Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

画数据库关系图,用什么al软件好

Answer

以下是一些可以用于画数据库关系图的 AI 软件和传统工具:

  1. Lucidchart:流行的在线绘图工具,支持多种图表创建,包括数据库关系图,用户可通过拖放界面轻松操作。
  2. Visual Paradigm:全面的 UML 工具,提供创建各种架构视图的功能,如数据库的逻辑视图(类图、组件图)、功能视图(用例图)和部署视图(部署图)。
  3. ArchiMate:开源的建模语言,专门用于企业架构,支持逻辑视图创建,可与 Archi 工具配合使用,该工具提供图形化界面创建模型。
  4. Enterprise Architect:强大的建模、设计和生成代码的工具,支持创建包括数据库逻辑、功能和部署等多种视图。
  5. Microsoft Visio:广泛使用的图表和矢量图形应用程序,提供丰富模板用于创建数据库逻辑视图、功能视图和部署视图等。
  6. draw.io(现称为 diagrams.net):免费的在线图表软件,允许创建各种类型图表,包括数据库逻辑视图和部署视图。
  7. PlantUML:文本到 UML 的转换工具,通过编写描述性文本自动生成序列图、用例图、类图等,有助于创建数据库逻辑视图。
  8. Gliffy:基于云的绘图工具,提供创建包括数据库逻辑视图和部署视图等各种架构图的功能。
  9. Archi:免费开源工具,用于创建 ArchiMate 和 TOGAF 模型,支持逻辑视图创建。
  10. Rational Rose:IBM 的 UML 工具,支持创建包括数据库逻辑视图和部署视图等多种视图。
Content generated by AI large model, please carefully verify (powered by aily)

References

问:哪个AI工具可以画逻辑视图、功能视图、部署视图

在软件架构设计中,创建逻辑视图、功能视图和部署视图是常见的需求。以下是一些可以用于绘制这些视图的AI工具和传统工具:1.Lucidchart:这是一个流行的在线绘图工具,它支持多种图表的创建,包括逻辑视图、功能视图和部署视图。用户可以使用拖放界面轻松创建架构图。2.Visual Paradigm:这是一个全面的UML工具,它提供了创建各种架构视图的功能,包括逻辑视图(类图、组件图)、功能视图(用例图)和部署视图(部署图)。3.ArchiMate:这是一种开源的建模语言,专门用于企业架构。它支持逻辑视图的创建,并且可以与Archi工具一起使用,该工具提供了一个图形化界面来创建ArchiMate模型。4.Enterprise Architect:这是一个强大的建模、设计和生成代码的工具,它支持创建多种架构视图,包括逻辑、功能和部署视图。5.Microsoft Visio:这是一个广泛使用的图表和矢量图形应用程序,它提供了丰富的模板用于创建逻辑视图、功能视图和部署视图等。6.draw.io(现在称为diagrams.net):这是一个免费的在线图表软件,它允许用户创建各种类型的图表,包括软件架构图。它支持创建逻辑视图和部署视图等。7.PlantUML:这是一个文本到UML的转换工具,可以通过编写描述性文本来自动生成序列图、用例图、类图等,从而帮助创建逻辑视图。8.Gliffy:这是另一个基于云的绘图工具,它提供了创建各种架构图的功能,包括逻辑视图和部署视图。9.Archi:一个免费的开源工具,用于创建ArchiMate和TOGAF模型,支持逻辑视图的创建。10.Rational Rose:这是IBM的一个UML工具,它支持创建多种视图,包括逻辑视图和部署视图。

Others are asking
DALL-E
DALL·E 是 OpenAI 构建的一种新型神经网络,可以从文字说明直接生成图像。它一般会有三个 Prompt 阶段:原始 Prompt 即初始输入的那个;优化 Prompt 时有时无,DallE 会输出它分析优化后的每图英文 Prompt;最终 Prompt 则是每张图片点开后的 Prompt。推特博主通过一段 json 实现了一个功能,切换是否允许 DALL·E 自动更改原始 Prompt,一个是要求它必须生成新的,另一个是不允许更改,这个切换对应到了一个命令上,可以方便调用切换。 一些具有代表性的海外项目中包含 DALL·E 3,去年 OpenAI 将 DALL·E 3 集成进 ChatGPT。DALL·E 推出了编辑功能,支持对生成图片进行二次编辑,包括替换、删除、添加对象。其编辑界面提供了一系列可用工具,如 Select 按钮用于选择需要编辑的图像部分,左上角有可来回拖动大小的工具以改变想要更新的区域,还有“撤销、恢复”按钮以及“Clear Selection”选项用于重新开始编辑图像。使用时,编辑器界面可以添加、删除和更新图像的某些部分,例如添加樱花、删除鸟类、更改猫的表情等。帮助文档可参考:https://help.openai.com/en/articles/9055440editingyourimageswithdalle
2025-03-21
如何靠AL赚钱
以下是一些靠 AI 赚钱的方法和要点: 1. 明确盈利方式:您需要清楚如何通过产品或服务赚钱,即让人们为您的产品/服务支付的钱超过提供该产品/服务的成本,同时不能忘记考虑自身成本。 2. 免费产品策略:如果您的产品是免费的,不要试图通过购买用户来增长,而是要做出让人们愿意与朋友分享的东西,因为靠广告变现对于此类产品来说通常很困难。 3. 付费产品策略: 对于客户生命周期价值(LTV)小于 500 美元的付费产品,通常负担不起销售费用,可尝试使用如 SEO/SEM、广告、邮件等不同的用户获取方法,并争取在 3 个月内偿还客户获取成本(CAC)。 对于 LTV 超过 500 美元的付费产品,通常能负担得起直接销售费用,可先自己销售产品以了解有效方法,《Hacking Sales》是一本有用的参考书籍。 4. 尽快实现“泡面盈利”:即赚足够的钱,让您可以靠吃泡面维持生计,这样能掌握自己的命运,不受投资者和金融市场的任意摆布。 5. 关注现金流:密切关注您的现金流,避免在未意识到的情况下把钱用光。
2025-03-21
Stable Diffusion、MidJourney、DALL·E 这些生成式AI工具有什么区别
Stable Diffusion、Midjourney 和 DALL·E 这三个生成式 AI 工具主要有以下区别: 1. 开源性:Stable Diffusion 是开源的,用户可以在任何高端计算机上运行。 2. 学习曲线:Midjourney 的学习曲线较低,只需键入特定的提示就能得到较好的结果。 3. 图像质量:Midjourney 被认为是 2023 年中期图像质量最好的系统。 4. 应用场景:Stable Diffusion 特别适合将 AI 与来自其他源的图像结合;Adobe Firefly 内置在各种 Adobe 产品中,但在质量方面落后于 DALL·E 和 Midjourney。 5. 训练数据:这些工具都是使用大量的内容数据集进行训练的,例如 Stable Diffusion 是在从网络上抓取的超过 50 亿的图像/标题对上进行训练的。 6. 所属公司:DALL·E 来自 OpenAI。 在使用方面: 1. Stable Diffusion 开始使用需要付出努力,因为要学会正确制作提示,但一旦掌握,能产生很好的结果。 2. DALL·E 已纳入 Bing(需使用创意模式)和 Bing 图像创建器,系统可靠,但图像质量比 Midjourney 差。 3. Midjourney 需要 Discord,使用时需键入特定格式的提示。
2025-03-20
你知道有哪些擅长脚本写作的Al吗
以下是一些擅长脚本写作的 AI: 1. Kimi:免费好用,网址为 https://kimi.moonshot.cn/ 。 2. Claude:在脚本创作方面有优势,网址为 https://claude.ai/new 。 3. ChatGPT:老牌且功能更强大,网址为 https://chatgpt.com/ 。 在使用这些 AI 进行脚本写作时,您可以按照以下提示词结构:我要做什么样的视频+视频要包含哪些关键的元素+对脚本的输出有什么要求。例如,明确要做 30 秒时长的广告宣传片脚本、做一个孩子们喜欢的儿童绘本脚本等,并重点说出产品特性或想要的广告风格,同时可要求按照一定格式输出,如 Markdown 格式,方便后续操作。 此外,进行剧本写作时,您可以从原创(如自身或周围人的经历、做过的梦、想象的故事等)或改编(如经典 IP、名著改编、新闻改编、二创等)入手。对于短片创作,可从自身或朋友的经历改编,或对短篇故事进行改编,多与他人讨论故事以修改和进步。 例如,牛汉腾主要用 ChatGPT 和 ChatGLM 辅助剧本创作,mid、sd 生图,svd 做视频,能完成剧本—文案—生图—视频—剪辑的全流程。
2025-03-20
如何实现function call
实现 Function Call 主要有以下几种方式和要点: 1. 方式: Json Output:通过 Prompt 让模型输出 JSON 格式内容,但 Prompt 麻烦,输出不稳定,串业务成本高。 Json Mode:官方 Json Output,与 Tools 适用场景不同,JSON mode 为输出 JSON 存在,Tools 为 Call API 存在。 Function Calling 和 Tools:从可控角度推荐使用。 2. 要点: 放弃 JSON mode:模型输出 JSON 仍可能出错,模型厂家对 Function Calling 有微调优化。 降低 System prompt 依赖,化繁为简:System prompt 内容多,不能保证模型遵循,能在 Tools 里写的尽量写在里面。 API Response 增强 Prompt:Tools 调用结果返回给模型时,可增加约束和提示,准确率高。 尽量让模型做选择,而不是填空:将确定答案做成选项,如用 Enum 方式,减少 token 输出,提高速度和准确率。 利用 Tools 来做 Route,构建 Multi Agent:一个不行就增加数量,术业有专攻。 此外,OpenAI 发布函数调用及其他 API 更新,开发人员可向 gpt40613 和 gpt3.5turbo0613 描述函数,让模型智能输出包含调用函数所需参数的 JSON 对象,这是连接 GPT 能力与外部工具和 API 的新方法。例如在本地写函数执行查询,根据 GPT 返回的函数名和参数来操作,也可将函数改为更灵活的 SQL 查询。在实际业务中,可根据需求选择函数查询或 SQL 查询。另外,LangChain 内置的 openapifunction call 也可用于相关开发,实际业务中可能需结合内置业务流程,如判断用户问题是否相关、引导式提问等。
2025-03-19
coze 报错Pro call plugin too high 怎么解决
对于您提到的“coze 报错 Pro call plugin too high”的问题,可能是配置文件没有配置正确。建议您按照相关教程逐步检查配置文件。同时,即使是官方插件也可能存在不稳定的情况,您需要自己尝试找到适合当前场景的插件。另外,还需注意节点的命名、调用次数、引用情况、运行耗时和成功率等方面,以优化工作流的运行。
2025-03-19
AI可以做数据库的数据分析
AI 可以用于数据库的数据分析,以下是相关内容: ChatGPT 助力数据分析的流程: 逻辑流程图如下: 1. SQL 分析:用户描述想分析的内容,后台连接 DB,附带表结构信息让 AI 输出 SQL 语句,校验是 SELECT 类型的 SQL,其他操作如 UPDATE/DELETE 绝不能通过!校验通过后执行 SQL 返回结果数据。再将数据传给 GPT(附带上下文),让 AI 学习并分析数据,最后输出分析结论和建议,和结果数据一起返回给前端页面渲染图表、展示分析结论。目前已实现两张表关联查询。 2. 个性化分析:用户上传文件,如有需要可以简单描述这是什么数据、字段意义或作用辅助分析。前端解析用户上传的文件,再传给 GPT 分析数据,后续步骤与上面一致。 相关问题与技巧: 1. SQL 分析: 反复校验是否为 SELECT SQL 语句,不仅因为 AI 不完全可控,还因为不能相信用户输入,防止恶意操作。非查询类 SQL 坚决不通过,提示不支持此类请求。 到 AI 分析步骤拼接上下文,是为了让 GPT 更好理解数据和字段的意义,使分析更准确。 针对表结构长类型字段,不允许直接查询,防止 token 消耗过多。最好告诉 GPT 只允许查询哪几个字段,或者用哪几个 SQL 函数,尽量让 GPT 生成可控。 2. 个性化分析: 用户上传的数据解析后需判断数据格式是否符合要求,超长可限制截取前面若干项,防止 token 消耗过多。 在前端解析用户上传的数据,分析完可直接用于渲染数据图表,无需后端再返回。 支持用户补充输入,可简单描述数据、字段意义或作用,用于辅助 AI 分析。对于易理解语义化的字段名,可不描述,GPT 也能识别。遇到多维度数据,为保证准确性,可输入“以 xxx为维度分析”或“这是 xxx 数据”。 AI 术语库中的相关术语: |术语 ID|原文|译文|领域|易混淆|缩写|不需要提醒| |||||||| |ROW1|DataDriven Spectral Analysis|数据驱动的光谱分析|AI||| |ROW1|DataMining|数据挖掘|AI|1|| |ROW1|Database|数据库|AI||| |ROW1|DE Algorithm|差分进化算法|AI|1|| |ROW1|Deeplift|DeepLift 模型|AI||| |ROW1|Dendrogram|树状图|AI||| |ROW1|Density Functional Theory|密度泛函理论|AI||| |ROW1|DensityBased Spatial Clustering Of Applications With Noise|DBSCAN 密度聚类|AI||| |ROW1|Descriptor|描述符|AI||| |ROW1|DFT Calculations|DFT 计算|AI||| |ROW1|Dice Similarity|戴斯相似度|AI||| |ROW1|Differential Evolution|差分进化|AI|||
2025-03-14
有没有什么工具,能根据需求进行数据库设计文档生成的
以下是为您提供的相关信息: COZE 工作流中关于数据库节点的教程: 1. 在 SQL 输入中添加 SQL 代码,如果不会写 SQL 语言或不懂代码,可以借助 AI 帮助。例如将相关需求发送给豆包,如学习特定文档并根据具体需求撰写用于工作流的 SQL 语句。 2. 向豆包提出具体要求,如指定数据库表名称(如“user_question_answer”)和存储字段名称(“create_time”“answer”“question”),并说明数据写入的需求。 3. 豆包会回复生成的 SQL 语句(如“INSERT INTO user_question_answer”),将其复制到数据库节点里 SQL 的位置。 4. 试运行时提供输入内容并选择第一步使用的 bot,成功后发布工作流即可记录对应数据到数据库。 另外,欧盟数据法案英文版.pdf 中提到:成员国主管当局应确保对违反本法规规定义务的行为处以处罚。在这样做时,应考虑到所涉公共利益、违规行为的性质、严重程度、复发和持续时间、所开展活动的范围和种类以及违规者的经济能力。委员会应在必要时考虑特定部门的条件和自愿数据共享机制的现有做法,为企业间数据共享合同制定和推荐非强制性示范合同条款。这些示范合同条款应主要是帮助特别是小企业签订合同的实用工具。当广泛和完整地使用时,这些示范合同条款也应具有有益的效果,影响关于访问和使用数据的合同设计,从而在访问和共享数据时更广泛地导致更公平的合同关系。为消除通过联网产品和相关服务的物理组件(如传感器)获得或生成的数据库中的数据持有者声称根据第 96/9/EC 号指令第 7 条享有的特殊权利(如果此类数据库不符合特殊权利的条件)从而阻碍用户根据本法规有效行使访问和使用数据以及与第三方共享数据的权利的风险,本法规应明确该特殊权利不适用于此类数据库,因为保护要求未得到满足。
2025-03-06
coze平台中的数据库应用,怎么判断数据是那个用户的,插入数据库节点时,需要明确用户uuid吗
在 Coze 平台中判断数据属于哪个用户,插入数据库节点时通常需要明确用户的唯一标识,如用户 UUID 或类似的唯一标识。 例如,在自动总结公众号内容并定时推送到微信的工作流中,考虑到可能有多个用户同时使用,使用了 server 酱的 sendkey 作为用户的唯一标识(重命名为 suid)。在数据库节点中查询是否已经推送过文章时,需要文章的 url 和用户的 suid 这两个值来判断。 在增加记账记录的工作流中,通过大语言模型将用户输入的非结构化数据转变为结构化数据存入数据库时,也需要明确相关的用户标识。 在 COZE 工作流中,数据库节点的设置包括输入参数的设置(如参数名、参数值、引用来源)以及在 SQL 输入中添加相应的代码。 总之,明确用户标识对于准确判断数据归属和进行数据库操作是很重要的。
2025-02-25
目前我有个数据源头,可能是excle或mysql数据库。他们都含义以下字段: 发货日期 物料编号 物料描述 板块 实际已交货量 销售单位 金额(RMB) 金额(不含税RMB) 国家 品牌; 我需要创建一个智能体助手,用于分析这些数据,这个智能通助手需要能按用户需要,分析各个维度的数据,并按板块等维度汇总,并转为柱状图图表表现出现,并表现用户所有日期的近一周的变化,并阐明变化或波动是由哪些数据导致的? 结合以上需求,我需要在飞书上构建一个企业每日利润表分析与汇报助手,该选定哪种prompt框架
很抱歉,目前飞书知识库中没有关于您所描述的这种特定需求下应选定哪种 prompt 框架的相关内容。但一般来说,构建这样的企业每日利润表分析与汇报助手的 prompt 框架可以考虑以下几个方面: 1. 明确数据来源和格式:清晰描述数据来自 Excel 或 MySQL 数据库,以及包含的具体字段。 2. 定义分析维度和指标:如按板块、国家等维度汇总数据,关注利润相关的指标。 3. 设定时间范围:明确分析近一周的数据变化。 4. 描述图表要求:指定以柱状图展示数据。 5. 解释变化原因:阐明导致数据变化或波动的关键因素。 您可以根据实际情况进一步细化和完善这个框架。
2025-02-15
目前我有个数据源头,可能是excle或mysql数据库。他们都含义以下字段: 发货日期 物料编号 物料描述 板块 实际已交货量 销售单位 金额(RMB) 金额(不含税RMB) 国家 品牌; 我需要创建一个智能体助手,用于分析这些数据,这个智能通助手需要能按用户需要,分析各个维度的数据,并按板块等维度汇总,并转为柱状图图表表现出现,并表现用户所有日期的近一周的变化,并阐明变化或波动是由哪些数据导致的?
要创建这样一个智能体助手来分析您提供的数据,以下是一些建议的步骤: 1. 数据获取与预处理: 从 Excel 或 MySQL 数据库中读取数据。 对数据进行清洗和预处理,例如处理缺失值、异常值等。 2. 数据分析与计算: 按照用户需求的维度(如板块、国家、品牌等)对数据进行分组和汇总计算。 计算近一周的数据变化情况。 3. 图表生成: 使用合适的图表库(如 matplotlib、Seaborn 等)将汇总后的数据以柱状图的形式展示。 4. 变化原因分析: 通过比较不同维度的数据,找出导致变化或波动的关键因素。 在技术实现方面,您可以使用 Python 编程语言来完成上述任务。例如,使用 Pandas 库进行数据处理和分析,使用 Matplotlib 库生成图表。希望这些建议对您有所帮助,如果您在实现过程中遇到具体的技术问题,欢迎随时向我咨询。
2025-02-15
如何基于你的模型对一台工业设备(钢板划线印字装备)进行故障诊断和预测性维护,从以下几个方面进行分析 1.技术栈:数据采集与通讯,数据库,算法,前端,微服务、应用等,并进行软件选型 2.硬件选型:工业设备、边缘计算设备,软件部署硬件,分别列出性能最优和国产化替代方案 3.算法创新性:要求可发表高水平论文和申请发明专利 4.算法通用性:考虑如何通过一个通用模型经过简单配置适应不同船舶建造工业设备的故障诊断和预测性维护 5.考虑前后合理性,若以此进行招标,如何描述招标内容
以下是为您整合的相关内容: Transformer 模型和 BERT 模型: 模型训练与评估:定义模型后,传递训练数据集和验证数据集及训练时期数,训练完成后评估性能,如达到 85%准确率。 模型性能可视化:绘制准确性和随时间的损失图。 保存与加载模型:使用 model.save 方法导出并保存模型到本地路径,保存后可加载进行预测。 预测示例:对不同情感的评论句子进行预测。 部署模型到 Vertex AI:检查模型签名,上传本地保存的模型到 Google Cloud 存储桶,在 Vertex 上部署模型并获得在线预测。 提示工程: 策略:将复杂任务分解为更简单的子任务。 技巧:使用意图分类识别用户查询中最相关的指令。例如在故障排除场景中,根据客户查询分类提供具体指令,如检查路由器连接线、询问路由器型号、根据型号提供重启建议等。模型会在对话状态变化时输出特定字符串,使系统成为状态机,更好控制用户体验。 OpenAI 官方指南: 战术:将复杂任务拆分为更简单的子任务。 策略:使用意图分类来识别与用户查询最相关的指令。例如在故障排除场景中,基于客户查询分类向 GPT 模型提供具体指令。已指示模型在对话状态变化时输出特殊字符串,将系统变成状态机,通过跟踪状态等为用户体验设置护栏。
2025-02-12
AI 软件共用平台推荐
以下为一些 AI 软件共用平台推荐: 500px 摄影社区:这是一个 AI 摄影比赛平台,使用图像识别、数据分析技术,市场规模达数亿美元。它举办摄影比赛,展示优秀摄影作品,利用 AI 技术对参赛作品进行评选和分类,为摄影爱好者提供展示平台。 Logic Pro X 教学软件:作为 AI 音乐制作教学平台,运用机器学习、音频处理技术,市场规模达数亿美元。它为用户提供个性化音乐制作教学服务,帮助掌握音乐制作技巧。 鲁班到家 APP:这是一个 AI 家居维修服务平台,采用数据分析、自然语言处理技术,市场规模达数亿美元。它利用 AI 分析用户维修需求和地理位置,为用户推荐附近专业维修人员。 雪球财经 APP:作为 AI 金融投资教育平台,使用数据分析、自然语言处理技术,市场规模达数亿美元。它为用户提供个性化金融投资教育服务,包括投资课程、市场分析和投资策略等。 宝宝树安全座椅推荐:这是一个 AI 儿童安全座椅推荐系统,运用数据分析、机器学习技术,市场规模达数亿美元。它根据儿童年龄、体重等信息为家长推荐合适的儿童安全座椅。 途虎养车保养推荐:作为 AI 汽车保养套餐推荐系统,采用数据分析、机器学习技术,市场规模达数十亿美元。它利用 AI 分析车辆型号、行驶里程等为用户推荐合适的保养套餐。 丰巢快递柜管理系统:这是一个 AI 物流快递柜管理系统,使用数据分析、物联网技术,市场规模达数十亿美元。它利用 AI 和物联网技术管理柜子使用情况,提高快递配送效率。 智联招聘面试模拟功能:作为 AI 招聘面试模拟平台,运用自然语言处理、机器学习技术,市场规模达数亿美元。它利用 AI 模拟面试官提问,为求职者提供面试练习和反馈。 酷家乐装修设计软件:这是一个 AI 房地产装修设计平台,采用图像生成、机器学习技术,市场规模达数十亿美元。它利用 AI 生成各种装修设计方案,用户可根据喜好进行选择和调整。 联想设备管理平台:这是一个 AI 办公设备管理系统,运用数据分析、物联网技术,市场规模达数亿美元。它借助 AI 和物联网技术对企业办公设备进行管理,包括设备状态监测、故障预警、软件更新等。 新氧 APP:作为 AI 美容护肤机构推荐平台,采用数据分析、自然语言处理技术,市场规模达数亿美元。它利用 AI 分析用户需求和地理位置,为用户推荐附近优质美容护肤机构。 大众点评亲子频道:这是一个 AI 儿童教育机构推荐平台,运用数据分析、自然语言处理技术,市场规模达数亿美元。它通过 AI 技术根据家长需求和孩子年龄为家长推荐合适儿童教育机构。 汽车之家车商城:作为 AI 汽车销售平台,采用数据分析、自然语言处理技术,市场规模达数十亿美元。它利用 AI 分析用户购车需求和预算,为用户推荐合适汽车品牌和车型。
2025-03-23
那个软件可以免费文字生成视频
以下是一些可以免费文字生成视频的软件: 1. Pika:一款出色的文本生成视频 AI 工具,擅长动画制作并支持视频编辑,目前内测免费,其生成服务托管在 discord 中。使用方法为:加入 Pika Labs 的 Discord 频道,在“generate”子区输入指令生成,如输入/create,在弹出的 prompt 文本框内输入描述,按 Enter 发送出去就能生成视频,也可以上传本地图片生成对应指令动态效果。 2. 剪映海外版 CapCut:每人每天可以免费生成五次。 3. SVD:如果熟悉 Stable Diffusion,可以直接安装这款最新的插件,在图片基础上直接生成视频,由 Stability AI 开源。 更多的文生视频的网站可以查看这里:https://www.waytoagi.com/category/38 。 内容由 AI 大模型生成,请仔细甄别。
2025-03-22
ai 信息收集软件
以下是一些关于 AI 信息收集软件的内容: 1. 邬嘉文的 AI 求职助手:通过 Python selenium 库对 URL 逐一爬虫,收集招聘要求信息,包括职位名称、薪资范围、工作地点、学历要求、职位描述和职位链接等,例如市场总监、电商 AI 产品经理等职位。 2. 利用 AI 打造爆款公众号文章的信息收集: 明确文章主题后,借助 AI 工具如 Perplexity.AI 收集相关资讯。访问该网站使用其搜索功能,可启用 Pro 功能获取更专业深入的结果,输入具体 Prompt 快速定位资讯,获取搜索结果中的引用和来源链接。 还可使用其他具备联网搜索功能的工具如微软的 Bing 搜索引擎。 收集完资料后,可使用月之暗面开发的 Kimi 这个 AI 会话助手整理资料,分批次提供资料以确保其有效读取和理解。
2025-03-22
什么AI软件可以做游戏
以下是一些可以用于制作游戏的 AI 软件和工具: 1. Scenario 和 Iliad:可以创建游戏资源。 2. Promethean:能够构建整个虚拟世界的平台。 3. Inworld、Charisma 和 Convai:可用于生成非玩家角色(NPC)。 4. AI Dungeon 和 Hidden Door:基于文本的游戏。 5. 用于抠图的 remove,可以直接抠图或在 PS 里安装操作,用于制作素材。 6. Aive 可尝试制作背景音乐,但可能难以满足要求,可利用分离人声的 AI 软件处理音乐。 7. 微软 AI 语音:可制作旁白,语音库支持 147 种语言,还有定制声音。 8. Cursor:通过对话获得代码,使用的语言模型包括 Claude3.5sonnet、GPT4o 等,指令详细效果更好。 9. Deepseek(新手推荐):方便获取游戏代码,国内能访问,网页登录方便,目前完全免费。 10. 通义灵码:在 Pytharm 中安装插件使用。 11. JetBrains 自身的助手插件:在 Pytharm 中安装,收费,有 7 天免费试用。 12. Marscode 及 Tencent cloud AI code Assistant 等。 13. 无影的晓颖 AI 助手:内置在云电脑里,使用流畅,但需要在无影的云电脑中。 需要注意的是,AI 不太可能完全取代人类艺术家在高质量 AAA 游戏中的工作和愿景,但会为其注入动力,提高效率和降低成本。同时,不同的 AI 工具在生成游戏的不同方面各有优势,具体使用效果可能因个人需求和实践而有所不同。
2025-03-21
声音克隆软件推荐!
以下是为您推荐的声音克隆软件: Fish Audio: 操作步骤: 1. 准备一段需要克隆的音频(可以是类似屈原的古风声音,或自行录制一段)。 2. 打开网站:https://fish.audio/zhCN/train/newmodel/ 。 3. 上传准备好的音频,按照指引完成声音克隆。 4. 进入声音库选择需要使用的声音,将第一步生成的文案输入,使用克隆好的声音生成对应的音频文件。 5. 下载生成的音频文件备用。 开源软件: 1. GPTSoVITS:https://github.com/RVCBoss/GPTSoVITS ,对中、英、日语言支持良好,需要 10 分钟左右干素材,瞬时 clone 功能未开放。 2. OpenVoice:https://github.com/myshellai/OpenVoice ,对中文支持较好,主打瞬时 clone,发展势头良好,一个月前测试时中文声音 clone 有英语味道。 商业产品: 1. ElevenLab:https://elevenlabs.io ,支持最多语言种类,支持瞬时 clone,综合效果最好。 2. Reecho:https://reecho.ai ,中国团队,支持长音频和瞬时声音 clone,据说与火山引擎的声音 clone 技术同源。 3. 自得语音:https://zideai.com ,中国团队,支持瞬时声音 clone 和声音定制。
2025-03-21
比较分析目前市面上的所有 AI软件
以下是对目前市面上部分 AI 软件的比较分析: 摄影相关: AI 摄影参数调整助手:使用图像识别和数据分析技术,常见于摄影 APP 中,能根据场景自动调整摄影参数,市场规模达数亿美元。 500px 摄影社区:拥有 AI 摄影比赛平台,运用图像识别和数据分析技术,举办各种主题的摄影比赛,市场规模达数亿美元。 音乐相关: AI 音乐情感分析平台:采用机器学习和音频处理技术,有音乐情感分析软件,市场规模达数亿美元,可分析音乐的情感表达。 Logic Pro X 教学软件:借助机器学习和音频处理技术,是 AI 音乐制作教学平台,市场规模达数亿美元,能为用户提供个性化教学服务。 家居相关: AI 家居智能照明系统:结合物联网技术和机器学习,如小米智能照明系统,市场规模达数十亿美元,可实现家居照明的智能化控制。 鲁班到家 APP:运用数据分析和自然语言处理技术,是 AI 家居维修服务平台,市场规模达数亿美元,能为用户推荐附近的专业维修人员。 金融相关: AI 金融风险预警平台:使用数据分析和机器学习技术,有金融风险预警软件,市场规模达数十亿美元,可提前预警金融风险。 雪球财经 APP:利用数据分析和自然语言处理技术,是 AI 金融投资教育平台,市场规模达数亿美元,能为用户提供个性化的金融投资教育服务。 其他领域: AI 菜谱口味调整工具:运用自然语言处理和数据分析技术,如下厨房口味调整功能,市场规模达数亿美元,能根据用户反馈调整菜谱口味。 AI 语言学习纠错平台:采用自然语言处理和机器学习技术,如英语流利说纠错功能,市场规模达数十亿美元,可帮助语言学习者纠正错误。 AI 电影剧情分析系统:借助数据分析和自然语言处理技术,如豆瓣电影剧情分析工具,市场规模达数亿美元,能分析电影剧情并提供深度解读。 AI 办公文件分类系统:结合数据分析和机器学习技术,如腾讯文档分类功能,市场规模达数亿美元,可自动分类办公文件。 AI 美容护肤方案定制平台:使用图像识别和数据分析技术,如美丽修行定制方案功能,市场规模达数亿美元,能根据用户肤质定制护肤方案。
2025-03-21
AI、AIGC、大模型这三者之间有什么关系
AI(人工智能)是一种让机器展现智慧的目标。AIGC(人工智能生成内容)是利用人工智能技术生成包括文本、图像、音频和视频等内容的新型生产方式。大模型如大语言模型(LLM)是具有大量参数的“深度学习”模型。 生成式 AI 是一种让机器产生复杂有结构内容的目标。机器学习是让机器自动从资料中找公式的手段,深度学习是更厉害的类神经网络且有大量参数的手段。 AIGC 技术可用于多种应用,如自动撰写新闻文章、生成艺术画作等。ChatGPT 是 AIGC 技术在文本生成领域的一个应用实例,它是基于大型语言模型(LLM)的对话机器人,能根据用户输入生成连贯且相关的文本回复。 2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型,它基于自注意力机制处理序列数据,不依赖循环神经网络(RNN)或卷积神经网络(CNN)。
2025-03-13
1、Puzzle 选择一个你(们)感兴趣的社会问题或者现象。 “赛博信仰”指在网络环境下衍生的一系列超现实、寄托心理期许的新兴文化现象。这种现象反映了人们在数字化时代中对精神寄托、心理安慰和未来预测的需求。赛博信仰不仅是一种文化现象,也反映了现代社会中人们对科技、信仰和现实之间关系的重新思考。 2、Facts 关于这个问题/现象,都有哪些基本事实? 比如有人购买电子形式的马克思、爱因斯坦的脑子,象征着对智慧的渴望;借助塔罗测试程序、deepseek算命等AI工具,尝试预知命运;夸赞鹿童、转发锦鲤
关于“赛博信仰”这一现象,目前所了解到的基本事实包括:有人购买电子形式的马克思、爱因斯坦的脑子以象征对智慧的渴望;借助塔罗测试程序、deepseek 算命等 AI 工具尝试预知命运;夸赞鹿童、转发锦鲤等。但目前掌握的相关事实相对有限,还需要进一步的研究和观察来更全面地了解这一现象。
2025-03-13
token与参数的关系
Token 与参数存在密切关系。在大模型中,用于表达 token 之间关系的参数众多,主要指模型中的权重(weight)与偏置(bias)。例如,GPT3 拥有 1750 亿参数,而词汇表 token 数相对较少,只有 5 万左右。 目前使用的大模型存在 token 限制,如 Claude2100k 模型的上下文上限是 100k Tokens(100000 个 token),ChatGPT16k 模型的上下文上限是 16k Tokens(16000 个 token),ChatGPT432k 模型的上下文上限是 32k Tokens(32000 个 token)。这种 token 限制同时对一次性输入和一次对话的总体上下文长度生效,当达到上限时不是停止对话,而是遗忘最前面的对话。 在分词过程中,不同的字符串会被编码为不同的 token,例如字符串“Tokenization”编码到 token30642 及其后的 token1634,token“is”(包括前面的空格)是 318 等。数字的分解可能不一致,如 127 是由 3 个字符组成的 token,677 是 2 个 token 等。 为了让计算机理解 Token 之间的联系,需要把 Token 表示成稠密矩阵向量,这个过程称为 embedding,常见算法包括基于统计的 Word2Vec、GloVe 等,基于深度网络的 CNN、RNN/LSTM 等,基于神经网络的 BERT、Doc2Vec 等。以 Transform 为代表的大模型采用自注意力机制来学习不同 token 之间的依赖关系,生成高质量 embedding。
2025-03-06
请基于WHO提出的“健康老龄化”这个概念,论述AI和养老产业以及健康老龄化的关系,并举出在WHO、英国以及美国的实例
目前知识库中没有关于“基于 WHO 提出的‘健康老龄化’概念论述 AI 和养老产业以及健康老龄化关系,并列举 WHO、英国以及美国实例”的相关内容。但据现有知识,AI 在养老产业和健康老龄化方面具有重要作用。AI 可以通过智能监测设备实时收集老年人的健康数据,提前预警疾病风险;还能借助智能陪伴机器人为老年人提供心理支持和社交互动。 在 WHO 方面,可能尚未有明确的具体实例,但在理念倡导上可能会强调利用创新技术促进健康老龄化。 英国可能在一些养老机构中应用了 AI 技术来优化服务流程和提高护理质量。 美国或许在医疗保健领域利用 AI 辅助诊断和治疗,以更好地满足老年人的健康需求。但具体的实例还需要进一步查阅权威资料和最新研究。
2025-02-24
Ai生图和生视频和电脑算力的关系
AI 生图和生视频与电脑算力密切相关。 在生成图像和视频的过程中,需要强大的算力来处理复杂的计算任务。例如,像 PIKA1.0 这样的模型,在文生图和文生视频方面表现出色,其高质量和稳定性的输出依赖于足够的算力支持。 拥有大规模 GPU 集群、超算集群、云渲染平台等强大算力资源的企业或个人,能够更高效地完成生图和生视频的任务。 同时,未来算力的重点将从训练模型转向增强推理能力,这也将对 AI 生图和生视频的发展产生重要影响。 此外,一些新的模型和技术不断涌现,如 o1 推理模型,其在给出最终结果前会反复推演和验证,以提供更准确的结果。而像 OpenAI 发布会公布的 Sora v2 功能,能够生成 1 分钟长度的视频,并支持多种形式的转换,提升了多媒体创作的灵活性。 总之,电脑算力是实现高质量 AI 生图和生视频的重要支撑和保障。
2025-02-17
AGI和AIGC是啥关系,分别是什么的缩写
AGI 指通用人工智能,是一种能够像人类一样执行各种智能任务的人工智能。 AIGC 是人工智能生成内容的缩写,在公众传播层面,最初指用 Stable Diffusion 或 Midjourney 生成图像内容,后来泛指用 AI 生成音乐、图像、视频等内容。AIGC 是一种利用人工智能技术生成各种类型内容的应用方式,包括文字生成(如使用 GPT 系列模型生成文章、故事、对话等)、图像生成(如使用 Stable Diffusion、DALLE 等模型生成艺术作品、照片等)、视频生成(如使用 Runway、KLING 等模型生成动画、短视频等)。 AIGC、UGC(用户生成内容)和 PGC(专业人士或机构生成内容)都是内容生成的不同方式。UGC 由用户通过社交媒体等平台发布自己的内容,内容丰富多样,反映用户真实想法和创意,适用于互动性强的平台。PGC 由专业团队或机构根据特定标准和流程创作高质量内容,适用于需要高质量内容的平台。AIGC 的优势在于可以快速、大规模地生成内容,适用于需要大量内容的场景。
2025-02-13