传统产品经理若要转型为 AI 产品经理,需要注意以下方面:
随着机器学习、深度学习等AI技术的突破和应用场景的不断拓展,市场对能够将AI技术转化为实际产品和服务的人才需求急剧增加。[heading3]关于AI PM掌握算法知识的必要性[content]传统的软件/互联网PM在面对AI产品时,需要具备更专业的技术知识和独特的产品思维,因此AI PM作为一个更加专业化的PM角色逐渐形成。AI产品通常涉及复杂的算法、大数据处理等技术,同时又需要考虑用户体验、商业模式等因素。这就要求PM具备跨学科的知识背景,能够在技术和业务之间进行有效沟通和决策。1.理解产品核心技术了解基本的机器学习算法原理,有助于PM更好地理解AI产品的核心技术,从而做出更合理的产品决策。2.与技术团队有效沟通掌握一定的算法知识,可以帮助PM与开发团队进行更有效的沟通,减少信息不对称带来的误解。3.评估技术可行性在产品规划阶段,PM需要评估某些功能的技术可行性。了解算法知识可以帮助PM做出更准确的判断。4.把握产品发展方向AI技术发展迅速,了解算法前沿可以帮助PM更好地把握产品的未来发展方向。5.提升产品竞争力了解算法可以帮助PM发现产品的独特优势,提出创新的产品特性,从而提升产品的竞争力。6.数据分析能力很多AI算法都涉及到数据处理和分析,掌握相关知识可以提升PM的数据分析能力。
4)思维链——谷歌在2022年一篇论文提到思维链可以显著提升大语言模型在复杂推理的能力(即有推理步骤),即使不用小样本提示,也可以在问题后面加一句【请你分步骤思考】5)RAG——检索增强生成Retrieval-Augmented Generation,外部知识库切分成段落后转成向量,存在向量数据库。用户提问并查找到向量数据库后,段落信息会和原本的问题一块传给AI;可搭建企业知识库和个人知识库。6)PAL——程序辅助语言模型Program-Aided Language Model,2022年一篇论文中提出;比如对于语言模型的计算问题,核心在于不让AI直接生成计算结果,而是借助其他工具比如Python解释器作为计算工具。7)ReAct——2022年一篇《React:在语言模型中协同推理与行动》的论文提出了ReAct框架,即reason与action结合,核心在于让模型动态推理并采取行动与外界环境互动。比如用搜索引擎对关键字进行搜索,观察行动得到的结果。可借助LangChain等框架简化构建流程。个人总结:看很多大佬的发言,都说要关注或直接阅读技术论文,比如产品经理转型AI产品经理,也需要懂技术脉络。而小白直接看技术论文还是有难度,虽然现在可以让AI辅助阅读,不过还是要完成一定的知识储备。而林粒粒呀的这期视频是一个很好的科普入门,欢迎大家给她点赞。二、视频二——技术框架与关于未来的想象写在前面:我之前对安克创新的印象就是一个卖充电宝的公司,还有卖安防设备;但看了这期访谈,被CEO阳萌的认知震撼了,很多观点对我有启发,强烈建议看原访谈视频。1、观点——Transformer是仿生算法的阶段性实现,10年、20年后大家将不再用TA
4)思维链——谷歌在2022年一篇论文提到思维链可以显著提升大语言模型在复杂推理的能力(即有推理步骤),即使不用小样本提示,也可以在问题后面加一句【请你分步骤思考】5)RAG——检索增强生成Retrieval-Augmented Generation,外部知识库切分成段落后转成向量,存在向量数据库。用户提问并查找到向量数据库后,段落信息会和原本的问题一块传给AI;可搭建企业知识库和个人知识库。6)PAL——程序辅助语言模型Program-Aided Language Model,2022年一篇论文中提出;比如对于语言模型的计算问题,核心在于不让AI直接生成计算结果,而是借助其他工具比如Python解释器作为计算工具。7)ReAct——2022年一篇《React:在语言模型中协同推理与行动》的论文提出了ReAct框架,即reason与action结合,核心在于让模型动态推理并采取行动与外界环境互动。比如用搜索引擎对关键字进行搜索,观察行动得到的结果。可借助LangChain等框架简化构建流程。个人总结:看很多大佬的发言,都说要关注或直接阅读技术论文,比如产品经理转型AI产品经理,也需要懂技术脉络。而小白直接看技术论文还是有难度,虽然现在可以让AI辅助阅读,不过还是要完成一定的知识储备。而林粒粒呀的这期视频是一个很好的科普入门,欢迎大家给她点赞。二、视频二——技术框架与关于未来的想象写在前面:我之前对安克创新的印象就是一个卖充电宝的公司,还有卖安防设备;但看了这期访谈,被CEO阳萌的认知震撼了,很多观点对我有启发,强烈建议看原访谈视频。1、观点——Transformer是仿生算法的阶段性实现,10年、20年后大家将不再用TA