Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

如何将数字人技术与大模型联系到一起,实现文生视频

Answer

我总结了以下几个步骤,来将数字人技术与大模型联系起来,实现文生视频:

  1. 获取用户输入的文本内容 大模型首先需要接收用户提供的文本描述,包括场景设置、人物特征、对话内容等。这些信息将作为创建数字人和视频场景的基础。

  2. 生成数字人角色 基于用户提供的人物设定,大模型可以利用数字人技术,生成具有相应外貌、动作、表情的数字人角色。这需要结合计算机图形学、动作捕捉等技术。

  3. 构建虚拟场景 大模型还需要根据文本描述,构建出符合场景需求的虚拟环境。这包括布置场景元素、设置光影等细节,以营造出逼真的视觉效果。

  4. 安排数字人互动 最后,大模型需要让生成的数字人角色在虚拟场景中进行互动,包括对话、动作等。这需要借助自然语言处理、行为建模等技术,使数字人表现出人性化的行为。

  5. 输出视频内容 通过以上步骤,大模型就可以将文本内容转化为生动的视频内容,实现文生视频的效果。这需要最终的渲染和编辑输出。

总的来说,将数字人技术与大模型相结合,可以让用户只需提供文本描述,就能快速生成符合需求的视频内容。这种方式大大提高了内容创作的效率和可定制性。

Content generated by AI large model, please carefully verify (powered by aily)

References

Others are asking
你有没有文生图的prompt模板
以下是一些文生图的 prompt 模板和相关指导: 1. 定主题:明确生成图片的主题、风格和要表达的信息。 2. 选择基础模型 Checkpoint:根据主题选择贴近的模型,如麦橘、墨幽的系列模型。 3. 选择 lora:寻找与生成内容重叠的 lora,以控制图片效果和质量。 4. ControlNet:可控制图片中特定的图像,如人物姿态、特定文字等,属于高阶技能。 5. 局部重绘:下篇再教。 6. 设置 VAE:无脑选择 840000 这个即可。 7. Prompt 提示词:用英文写需求,使用单词和短语组合,不用管语法,单词、短语之间用英文半角逗号隔开。 8. 负向提示词 Negative Prompt:用英文写要避免产生的内容,同样是单词和短语组合,中间用英文半角逗号隔开。 9. 采样算法:一般选 DPM++2M Karras,也可参考 checkpoint 详情页上模型作者推荐的采样器。 10. 采样次数:根据采样器特征,选 DPM++2M Karras 时,采样次数在 30 40 之间。 11. 尺寸:根据喜好和需求选择。 描述逻辑通常包括:人物及主体特征(服饰、发型发色、五官、表情、动作),场景特征(室内室外、大场景、小细节),环境光照(白天黑夜、特定时段、光、天空),画幅视角(距离、人物比例、观察视角、镜头类型),画质(高画质、高分辨率),画风(插画、二次元、写实)。 对于新手,可通过以下方式辅助写提示词: 1. 利用功能型辅助网站,如 http://www.atoolbox.net/ ,通过选项卡快速填写关键词信息。 2. 参考 https://ai.dawnmark.cn/ ,其每种参数有缩略图可参考,更直观选择提示词。 3. 去 C 站(https://civitai.com/)抄作业,复制每一张图的详细参数。 在 Stable Diffusion 中,生成方式主要分为文生图和图生图两种。文生图仅通过正反向词汇描述发送指令,图生图除文字外还可给 AI 参考图模仿。采样迭代步数通常控制在 20 40 之间,采样方法常用的有 Euler a、DPM++2S a Karras、DPM++2M Karras、DPM++SDE Karras、DDIM 等,有的模型有指定算法搭配更好。比例设置时,高宽比尽量在 512x512 数值附近,太大数值可能导致奇怪构图,若想要高清图可同时点选高清修复放大图像倍率。
2025-01-05
ai文生图提示词
以下是关于 AI 文生图提示词的相关内容: 在写文生图提示词时,通常的描述逻辑包括人物及主体特征(如服饰、发型发色、五官、表情、动作),场景特征(如室内室外、大场景、小细节),环境光照(如白天黑夜、特定时段、光、天空),画幅视角(如距离、人物比例、观察视角、镜头类型),画质(如高画质、高分辨率),画风(如插画、二次元、写实)。通过这些详细的提示词,能更精确地控制绘图。 对于新手,有以下几种获取和优化提示词的方法: 1. 利用功能型辅助网站,如 http://www.atoolbox.net/ ,通过选项卡方式快速填写关键词信息;或 https://ai.dawnmark.cn/ ,其每种参数都有缩略图可参考,方便直观选择提示词。 2. 去 C 站(https://civitai.com/)抄作业,每一张图都有详细参数,可点击复制数据按钮,粘贴到正向提示词栏,然后点击生成按钮下的第一个按键,不过要注意图像作者使用的大模型和 LORA,否则即使参数相同,生成的图也会不同。也可以选取其中较好的描述词,如人物描写、背景描述、小元素或画面质感等。 优化和润色提示词对于提高输出质量很重要,可尝试以下方法: 1. 明确具体描述,使用更具体、细节的词语和短语,而非笼统词汇。 2. 添加视觉参考,在提示词中插入相关图片参考。 3. 注意语气和情感,用合适的形容词、语气词等调整整体语气和情感色彩。 4. 优化关键词组合,尝试不同搭配和语序。 5. 增加约束条件,如分辨率、比例等。 6. 分步骤构建提示词,将复杂需求拆解为逐步的子提示词。 7. 参考优秀案例,研究流行且有效的范例,借鉴写作技巧和模式。 8. 反复试验、迭代优化,根据输出效果反馈持续完善。 调整好参数生成图片后,如果质感方面不满意,可添加标准化提示词,如,绘图,画笔等,让画面更趋近于某个固定标准。
2025-01-02
大模型是否包括文生图文生视频这些
大模型包括文生图、图生图、图生视频、文生视频等多模态内容。多模态模型的底层逻辑通常先从生图片这一源头开始,因为视频也是由若干帧的图片组成。例如,目前比较火的 StableDiffusion 所使用的扩散模型,其训练过程是先把海量带有标注文字描述的图片逐渐加满噪点,模型学习每一步图片向量值和文字向量值的数据分布演变规律,沉淀下来完成训练。后续输入文字后,模型根据输入文字转化的向量指导充满噪点的图片减噪点生成最终图片。 腾讯的混元 AI 视频模型目前只支持文生视频,但图生视频也即将上线。 唱衰大模型的人认为大模型仅能实现如 ChatBox、文生图、图生图、生视频、生音频等功能,难以找到可商用场景,且存在算力成本等问题。但实际上,关于算力成本已有许多解决方案,而且大模型的应用并非仅限于上述提到的功能。
2025-01-02
文生图
以下是关于文生图的相关信息: 文生图的基本概念: Stable Diffusion 的生成方式主要分为文生图和图生图两种。文生图仅通过正反向词汇描述来发送指令,图生图除了添加文字,还可以给 AI 参考图进行模仿,即“垫图”。 文生图的提示词: 文本描述分为内容型提示词和标准化提示词。内容型提示词主要用于描述想要的画面,例如选择 anythingV5 这个专门用于二次元绘画的大模型,输入“1 个女孩,黑发,长发,校服,向上看,短袖,粉红色的花,户外,白天,蓝色的天空,云,阳光,上身,侧面”等描述,并使用翻译软件翻译成英文。 文生图的参数设置: 1. 采样迭代步数:指 AI 绘画去噪的次数,步数越高绘画越清晰,但绘画速度越慢,通常数值控制在 20 40 之间最好。 2. 采样方法:常用的有 Euler a、DPM++2S a Karras、DPM++2M Karras、DPM++SDE Karras、DDIM 等,有的模型有指定算法,搭配起来更好用。 3. 比例设置:将比例设置为 800:400,尺寸并非越大越好,模型练图基本按 512x512 框架,高宽比尽量在这个数值附近。若想要高清图,可同时点选高清修复来放大图像倍率,高宽比主要控制画面比例。 文生图工具: 目前市场上受欢迎的文生图工具包括: 1. DALL·E:OpenAI 推出,可根据输入文本描述生成逼真图片。 2. StableDiffusion:开源,能生成高质量图片,支持多种模型和算法。 3. MidJourney:因高质量图像生成效果和用户友好界面设计受欢迎,在创意设计人群中流行。 在 WaytoAGI 网站(https://www.waytoagi.com/category/104 ),可以查看更多文生图工具。 此外,在会用文生图之后,上传图片就可以尝试图生图,注意重绘幅度,最小选 0.01 的重绘也会有明显差别。
2024-12-30
你是一名资深程序员和经验丰富的编程教授,能够以通俗保姆式的方法教会小白从0开始编程序。现在要你教我完成如下任务:我需要编写一个程序,能够每天和不同的文生图大语言模型对话,生成不同场景下的机器人设计图片。应该怎么一步步实现?
以下是为您提供的从 0 开始编写一个能够每天和不同的文生图大语言模型对话,并生成不同场景下机器人设计图片的程序的步骤: 首先,对于小白来说,可以参考以下教程进行学习和操作: 1. 张梦飞的【保姆级】一步一图,手把手教你把 AI 接入微信: 重点感谢@熊猫大侠的不厌其烦的答疑解惑,并推荐@熊猫大侠的老王。 作者是看着 WaytoAGI 里大佬的文章学习制作的。有代码基础的同学,可以直接移步到这三篇教程中。 本篇教程适合“小白中的小白”,简单粗暴,不做讲解,复制粘贴即可。一步一图,保姆级指引。 本篇文章中,没有写每一步代码的含义和配置文件的对应含义。如果想要深入研究和调优,请移步上方推荐的三篇文章。 2. 大圣的胎教级教程:万字长文带你理解 RAG 全流程: 这是一篇面向普通人的 RAG 科普,不是面向 RAG 研究者的技术向文章。 文章一共 1.6 万字,旨在让您对 RAG 技术有更全面的认知,在使用 RAG 相关产品时,可以更好地理解其能力边界,从而充分发挥其潜力。 本文适合任何人,包括 AI 爱好者、为企业寻找知识库解决方案的老板、AI 产品经理等。 3. Yeadon 的写给小小白的从游戏入手学习搓图像流 bot: 学会将发布的图像流添加进 bot 中,并测试生成海报,解决无法在聊天界面显示图片的问题,重新调整图像流使其在对话窗口显示图片,最后发布 Bot。 通过这份教程,可以学会如何在 Coze 平台上打造一个有趣的 AI 游戏助手,掌握 AI 人格设定和对话逻辑的设计方法,了解如何配置图像生成功能。 希望以上内容对您有所帮助,祝您编程顺利!
2024-12-29
免费生成文生图的模型有哪些
以下是一些免费生成文生图的模型: 1. Kolors:这是最近开源的文生图模型中表现出色的一个。从技术报告来看,它具有更强的中文文本编码器、高质量的文本描述生成能力、强大的中文渲染能力以及巧妙的 noise schedule 来解决高分辨率图加噪不彻底的问题。 2. StableDiffusionWebUI(SD):这是一个免费开源的 AI 绘图模型。其核心功能包括文生图(txt2img)、图生图(img2img)、模型训练等。可以结合 ChatGPT 生成文本内容,由 SD 生成相应的图像,减轻人工编辑负担,提高工作效率。 3. DALL·E 3:这是 OpenAI 发布的文生图模型,可以利用 ChatGPT 生成提示,然后根据提示生成图像。生成的图像质量较高,使用门槛相对较低。
2024-12-28
我想要学AI视频,我应该怎么做
以下是学习 AI 视频的一些建议和资源: 1. 入门教程: 您可以查看。 学习。 2. 交流群: 如需学习 AI 视频、参与 AI 视频挑战赛或参与 AI 视频提示词共创,可直接扫二维码或联系三思或小歪【备注:AI 视频学社】,但必须有 AI 视频账号才能进群,请勿随便申请好友。 3. 直播: AI 视频学社每周 1 次直播(周五直播),例如。 4. 实践建议: 从简单创作开始,如生成零散视频片段或图片进行混剪,选用现成音乐并根据节奏简单剪辑,顺道学习主流创意软件操作。 在成功产出简单作品后,尝试完成更完整的工作流,比如:选题→剧本→分镜描述→文生图→图生视频→配音配乐→剪辑后期。 此外,在 AI 视频学社,小伙伴们可以通过参与每周举办的比赛快速学习相关知识,每周有高手直播分享前沿知识,不定期组织线上或线下活动,大家一起学习最新软件和知识,学习图生视频、视频生视频等技巧。
2025-01-06
AI生成视频
以下是关于 AI 生成视频的相关内容: Adobe 网站的生成视频相关操作: 在 Advanced 部分,您可以使用 Seed 选项添加种子编号,以帮助启动流程并控制 AI 创建的内容的随机性。如果使用相同的种子、提示和控制设置,则可以重新生成类似的视频剪辑。选择 Generate 进行生成。 将小说制作成视频的流程: 1. 小说内容分析:使用 AI 工具(如 ChatGPT)分析小说内容,提取关键场景、角色和情节。 2. 生成角色与场景描述:根据小说内容,使用工具(如 Stable Diffusion 或 Midjourney)生成角色和场景的视觉描述。 3. 图像生成:使用 AI 图像生成工具根据描述创建角色和场景的图像。 4. 视频脚本制作:将提取的关键点和生成的图像组合成视频脚本。 5. 音频制作:利用 AI 配音工具(如 Adobe Firefly)将小说文本转换为语音,添加背景音乐和音效。 6. 视频编辑与合成:使用视频编辑软件(如 Clipfly 或 VEED.IO)将图像、音频和文字合成为视频。 7. 后期处理:对生成的视频进行剪辑、添加特效和转场,以提高视频质量。 8. 审阅与调整:观看生成的视频,根据需要进行调整,比如重新编辑某些场景或调整音频。 9. 输出与分享:完成所有编辑后,输出最终视频,并在所需平台上分享。 请注意,具体的操作步骤和所需工具可能会根据项目的具体需求和个人偏好有所不同。此外,AI 工具的可用性和功能也可能会随时间而变化,建议直接访问上述提供的工具网址获取最新信息和使用指南。 AI 视频生成的技术发展概况和应用场景思考: 长期以来,人们对 AI 视频技术应用的认知停留在各种“换脸”和视频特效上。随着 AI 图像领域的技术发展,AI 视频技术也逐渐取得了突破。从交互方式来看,当前 AI 视频生成主要可分为文本生成视频、图片生成视频、视频生成视频三种形式。一些视频生成方法是先生成静态关键帧图像,然后构建为视频序列。也存在直接端到端生成视频的技术,无需进行多阶段处理即可生成视频,如基于 GAN、VAE、Transformer 的方法。微软 NUWAXL 是通过逐步生成视频关键帧,形成视频的“粗略”故事情节,然后通过局部扩散模型(Local Diffusion)递归地填充附近帧之间的内容。
2025-01-06
国内有什么生成视频的AI应用么
以下是国内一些生成视频的 AI 应用: 1. 可灵:在 AI 视频生成领域表现出色,具有卓越的视频生成质量,生成的视频在画面清晰度、连贯性和内容丰富性上可与国际顶级模型媲美。生成速度快,处理效率高,且对国内用户的可访问性强,提供了便捷、稳定的使用体验。 2. Pika:非常出色的文本生成视频 AI 工具,擅长动画制作,并支持视频编辑。 3. Hidreamai:有免费额度,支持文生视频、图生视频,提示词使用中文、英文都可以,文生视频支持多种控制,可生成不同时长和尺寸的视频。 4. ETNA:由七火山科技开发的文生视频 AI 模型,能根据简短文本描述生成相应视频内容,视频长度 8 15 秒,画质可达 4K,支持中文,时空理解。 更多的文生视频网站可以查看: 需注意,内容由 AI 大模型生成,请仔细甄别。
2025-01-06
如何生成一个人慢慢变成动物的视频?
以下是几种生成一个人慢慢变成动物的视频的方法: 1. 利用通义万相视频模型,例如生成“古风女孩从人变身成一只狐狸”的视频,您可以通过以下链接获取相关视频: 2. 在剪映中操作: 打开“数字人”选项,选取适合的数字人形象,如“婉婉青春”,添加数字人,软件会根据提供的内容生成对应音视频。 增加背景图片,删除先前导入的文本内容,上传本地图片并调整其位置和大小。 3. 使用 Runway 软件:将图片拖到 Runway 里面生成 4s 视频,进入 Runway 官网首页,点击 start with image,直接将图片拖进来,动画幅度尽量用 3,5 有时候会乱跑,不需要等进度条转完,可以直接继续往里放图片。(Runway 是收费的,您也可以找一下有没有免费的,或者去闲鱼或者淘宝买号)
2025-01-06
可以制作音乐视频,并且把歌词按照节奏显示出来的AI平台有哪些
以下是一些可以制作音乐视频,并能按照节奏显示歌词的 AI 平台: 1. 梁明晶所介绍的平台:上传音频后上传文本歌词到 TXT 里,通过自带功能同步制作逐字歌词 TRC,修正错别字后提交,审核成功可在 QQ 音乐、酷狗、酷我 3 个平台同步显示。 2. 人工智能音频初创公司列表中的平台: :无需昂贵录音设备即可进行多轨录音。 :生成歌词、旋律、鼓点等,并能像专业 DAW 一样编辑和混音。 :AI 驱动,可创作歌词、节拍和人声,直接混音和发布。 :创作情感背景音乐。 :简化的音乐创作工具,为视频和播客创作音乐。 :为直播游戏玩家提供自适应 AI 音乐。 :高质量音乐和音效,包含版权。 :世界上第一个动态音乐引擎。 (被 Shutterstock 收购):为内容创作者提供的 AI 音乐创作工具。 :虚拟音乐工作室。 :即时制作音乐并分享。 :智能乐谱。 :由艺术家、研究人员、设计师和程序员组成的团队。 此外,在 SUNO 和 UDIO 平台的音乐制作中,其底层技术基于扩散模型,生成音乐时根据提供的提示词和上传的音频进行扩散生成,需考虑和声/调性、节奏型、人声或器乐编配、音色、音频质量、音频长度等元素。
2025-01-06
AI视频
以下是关于 AI 视频的相关内容: 1. 来来的 AI 视频短片工作流: 概念设定:MJ 剧本+分镜:ChatGPT AI 出图:MJ、SD、D3 AI 视频:Runway、pika、PixVerse、Morph Studio 对白+旁白:11labs、睿声 音效+音乐:SUNO、UDIO、AUDIOGEN 视频高清化:Topaz Video 字幕+剪辑:CapCut、剪映 完整文档: 直播回放: 2. Bay 的 AI 视频生成(上): 长期以来,人们对 AI 视频技术应用的认知停留在各种“换脸”和视频特效上。 随着 AI 图像领域的技术发展,AI 视频技术逐渐取得突破。 从交互方式来看,当前 AI 视频生成主要可分为文本生成视频、图片生成视频、视频生成视频三种形式。 一些视频生成方法是先生成静态关键帧图像,然后构建为视频序列。也存在直接端到端生成视频的技术,无需进行多阶段处理即可生成视频,如基于 GAN、VAE、Transformer 的方法。 微软 NUWAXL:通过逐步生成视频关键帧,形成视频的“粗略”故事情节,然后通过局部扩散模型(Local Diffusion)递归地填充附近帧之间的内容。 3. Bay 的 AI 视频生成(下): 若从生成方式分类,AI 视频生成包含: 文生视频、图生视频(Runway、Pika labs、SD+Deforum、SD+Infinite zoom、SD+AnimateDiff、Warpfusion、Stability Animation) 视频生视频:又分逐帧生成(SD+Mov2Mov)、关键帧+补帧(SD+Ebsynth、Rerender A Video)、动态捕捉(Deep motion、Move AI、Wonder Dynamics)、视频修复(Topaz Video AI) AI Avatar+语音生成:Synthesia、HeyGen AI、DID 长视频生短视频:Opus Clip 脚本生成+视频匹配:Invideo AI 剧情生成:Showrunner AI 若从产品阶段和可用维度分类,将按照相关维度进行产品介绍。
2025-01-06
常用的多模态大模型
以下是一些常用的多模态大模型: 1. InstructBLIP:基于预训练的BLIP2模型进行训练,在MM IT期间仅更新QFormer。通过引入指令感知的视觉特征提取和相应的指令,能够提取灵活多样的特征。 2. PandaGPT:是一种开创性的通用模型,能够理解6种不同模式的指令并根据指令采取行动,包括文本、图像/视频、音频、热、深度和惯性测量单位。 3. PaLIX:使用混合VL目标和单峰目标进行训练,包括前缀完成和屏蔽令牌完成。这种方法对于下游任务结果和在微调设置中实现帕累托前沿都是有效的。 4. VideoLLaMA:引入了多分支跨模式PT框架,使LLMs能够在与人类对话的同时处理给定视频的视觉和音频内容,使视觉与语言以及音频与语言保持一致。 5. 视频聊天GPT:专门为视频对话设计的模型,能够通过集成时空视觉表示来生成有关视频的讨论。 6. Shikra:Chen等人介绍了一种简单且统一的预训练MMLLM,专为参考对话(涉及图像中区域和对象的讨论的任务)而定制,展示了值得称赞的泛化能力,可以有效处理看不见的设置。 7. DLP:提出PFormer来预测理想提示,并在单模态句子数据集上进行训练,展示了单模态训练增强MM学习的可行性。 8. BuboGPT:通过学习共享语义空间构建,用于全面理解MM内容,探索不同模式之间的细粒度关系。 9. ChatSpot:引入了一种简单而有效的方法来微调MMLLM的精确引用指令,促进细粒度的交互。 10. QwenVL:多语言MMLLM,支持英文和中文,还允许在训练阶段输入多个图像,提高其理解视觉上下文的能力。 11. NExTGPT:端到端、通用的anytoany MMLLM,支持图像、视频、音频、文本的自由输入输出,采用轻量级对齐策略。 12. MiniGPT5:集成了生成voken的反演以及与稳定扩散的集成,擅长为MM生成执行交错VL输出,在训练阶段加入无分类器指导可以提高生成质量。 13. Flamingo:代表了一系列视觉语言模型,旨在处理交错的视觉数据和文本,生成自由格式的文本作为输出。 14. BLIP2:引入了资源效率更高的框架,包括用于弥补模态差距的轻量级QFormer,实现对冻结LLMs的充分利用,利用LLMs可以使用自然语言提示进行零样本图像到文本的生成。 15. LLaVA:率先将IT技术应用到MM领域,引入了使用ChatGPT/GPT4创建的新型开源MM指令跟踪数据集以及MM指令跟踪基准LLaVABench。 16. MiniGPT4:提出了一种简化的方法,仅训练一个线性层即可将预训练的视觉编码器与LLM对齐,能够复制GPT4所展示的功能。 17. mPLUGOwl:提出了一种新颖的MMLLMs模块化训练框架,结合了视觉上下文,包含一个名为OwlEval的教学评估数据集。 18. XLLM:扩展到包括音频在内的各种模式,并表现出强大的可扩展性。利用QFormer的语言可迁移性,成功应用于汉藏语境。 19. VideoChat:开创了一种高效的以聊天为中心的MMLLM用于视频理解对话,为该领域的未来研究制定标准,并为学术界和工业界提供协议。
2025-01-06
哪个大模型找期刊文献最好用
目前在查找期刊文献方面,不同的大模型各有特点。大模型的特点包括: 架构多样:如 encoderonly 适用于自然语言理解任务,encoderdecoder 用于翻译和摘要,decoderonly 擅长自然语言生成任务。 预训练数据量大:往往来自互联网上的论文、代码、公开网页等,通常用 TB 级别的数据进行预训练。 参数众多:如 Open 在 2020 年发布的 GPT3 就有 170B 的参数。 但对于哪个大模型找期刊文献最好用,没有明确的定论。不过,您可以关注一些常见的大模型,如 GPT 系列等,并根据实际需求和使用体验来判断。
2025-01-06
训练以及部署微调模型
以下是关于训练以及部署微调模型的相关信息: 创建微调模型: 假设您已准备好训练数据。使用 OpenAI CLI 开始微调工作,需指定从哪个 BASE_MODEL(如 ada、babbage、curie 或 davinci)开始,可使用后缀参数自定义微调模型的名称。运行命令后会进行以下操作: 1. 使用文件 API 上传文件(或使用已上传的文件)。 2. 创建微调作业。 3. 流式传输事件直到作业完成,这通常需要几分钟,但如果队列中有很多作业或数据集很大,可能需要数小时。 每个微调工作都从默认为 curie 的基本模型开始,模型的选择会影响性能和成本。您的模型可以是 ada、babbage、curie 或 davinci,可访问定价页面了解微调费率的详细信息。 开始微调作业后,可能需要一些时间才能完成。工作可能排在其他工作之后,训练模型可能需要几分钟或几小时,具体取决于模型和数据集的大小。若事件流中断,可通过运行特定命令恢复。工作完成后,会显示微调模型的名称。此外,还可以列出现有作业、检索作业状态或取消作业。 GPT 助手的训练: 在有监督的微调阶段,收集少量但高质量的数据集,要求人工承包商收集提示和理想响应的数据,通常是几万个或类似数量。然后对这些数据进行语言建模,算法不变,只是训练集从互联网文档变为问答提示响应类型的数据。训练后得到有监督的微调模型(SFT 模型),可实际部署。 大型语言模型的微调: 一旦有了基础模型,进入计算成本相对较低的微调阶段。编写标签说明,明确助手的表现期望,雇佣人员创建文档,如收集 100,000 个高质量的理想问答对来微调基础模型,此过程可能只需一天。然后进行大量评估,部署模型并监控表现,收集不当行为实例并纠正,将正确答案加入训练数据,重复此过程。由于微调成本较低,可每周或每天进行迭代。 例如 Llama2 系列,Meta 发布时包括基础模型和助手模型。基础模型不能直接使用,助手模型可直接用于回答问题。若想自己微调,Meta 完成的昂贵的第一阶段结果可提供很大自由。
2025-01-06
测试微调模型
以下是关于测试微调模型的相关内容: 在完成微调之后,需要对结果进行测试。微调不会直接影响原有的大模型,而是生成一些文件,包括模型权重文件、配置文件、训练元数据、优化器状态等。这些文件可以和原有大模型合并并输出新的大模型。 在测试之前,先通过不合并的方式进行微调结果的验证。例如,若数据集中有问答“问:你是谁?答:家父是大理寺少卿甄远道”,当给微调后的模型指定角色“现在你要扮演皇帝身边的女人甄嬛”,然后问模型“你是谁?”,若回答是“家父是大理寺少卿甄远道”,则认为模型微调有效果。 测试代码结果成功。之后可以将微调结果和原有大模型进行合并,然后输出新的模型,使用 webdemo 进行测试。包括切换到对应的目录、执行合并代码、生成相应文件、创建 chatBotLora.py 文件并执行代码进行本地测试、开启自定义服务等步骤,最终验收成功。 此外,当作业成功时,fine_tuned_model 字段将填充模型名称,可将此模型指定为 Completions API 的参数,并使用 Playground 向它发出请求。首次完成后,模型可能需要几分钟准备好处理请求,若超时可能是仍在加载中,几分钟后重试。可通过将模型名称作为 model 完成请求的参数传递来开始发出请求,包括 OpenAI 命令行界面、cURL、Python、Node.js 等方式。 要删除微调模型,需在组织中被指定为“所有者”。 创建微调模型时,假设已准备好训练数据。使用 OpenAI CLI 开始微调工作,需指定基本模型的名称(ada、babbage、curie 或 davinci),还可使用后缀参数自定义微调模型的名称。运行命令会上传文件、创建微调作业、流式传输事件直到作业完成,每个微调工作都从默认为 curie 的基本模型开始,模型选择会影响性能和成本。开始微调作业后,可能需要一些时间才能完成,若事件流中断可恢复。工作完成后会显示微调模型的名称,还可列出现有作业、检索作业状态或取消作业。
2025-01-06
模型微调对模型的影响和价值
模型微调对模型具有重要的影响和价值,主要体现在以下几个方面: 1. 提高结果质量:能够获得比即时设计更高质量的结果。 2. 增加训练示例:可以训练比提示中更多的例子,从而改进小样本学习,在大量任务中取得更好的效果。 3. 节省 Token 和成本:由于更短的提示而节省了 Token,对模型进行微调后,不再需要在提示中提供示例,能够节省成本并实现更低延迟的请求。 4. 提高模型效率:通过专门化模型,可以使用更小的模型,并且由于只对输入输出对进行训练,舍弃示例或指令,进一步改善延迟和成本。 5. 适应特定领域:针对特定领域进行微调,优化所有层的参数,提高模型在该领域的专业性。 目前,微调适用于以下基础模型:davinci、curie、babbage 和 ada。参数规模角度,大模型的微调分成全量微调 FFT(Full Fine Tuning)和 PEFT(ParameterEfficient Fine Tuning)两条技术路线,从成本和效果综合考虑,PEFT 是目前业界较流行的微调方案。 通用大模型如 GPT4.0、GPT3.5 等具有广泛的自然语言理解能力,但在特定领域表现可能不理想。而通过微调,可以在现有模型基础上,更经济、高效地适应新的应用领域,节省成本并加快模型部署和应用速度。
2025-01-06
训练以及部署微调模型
以下是关于训练以及部署微调模型的相关知识: 创建微调模型: 假设您已准备好训练数据,使用 OpenAI CLI 开始微调工作。需指定从哪个 BASE_MODEL 开始,如 ada、babbage、curie 或 davinci,还可使用后缀参数自定义微调模型的名称。运行命令后会进行以下操作: 1. 使用文件 API 上传文件(或使用已上传的文件)。 2. 创建微调作业。 3. 流式传输事件直到作业完成,这通常需要几分钟,但如果队列中有很多作业或数据集很大,则可能需要数小时。每个微调工作都从默认为 curie 的基本模型开始,模型的选择会影响性能和成本,您可访问定价页面了解微调费率的详细信息。开始微调作业后,可能需要一些时间才能完成,若事件流中断,可通过运行特定命令恢复。工作完成后,会显示微调模型的名称。此外,还可以列出现有作业、检索作业状态或取消作业。 GPT 助手的训练: 在有监督的微调阶段,收集少量但高质量的数据集,要求人工承包商收集提示和理想响应的数据,通常是几万个或类似数量。然后对这些数据进行语言建模,算法不变,只是训练集从互联网文档变为问答提示响应类型的数据。训练后得到有监督的微调模型(SFT 模型),可实际部署,它们在某种程度上是有用的。 大型语言模型的微调: 一旦有了基础模型,就进入计算成本相对较低的微调阶段。在这个阶段,编写标签说明明确助手的表现期望,雇佣人员创建文档,例如收集 100,000 个高质量的理想问答对来微调基础模型,这个过程可能只需一天。然后进行大量评估,部署模型并监控表现,收集不当行为实例并纠正,将正确答案加入训练数据,由于微调成本较低,可每周或每天进行迭代。例如 Llama2 系列,Meta 发布时包括基础模型和助手模型,基础模型不能直接使用,助手模型可直接用于回答问题。
2025-01-06
数字人最强项目
以下是关于数字人的一些项目信息: Digen AI:数字人克隆新选择,具有强大的动态和静态同步能力,支持 20 种语言,是 Heygen 的强有力竞争对手。体验地址:http://digen.ai 。 开源数字人项目(项目地址:https://github.com/wanh/awesomedigitalhumanlive2d)选择 live2d 作为数字人躯壳,其驱动方式相比 AI 生成式更可控和自然,相比虚幻引擎更轻量和简单,卡通二次元形象接受度更高。关于 live2d 的 SDK 驱动方式可参考官方示例:https://github.com/Live2D 。
2025-01-05
如何构建一个AI数字人分身
构建一个 AI 数字人分身主要包括以下两个方面: 一、构建数字人躯壳 数字人的躯壳建模有多种方式: 1. 2D 引擎:风格偏向二次元,亲和力强,定制化成本低,在日本、东南亚等国家比较受欢迎,也深受年轻人喜欢。能将喜欢的动漫人物变成数字人的躯壳。代表是 Live2D Cubism。 2. 3D 引擎:风格偏向超写实的人物建模,拟真程度高,定制化成本高。目前有很多公司都在做这个方向的创业,已经可以实现用户通过手机摄像头快速创建一个自己的虚拟人身体。如 NextHuman、Unity,虚幻引擎 MetaHuman 等。但个人学习在电脑配置和学习难度上有一定门槛。 3. AIGC:虽然省去了建模流程,直接生成数字人的展示图片,但弊端也明显,算法生成的数字人很难保持 ID 一致性,帧与帧的连贯性上会让人有虚假的感觉。如果项目对人物模型真实度要求没有那么高,可以使用这种方案。典型的项目有 wav2lip等。AIGC 还有一个方向是直接生成 2d/3d 引擎的模型,而不是直接生成数字人的最终展示部分,但该方向还在探索中。 建好的模型可以使用 web 前端页面(Live2D 就提供了 web 端的 SDK)或者 Native 的可执行程序进行部署,最后呈现在用户面前的是一个 GUI。 二、构建数字人灵魂 有了数字人躯壳,还需要构建数字人的灵魂,让数字人具备各种智能,比如记得个人信息,充当个人助手;在某个领域具备更专业的知识;能处理复杂的任务等等。实现这些能力有以下几个工程关键点: 1. AI Agent:要想数字人像人一样思考就需要写一个像人一样的 Agent,工程实现所需的记忆模块,工作流模块、各种工具调用模块的构建都是挑战。 2. 驱动躯壳的实现:灵魂部分通过接口定义,躯壳部分通过 API 调用,调用方式可以是 HTTP、webSocket 等,视躯壳部分的实现而定。但包含情绪的语音表达以及如何保证躯壳的口型、表情、动作和语音的同步及匹配,目前主流方案只能做到预设一些表情动作,再做一些逻辑判断来播放预设,语音驱动口型相对来说成熟一些,但都是闭源的,效果可以参考 Nvidia 的 Audio2Face。 3. 实时性:由于整个数字人的算法部分组成庞大,几乎不能实现单机部署,特别是大模型部分,所以算法一般会部署到额外的集群或者调用提供出来的 API,这里面就会涉及到网络耗时和模型推理耗时,如果响应太慢就会体验很差,所以低延时也是亟需解决的一个问题。 4. 多元跨模态:仅仅是语音交互的数字人是远远不够的,人有五感(听觉、视觉、嗅觉、触觉、味觉),听觉只是其中一种,其他的感官可以根据实际需求来做,比如视觉可以通过添加摄像头数据来获取数据,再通过系列 CV 算法做图像解析等。 5. 拟人化场景:正常和人交流的时候不是线性对话,会有插话、转移话题等情况,这些情景需要通过工程丝滑处理。
2025-01-03
AI数字人
AI 数字人是运用数字技术创造出来的人,虽现阶段不能如科幻作品中的人型机器人般高度智能,但已在生活各类场景中常见,且随 AI 技术发展正迎来应用爆发。目前业界尚无关于数字人的准确定义,一般可根据技术栈不同分为两类: 1. 真人驱动的数字人:重在通过动捕设备或视觉算法还原真人动作表情,主要应用于影视行业及直播带货。其表现质量与手动建模精细程度及动捕设备精密程度直接相关,不过随视觉算法进步,在无昂贵动捕设备时也可通过摄像头捕捉人体骨骼和人脸关键点信息实现不错效果。 2. 算法驱动的数字人:强调自驱动,人为干预更少,技术实现更复杂。一个最简单的算法驱动数字人大致流程包含三个核心算法: ASR(Automatic Speech Recognition,语音识别):能将用户音频数据转化为文字,便于数字人理解和生成回应。开源代码如 openai 的 whisper(https://github.com/openai/whisper)、wenet(https://github.com/wenete2e/wenet)、speech_recognition(https://github.com/Uberi/speech_recognition)。 AI Agent(人工智能体):充当数字人大脑,可接入大语言模型,如 ChatGPT、Claude、ChatGLM、文星一言、千帆大模型、通义千问等。Agent 部分可用 LangChain 模块自定义(https://www.langchain.com/)。 TTS(Text to Speech,文字转语音):将数字人依靠 LLM 生成的输出文字转换为语音。开源代码如微软的 edgetts(https://github.com/rany2/edgetts),只能使用预设人物声音且接口免费;VITS(https://github.com/jaywalnut310/vits)及其分支版本,可自己训练想要的人声;sovitssvc(https://github.com/svcdevelopteam/sovitssvc)专注于唱歌。 除算法外,人物建模模型可通过手动建模(音频驱动)或 AIGC 方式生成人物动态效果(如 wav2lip 模型)实现一个最简单的数字人,但这种简单构建方式存在诸多问题,如如何生成指定人物声音、TTS 生成的音频如何精确驱动数字人口型及动作、数字人如何使用知识库做出某个领域的专业性回答等。
2025-01-03
数字员工
数字员工是基于大语言模型为大脑,串联所有已有的工具和新造的 AI 工具的智能体。 在成为基于 Agent 的创造者方面,数字员工的学习路径为:数字员工(agent)=学历(大模型)+察言观色(观察)+逻辑思维(推理)+执行(SOP)。创造者的学习也依照这个方向,用大模型和 Agent 模式把工具串起来,着重关注在创造能落地 AI 的 agent 应用。大模型的开发研究和演进,交给学术界和大厂。 Agent 工程(基础版)如同传统的软件工程学,有一个迭代的范式: 1. 梳理流程:梳理工作流程 SOP,并拆解成多个单一「任务」和多个「任务执行流程」。 2. 「任务」工具化:自动化每一个「任务」,形成一系列的小工具,让机器能完成每一个单一任务。 3. 建立规划:串联工具,基于 agent 框架让 bot 来规划「任务执行流程」。 4. 迭代优化:不停迭代优化「任务」工具和「任务执行流程」规划,造就能应对实际场景的 Agent。 在摊位信息方面,有关于数字员工的摊位,其主题为“AI 数字员工”,内容为为企业和个人提供数字劳动力,解决重复性、创意性工作难题。体验 demo 包括抖音运营、AI 客服、智能问诊、企业定制员工、定制知识库。 在招聘信息方面,序智科技基于大模型技术打造数字劳动力(AlAgent)平台,招聘后端开发工程师和前端开发工程师等。后端开发工程师需要参与公司后端服务的设计、开发和维护,优化后端架构,提升系统性能和稳定性等。要求具备计算机相关专业本科及以上学历,3 年以上后端开发经验等。
2025-01-03
有哪些AI数字人口播工具?
以下是一些常见的 AI 数字人口播工具: 1. TecCreative: 只需输入口播文案,选择期望生成的数字人形象及目标语言,即可生成数字人口播视频。操作指引:输入口播文案——选择目标语言——选择数字人角色——选择输出类型——点击开始生成。 支持图片换脸,仅需上传原始图片和换脸图片,操作指引:上传原始图片——上传换脸图片——点击开始生成。图片大小上限 5M,支持 JPG、PNG 格式。 支持视频换脸,操作指引:上传原始视频——上传换脸图片——点击生成。 支持音频合成数字人,只需上传音频文件,工具支持使用 100+数字人模板。操作指引:上传音频文件——选择数字人角色——选择输出类型——点击开始生成。注意:音频文件支持 MP3 和 WAV 格式,文件大小上限 5M。 提供多语种(包含菲律宾语、印地语、马来语等小语种)智能配音,操作指引:输入需配音文案——选择音色——点击立即生成。注意:输入的配音文案需和选择音色语种保持一致。 智能识别视频语言并生成对应字幕,操作指引:点击上传视频——开始生成——字幕解析完成——下载 SRT 字幕。注意:支持 MP4 文件类型,大小上限为 50M。 2. HeyGen:是一个 AI 驱动的平台,可以创建逼真的数字人脸和角色。使用深度学习算法来生成高质量的肖像和角色模型,适用于游戏、电影和虚拟现实等应用。 3. Synthesia:是一个 AI 视频制作平台,允许用户创建虚拟角色并进行语音和口型同步。支持多种语言,并可以用于教育视频、营销内容和虚拟助手等场景。 4. DID:是一家提供 AI 拟真人视频产品服务和开发的公司,只需上传人像照片和输入要说的内容,平台提供的 AI 语音机器人将自动转换成语音,然后就能合成一段非常逼真的会开口说话的视频。 更多数字人工具请访问网站查看:https://www.waytoagi.com/category/42 。请注意,这些工具的具体功能和可用性可能会随着时间和技术的发展而变化。在使用这些工具时,请确保遵守相关的使用条款和隐私政策,并注意保持对生成内容的版权和伦理责任。 此外,还有适合小白用户的开源数字人工具,如: 特点:一键安装包,无需配置环境,简单易用。 功能:生成数字人视频,支持语音合成和声音克隆,操作界面中英文可选。 系统兼容:支持 Windows、Linux、macOS。 模型支持:MuseTalk(文本到语音)、CosyVoice(语音克隆)。 使用步骤:下载 8G+3G 语音模型包,启动模型即可。 GitHub: 官网:
2025-01-02
数字孪生的关键技术
数字孪生的关键技术包括以下方面: 利用定制软件实现工厂的数字孪生,如 Wistron 利用 Omniverse SDK 定制软件将 NVIDIA DGX 和 HGX 工厂实现数字孪生,大幅缩短调试周期。 运用生成式 AI 进行天气预测,如 CoreDev 可通过超高分辨率 AI 预测严重风暴。 构建端到端的机器人系统,让 AI 理解物理世界,需要 AI 计算机、监测分析计算机和执行任务的机器人三位一体。 提供模拟环境,如 Omniverse 提供模拟环境,教会机器人如何成为机器人。 实现软件定义的仓储、工厂,让机器人自主协同工作。 解决数字人构建中的工程关键点,如构建像人一样思考的 AI Agent、实现灵魂驱动躯壳、保证实时性、实现多元跨模态、处理拟人化场景等。
2025-01-02