其他功能。 Actions:可以使用第三方 API 可供 GPT 使用,如果之前已经构建了一个插件,您将能够使用现有的插件清单来定义 GPT 的操作。 5. 上传图片。如果是做个人 IP 建议上传个人 Logo。 6. 填写相关信息。由于没有需要提供的外部知识作为上下文,此次 Knowledge 未提供,且 Actions 也未填写。 7. 填写完信息会后自动保存,开始试用。 8. 上传图片开始分析。 9. 经过多次测试,达到自己满意的程度后,就可以在右上角点击 Save 进行发布。发布选项有: Only me:只有自己可以使用。 Only people with a link:通过分析的链接可以访问。 Public:所有人都可以访问,但是需要开启个人名称、以及绑定公共域名。 创建内容排版大师的 GPTs 只需在聊天框粘贴文字内容,然后点击发送即可。其链接为:https://chat.openai.com/g/gt9dIHp4Ntneirongpaibandashi 。并且该 GPTs 已经加入了 webpilot 的 actions。 需要注意的是,创建 GPTs 要求账号为 ChatGPT Plus 用户。
2024-09-21
推荐一些好用的视频分析gpts
以下为一些相关的视频分析 GPTs 信息: 《。 里增加两个有趣的 AI 视频: 《》,ChatGPT 仅仅通过听《甄嬛传》音频,如何将内容、人物关系分析得头头是道。 《》UP 主给 ChatGPT 出了一道难题,如果你不幸到了一个寒冷的荒岛,必须要烧四大名著来取暖,你会先烧哪一本,一步步追问下,AI 给出了非常巧妙的回答。 GPT 对视频中的复杂结构给出了解释。相关链接: Motif AI 模型的创新:Meta AI 与麦吉尔大学共同开发的 Motif AI 模型。Motif 利用 LLM 知识帮助 AI 代理快速学习。相关链接: 人类对 AI 依赖性的反思:讨论了人们对 AI 的依赖及其影响。描述了 AI 不可用时的无助感。相关链接: 《剁手 GPT》购物助手 GPTs:一款能自动识别物品并比价的 AI 电商 bot。
2024-09-03
Ai生图和生视频和电脑算力的关系
AI 生图和生视频与电脑算力密切相关。 在生成图像和视频的过程中,需要强大的算力来处理复杂的计算任务。例如,像 PIKA1.0 这样的模型,在文生图和文生视频方面表现出色,其高质量和稳定性的输出依赖于足够的算力支持。 拥有大规模 GPU 集群、超算集群、云渲染平台等强大算力资源的企业或个人,能够更高效地完成生图和生视频的任务。 同时,未来算力的重点将从训练模型转向增强推理能力,这也将对 AI 生图和生视频的发展产生重要影响。 此外,一些新的模型和技术不断涌现,如 o1 推理模型,其在给出最终结果前会反复推演和验证,以提供更准确的结果。而像 OpenAI 发布会公布的 Sora v2 功能,能够生成 1 分钟长度的视频,并支持多种形式的转换,提升了多媒体创作的灵活性。 总之,电脑算力是实现高质量 AI 生图和生视频的重要支撑和保障。
2025-02-17
AGI和AIGC是啥关系,分别是什么的缩写
AGI 指通用人工智能,是一种能够像人类一样执行各种智能任务的人工智能。 AIGC 是人工智能生成内容的缩写,在公众传播层面,最初指用 Stable Diffusion 或 Midjourney 生成图像内容,后来泛指用 AI 生成音乐、图像、视频等内容。AIGC 是一种利用人工智能技术生成各种类型内容的应用方式,包括文字生成(如使用 GPT 系列模型生成文章、故事、对话等)、图像生成(如使用 Stable Diffusion、DALLE 等模型生成艺术作品、照片等)、视频生成(如使用 Runway、KLING 等模型生成动画、短视频等)。 AIGC、UGC(用户生成内容)和 PGC(专业人士或机构生成内容)都是内容生成的不同方式。UGC 由用户通过社交媒体等平台发布自己的内容,内容丰富多样,反映用户真实想法和创意,适用于互动性强的平台。PGC 由专业团队或机构根据特定标准和流程创作高质量内容,适用于需要高质量内容的平台。AIGC 的优势在于可以快速、大规模地生成内容,适用于需要大量内容的场景。
2025-02-13
关于AI与人类的关系,请说一些金句
以下是一些关于 AI 与人类关系的金句: 1. 未来拓展人类智力和能力的新型人工智能交互和协作方式是非常有前景的。我们期待创造性地利用人工智能技术来支持人类代理和创造力,增强和扩展人类能力,以实现创新和职业转型的丰富机会。 2. 一些社会角色可能会面临因 AI 的崛起而变得不那么有价值或过时的风险。然而,投资于支持和扩展人类问题解决和决策能力的任务、方法和机械,存在巨大的机会。 3. 当我们把 AI 当人来看待,它作为一个 Copilot,是一个很好的助手,也是一个非常好的朋友。 4. 个性化定制的“虚拟伴侣”能得到用户的认可,这是因为精准地击中了许多年轻人无处可藏的孤独和焦虑,背后是年轻人渴望被理解、沟通和交流。 5. AI 技术再爆炸一万倍,AI 的生态位也还是一种似人而非人的存在。 6. 当你想让 AI 实现愿望时,基于它的“非人”一面,你需要尽可能的通过语言文字(足够清晰的指令)压缩它的自由度。
2025-02-10
comfy ui 和 web ui是什么关系?有什么区别?
ComfyUI 是一个基于节点流程式的 stable diffusion AI 绘图工具 WebUI。 它们的关系是:ComfyUI 可以和 WebUI 共享环境和模型。 区别主要包括以下方面: 操作方面:ComfyUI 操作门槛高,需要有清晰的逻辑;WebUI 相对操作更简便。 性能方面:ComfyUI 对显存要求相对较低,启动速度快,出图速度快;系统资源占用更少。 自由度方面:ComfyUI 具有更高的生成自由度。 生态方面:WebUI 的生态比 ComfyUI 更多,但 ComfyUI 也有针对其开发的有趣插件。 种子处理和提示词权重处理:处理方式不同,会导致图像不同。例如种子处理,ComfyUI 通过 GPU 计算种子噪声,WebUI 通过 CPU。 硬件配置方面:ComfyUI 配置更低,最低可在小于 3G 的 GPU 上运行,甚至没有 GPU 光用 CPU 也可以运行,但速度极慢。而 SDXL 出来后,ComfyUI 运行配置提高,最低需要 8GB 显存+32GB 运行内存,12GB 流畅运行,推荐 16GB 以上。玩 SDwebui 和 ComfyUI 建议使用 6GB 以上的显存的 NVIDIA 显卡,内存在 16G 以上。硬盘最好使用 SSD 以提高加载模型速度。
2025-02-08
comfy UI和stable diffusion有什么区别?它们的关系是什么?
ComfyUI 和 Stable Diffusion 的区别及关系如下: ComfyUI 是一个基于节点流程式的 Stable Diffusion AI 绘图工具 WebUI。 区别: 优势: 对显存要求相对较低,启动速度快,出图速度快。 具有更高的生成自由度。 可以和 WebUI 共享环境和模型。 可以搭建自己的工作流程,可以导出流程并分享给别人,报错的时候也能清晰的发现错误出在哪一步。 生成的图片拖进后会还原整个工作流程,模型也会选择好。 劣势:操作门槛高,需要有清晰的逻辑;生态没有 WebUI 多(常用的都有),也有一些针对 ComfyUI 开发的有趣插件。 关系:ComfyUI 集成了 Stable Diffusion 的功能,通过将 Stable Diffusion 的流程拆分成节点,实现了更加精准的工作流定制和完善的可复现性。 在从 WebUI 到 ComfyUI 过渡时,需要了解采样器与调度器。简单理解为:采样器负责生成图像,而调度器负责控制噪声减少的速度。可以将 Stable Diffusion 模型中的采样器和调度器理解为一个加噪和去噪的过程。在这个过程中,采样器负责向图像添加噪声,而调度器则负责控制去噪的速度。 Stable Diffusion 是一种扩散模型的变体,叫做“潜在扩散模型”。它最初称为潜在扩散模型,CLIP 将用户输入的 Prompt 文本转化成 text embedding,核心组件包括 VAE EncoderDecoder、UNET 等。ComfyUI 的存放路径为 models/checkpoints/,Stable Diffusion 有不同的模型实例,如 SD1.5、SDXL 等,还有不同的训练方法和模型格式。
2025-02-08
ai绘画与ai视频是否有关联关系
AI 绘画与 AI 视频存在关联关系。 从以下方面可以体现: 1. 创作方面:在语言驱动的创作中,AI 绘画和 AI 影像都属于概念画笔的应用范畴,目前都处于探索阶段,尚未找到最合适的表现形式。 2. 应用方面:AI 绘画的应用领域广泛,包括个体成为自媒体博主、个体商户应用、实体印刷、AI 摄影、设计接单、AI 定制萌娃头像、电商商品、自媒体素材、AI 服装预售、AI 视频接单、培训老师等,其中就包含了 AI 视频接单。 3. 发展影响方面:AI 绘画和 AI 视频都在逐渐改变着传统艺术的面貌,对艺术的审美观念和市场需求产生影响。尽管存在争议,但都为艺术创作提供了新的可能性,如帮助创作者探索新的创意表达方式、提高制作效率、降低制作成本,促进与观众的互动,提供个性化和互动的体验。 然而,AI 绘画和 AI 视频也存在一些局限性和引发的问题,如在表达情感和创造性意图方面的不足,以及带来的版权、原创性和伦理等方面的争议。
2025-02-08