Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

目前AGI最前沿的技术、算法有哪些?

Answer

以下是人工智能通用智能(AGI)研究领域中最前沿的一些方向:

1. 神经形态计算(Neuromorphic Computing):

神经形态计算旨在创建受人类大脑结构和功能启发的AI系统。这些系统使用人工神经元和突触来处理信息,并且通常被设计为比传统AI系统更节能且更具适应性。

神经形态计算在AGI中的潜在应用:

  • 开发更具人性的AI: 神经形态计算可以帮助创建更善于理解和与自然世界互动的AI系统。

  • 创建更高效的AI: 神经形态计算可能导致开发更节能且可以在更小设备上运行的AI系统。

  • 构建新的AI架构: 神经形态计算可能启发新的AI架构方法,这是传统方法无法实现的。

2. 人工通用智能安全(Artificial General Intelligence Safety):

随着AGI变得更加强大,重要的是要确保它是安全的并且与人类价值观保持一致。AI安全研究侧重于开发防止AI系统造成伤害的方法。

AI安全研究的重要领域:

  • 形式化方法: 形式化方法使用数学技术来验证AI系统是否安全且按预期运行。

  • 对抗鲁棒性: 对抗鲁棒性研究旨在使AI系统抵抗恶意行为者的攻击。

  • 一致性: 一致性研究旨在确保AI系统与人类价值观保持一致,并且不会追求对人类有害的目标。

3. 具身AI(Embodied AI):

具身AI是AI领域的一个分支,专注于AI代理与其物理环境之间的交互。具身AI代理具有身体,可以感知并与周围的世界互动。

具身AI在AGI中的应用:

  • 机器人技术: 具身AI对于开发能够在现实世界中执行复杂任务的机器人至关重要。

  • 人机交互: 具身AI可以帮助创建能够更好地理解和与人类互动的机器人。

  • 用于游戏的AI: 具身AI可用于开发需要物理技能的游戏的AI代理。

4. 可解释AI(XAI):

随着AI系统变得更加复杂,能够理解它们如何做出决策变得越来越重要。XAI研究旨在开发使AI系统更加透明和可解释的方法。

XAI研究的目标:

  • 启用AI系统的调试: XAI可以帮助识别和修复AI系统中的问题。

  • 建立对AI的信任: 通过使AI的决策过程更加透明,XAI可以帮助建立对AI的信任。

  • 理解人类认知: XAI可用于通过比较AI系统的决策过程与人类的决策过程来研究人类认知。

5. 元学习(Meta-Learning):

元学习是AI领域的一个分支,专注于AI系统学习如何学习的能力。元学习算法可以从过去的经验中学习,以提高其学习新任务的能力。

元学习在AGI中的潜在应用:

  • 更快的学习: 元学习可以使AI系统更快、更有效地学习新任务。

  • 更具适应性的AI: 元学习可以使AI系统更适应新的情况和环境。

  • 终身学习: 元学习可以使AI系统在其整个生命周期中持续学习和改进。

这些只是AGI研究中众多令人兴奋的领域中的一小部分。随着这些领域的研究不断进行,我们可以期待在开发真正智能且能够以人类般的方式理解和与世界互动的AI方面取得重大进展。

Content generated by AI large model, please carefully verify (powered by aily)

References

Others are asking
AGI和AIGC是啥关系,分别是什么的缩写
AGI 指通用人工智能,是一种能够像人类一样执行各种智能任务的人工智能。 AIGC 是人工智能生成内容的缩写,在公众传播层面,最初指用 Stable Diffusion 或 Midjourney 生成图像内容,后来泛指用 AI 生成音乐、图像、视频等内容。AIGC 是一种利用人工智能技术生成各种类型内容的应用方式,包括文字生成(如使用 GPT 系列模型生成文章、故事、对话等)、图像生成(如使用 Stable Diffusion、DALLE 等模型生成艺术作品、照片等)、视频生成(如使用 Runway、KLING 等模型生成动画、短视频等)。 AIGC、UGC(用户生成内容)和 PGC(专业人士或机构生成内容)都是内容生成的不同方式。UGC 由用户通过社交媒体等平台发布自己的内容,内容丰富多样,反映用户真实想法和创意,适用于互动性强的平台。PGC 由专业团队或机构根据特定标准和流程创作高质量内容,适用于需要高质量内容的平台。AIGC 的优势在于可以快速、大规模地生成内容,适用于需要大量内容的场景。
2025-02-13
AGI对普通人的机会
AGI 为普通人带来了诸多机会: 未来社会和经济将发生长期变革,会有新的事物、帮助他人的方式和竞争方式出现,尽管短期内生活变化不大。 机构、意志力和决心将很有价值,正确决定做什么以及在变化世界中导航能带来巨大价值,培养韧性和适应能力是有益的技能。AGI 使个人拥有更大影响力。 许多商品价格会大幅下跌,奢侈品和受限资源价格可能上涨。 人工智能将渗透到经济和社会各领域,一切都有望变得智能,人们可能获得更多控制技术的权力。 像 Sora 这样的模型基础功能,被认为是实现 AGI 的重要里程碑。AI 应用在很多方面为普通人带来机遇,如 AI 视频与自媒体结合。 基于国产芯片的软硬件联合优化及固件生态是明确的机会。 端上智能在全天候硬件 24x7 收集数据方面有最大想象空间。
2025-02-13
零基础如何学习AGI
对于零基础学习 AGI,以下是一些建议和相关学习资源: 1. 参加“AI 编程共学”活动,例如: 10 月 28 日 20:00 开始,麦橘分享的“0 基础做小游戏分享:通往 AGI 之路增量小游戏、转生之我是野菩萨”,回放链接:。 10 月 29 日 20:00 开始,梦飞分享的“0 编程基础入门 Cursor 极简使用指南”,回放链接:。 10 月 30 日 20:00 开始,银海分享的“0 基础学做 AI 拍立得:Coze 工作流实现手把手教学、AI 拍立得开源代码开箱即用”,回放链接:。 10 月 31 日 20:00 开始,南墙分享的“0 基础做小游戏分享:猪猪🐷撞南墙”,回放链接:。 2. 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。 3. 完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2025-02-13
AGI对普通人的意义
AGI 对普通人具有多方面的意义: 1. 带来积极影响: 经济增长可能令人惊叹,设想一个治愈所有疾病、有更多时间与家人共享、并能充分发挥创造潜力的世界。 个人能够比以往任何时候都产生更大的影响。 十年内,地球上的每个人都可能做到比今天最有影响力的人做得更多。 人类创新的稳定前进,使人们的生活在各个方面获得前所未有的繁荣和改善。 2. 带来挑战: 可能造成极端垄断,拥有 AGI 的公司/团体可能跨越行业、国家进行最大规模的垄断,包括对“智慧”资源的独占和对个体、公司、政府的精细信息操控。 一些行业可能变化不大,而科学进步速度可能更快,对社会的影响可能超过其他一切。 许多商品价格大幅下降,奢侈品及一些内在数量有限的资源(如土地)价格可能显著上涨。 3. 对个人的要求: 主动性、意志力和毅力可能会变得极其宝贵。 正确决定要做什么,并在不断变化的世界中摸索出前进的道路,将具有巨大的价值;韧性和适应能力将是值得培养的技能。 需要注意的是,虽然 AGI 带来了种种变化,但公共政策和社会对如何将 AGI 融入人类社会的看法非常重要。同时,我们需要思考在 AGI 降临的世界中,个体如何生存、如何寻找并创造自己的价值,以及探索新的分配方式。
2025-02-13
waytoAGI知识库智能问答机器人是如何实现的
waytoAGI 知识库智能问答机器人的实现方式如下: 基于 Aily 和云雀大模型。Aily 是飞书团队旗下的企业级 AI 应用开发平台,提供简单、安全且高效的环境,帮助企业构建和发布 AI 应用。云雀是字节跳动研发的语言模型,能通过自然语言交互高效完成互动对话等任务。 在飞书 5000 人大群里内置,根据通往 AGI 之路的文档及知识进行回答。使用方法为在飞书群里发起话题时,它会根据 waytoAGI 知识库的内容进行总结和回答。 其具备多种功能,如自动问答、知识搜索、文档引用、互动教学、最新动态更新、社区互动、资源共享、多语言支持等。 搭建过程包括介绍 WaytoAGI 社区的成立愿景和目标、利用 AI 技术帮助用户检索知识库内容、引入 RAG 技术、介绍基于飞书的知识库智能问答技术的应用场景和实现方法、使用飞书的智能伙伴功能搭建 FAQ 机器人以及智能助理的原理和使用方法等。
2025-02-12
waytoagi知识如此丰富 我该从哪里学起
如果您觉得 WayToAGI 知识丰富但不知从何学起,可以参考以下建议: 1. 从某一个板块开始,比如 Agent 板块。链接: 。使用方法是从下往上看,一个一个点进去,里面都有视频。共学视频都是手把手从注册开始的教学,不会就多看几遍,基本能保障一个工具能调通、一个 Agent 能搭好。但要注意,内容确实有点多,可以先选择自己听过的工具开始,以免太累。 2. 在看了一些视频之后,如果您想了解理论还是应用,可以找到导航,想看哪里点哪里。链接: 。但要注意,智能千帆、阿里云百炼有视频,其余没有。而且内容较多,您需要考虑聚焦,先挑一个,开始手把手一起做起来,看看能不能持续用起来,只要开始用起来,这事儿就成啦!如果快捷菜单找不到,可以参考相关说明。 WayToAGI 不仅是一个知识库,还是连接学习者、实践者和创新者的社区。这里以“无弯路,全速前进”为目标,助力每一个怀揣 AI 梦想的人疾速前行。每一份尝试都值得赞美,每一份付出都应得到鼓励,其成长得益于大家的支持。 此外,WayToAGI 还有整活区。如果您想造艘船,不要只忙于分配工作,而是要激起对大海的向往。在 WayToAGI 有很多垂直板块,这里不是系统性学习的地方,而是一起做有趣事的游乐场。我们大部分时候用 AI 做有用的事,但有用不是必须的,很多创新始于有趣的想法。在整活区,您不用证明想法“有什么用”,可以尽情发挥对 AI 天马行空的想象,把 AI 玩出新花样。
2025-02-12
目前最前沿的ai服装模特app
目前较为前沿的 AI 服装模特相关的应用有: Stitch Fix 是一家服装公司,已使用 AI 向客户推荐特定服装,并正在尝试使用 DALLE 2 根据客户对颜色、面料和款式的偏好创建服装可视化。 InterAlia 可以帮助搭配服装。 在小红书上,有通过 AI 制作服装如 AI 小绿裙实现变现的案例,新手可用 mewxai 或幻火来制作,熟练者可用 sd 或 mj 制作。 此外,还有用 AI 定制萌娃头像等相关应用。
2025-01-06
目前最前沿的应用在游戏领域的AI技术点是什么,包括游戏开发过程中的成本降低、效率提升,包括游戏内容生成,包括游戏后期运营推广。介绍技术点的技术逻辑以及技术细节。
目前在游戏领域应用的前沿 AI 技术点主要包括以下几个方面: 1. 利用 AIGC 技术实现游戏产业的生产力革命: 降低开发成本:借助人工智能的内容创作工具,如生成新的游戏内容(地图、角色和场景)、驱动游戏中的非玩家角色(NPC)、改进游戏的图像和声音效果等,能够缩减游戏开发的成本。 缩短制作周期:例如通过程序化内容生成,包括利用人工智能生成文字、图像、音频、视频等来创作游戏剧本、人物、道具、场景、用户界面、配音、音效、配乐、动画和特效等,从而减少游戏开发时间。 提升游戏质量和带来新交互体验:AIGC 技术为游戏带来不同以往的新体验,甚至创造出新的游戏类型以及新的交互方式。 2. 游戏内容辅助生成: 生成文、生成图、生成 3D 以及生成音乐。应用场景包括游戏策划人和制作人、美术设计师等。 对于工业化的游戏公司,基于 Stable Difussion 的生成能够通过 2D 美术素材的辅助生成提高创业效率 50%,降低 20%80%的成本。 文生图:通过提示词加参数就可以形成 2D 的参考图,适配度高。 图生图:原画师或美术可以使用,用一个线稿或原画,在原画基础上加一些 Prompt 和参数,就可以形成一个效果图和二级的素材。 动画辅助渲染:用 Lora 对角色背景、关键帧进行风格渲染,例如将真人视频渲染成二次元风。 3. 游戏的智能运营: 智能 NPC 互动:保持长期记忆,保持人物个性和对话表现形式,同时满足成本平衡。 客服、攻略的问答、代码和脚本的生成。主要针对游戏的产品经理、运营经理和社区的运营经理。 游戏社区运营:如海外的 Discord,国内的 Fanbook,让更多玩家在游戏之外,在社群里面很好地互动,基于游戏的美术素材进行二创、查询攻略和使用智能客服。 这些技术的技术逻辑和技术细节如下: 1. AIGC 技术:基于大语言模型和扩散模型,通过机器学习、强化学习等先进技术进行训练,能够理解和生成各种游戏相关的内容。 2. 游戏内容辅助生成:利用深度学习算法对大量的游戏相关数据进行学习和分析,从而能够根据给定的提示或参数生成相应的游戏内容。 3. 智能运营方面:通过构建智能模型,对玩家的行为和需求进行分析和预测,从而提供个性化的服务和互动。
2024-12-22
目前最前沿的应用在游戏领域的AI技术点是什么,包括游戏开发过程中的成本降低、效率提升,包括游戏内容生成,包括游戏后期运营推广。
目前在游戏领域最前沿的 AI 技术点主要包括以下几个方面: 1. 探索将游戏环境中的成果迁移至现实世界:电子游戏作为人工智能算法的测试场,为人工智能模型的构建与训练提供了理想化的场所。但将游戏中的技术推广到现实世界应用仍面临诸多挑战。 2. 利用 AIGC 技术实现游戏产业的生产力革命: 借助人工智能的内容创作工具,降低开发成本、缩短制作周期、提升游戏质量和完成度,带来新体验,创造新游戏类型和交互方式。 应用于电子游戏开发的多个方面,如生成新的游戏内容(地图、角色和场景)、驱动游戏中的非玩家角色(NPC)、改进游戏的图像和声音效果等。 3. 为通用人工智能的孵化提供帮助:经过多个复杂游戏训练后的“玩游戏”的人工智能体。 4. 借助人工智能完成大型游戏的制作:如《微软模拟飞行》通过与 blackshark.ai 合作,利用人工智能从二维卫星图像生成无限逼真的三维世界,且模型可随时间改进。 5. 生成式人工智能模型在游戏资产中的应用:出现了用于游戏中几乎所有资产的生成式人工智能模型,包括 3D 模型、角色动画、对话和音乐等。 6. 降低游戏制作的内容成本:整合生成式 AI 可大幅降低制作游戏的时间和成本,例如为一张图片生成概念图的时间从 3 周下降到 1 小时。
2024-12-22
目前最前沿的应用在游戏领域的AI技术点是什么
目前在游戏领域最前沿的 AI 技术点包括以下方面: 1. 生成式 AI:这是一种机器学习类别,计算机能根据用户提示生成新内容,在文本和图像方面应用较为成熟,甚至可用于创造具有完整性格的虚拟角色。 2. 智能对手的进化:早期游戏中的虚拟对手只是简单脚本程序,如今借助更快的微处理器和云技术,可构建大型神经网络,实现更复杂的模式识别和表示,使对手具备学习能力。 3. 未来发展方向: 探索将游戏环境中的成果迁移至现实世界,虽然在特定游戏环境中成果显著,但推广到现实世界仍面临诸多挑战。 利用 AIGC 技术实现游戏产业的生产力革命,如生成新的游戏内容、驱动非玩家角色、改进图像和声音效果等。 为通用人工智能的孵化提供帮助,经复杂游戏训练后的人工智能体有望在通用人工智能领域发挥作用。 此外,狭义的游戏人工智能研究致力于创造类人水平的智能体在多种游戏中战胜人类玩家,广义的还包括探索用于设计和开发游戏的人工智能技术,如游戏图像生成、关卡生成等。随着深度学习技术的发展,人工智能不仅用于“玩游戏”,还用于游戏的设计、开发和测试等多个方面。
2024-12-22
AI领域最前沿技术的最核心的论文
以下是为您整理的关于 AI 领域最前沿技术核心论文的相关内容: 1. 《Attention is All You Need》:这篇由 Google Brain 团队撰写的论文介绍了 Transformer 架构,彻底改变了 AI 领域的格局。它能够处理未标记的、混乱的数据,并且比以前的方法更加高效。 2. 杰弗里·辛顿(Geoffrey E. Hinton)的相关论文: 描述极化子的“The Contribution of Excitons to the Complex Dielectric Constant of Crystals”(1958 年)。 描述长程电子转移量子力学的“Electron transfer between biological molecules by thermally activated tunneling”(1974 年)。 “Kinetic Proofreading:1974 年)。 “神经网络和具有突发性集体计算能力的物理系统”(1982 年)(被称为 Hopfield 网络)。 与 D.W.Tank 合著的“优化问题中决策的神经计算”(1985 年)。 在这篇文章中,作者分享了一份用于更深入了解现代 AI 的精选资源列表,称其为“AI 典藏”。这些论文、博客文章、课程和指南在过去几年中对该领域产生了巨大影响。同时,还介绍了 AI 技术的发展历程,如 2015 年 AI 系统的局限性,以及 Transformer 架构出现后为 OpenAI 发展带来的影响。
2024-12-19
ai绘画的最前沿技术以及效果
AI 绘画的最前沿技术及效果包括以下方面: 技术融合:将艺术与先进的机器学习、深度学习等技术完美结合,如利用卷积神经网络等算法模拟人类创作过程。 打破局限:不再局限于传统手工绘画技巧,通过编程、算法和数据分析等开拓全新创作领域,为艺术家提供灵感,为缺乏绘画技巧的人提供创作机会,使艺术更具民主化和包容性。 效果提升:能够生成更加复杂、逼真和富有创意的图像,涵盖各种风格和题材,从写实到抽象,从风景到人物。 应用广泛:在广告设计、游戏开发、影视制作、建筑设计等领域发挥作用,可快速生成创意概念图、创建场景和角色形象、辅助特效场景和概念设计、帮助构想建筑外观和内部布局等。 色彩与情感表达:着色画通过色彩的丰富性、情感表达、细节和纹理的突出以及创意发挥,增加作品的表现力和独特性。 关键词结构思路:包括基础描述、风格指定、色彩要求和细节强调等方面。 进阶玩法:如使用 MJ 的 Retexture 功能或即梦参考功能,通过写提示词或垫图功能给着色画上色。
2024-12-03
如何基于你的模型对一台工业设备(钢板划线印字装备)进行故障诊断和预测性维护,从以下几个方面进行分析 1.技术栈:数据采集与通讯,数据库,算法,前端,微服务、应用等,并进行软件选型 2.硬件选型:工业设备、边缘计算设备,软件部署硬件,分别列出性能最优和国产化替代方案 3.算法创新性:要求可发表高水平论文和申请发明专利 4.算法通用性:考虑如何通过一个通用模型经过简单配置适应不同船舶建造工业设备的故障诊断和预测性维护 5.考虑前后合理性,若以此进行招标,如何描述招标内容
以下是为您整合的相关内容: Transformer 模型和 BERT 模型: 模型训练与评估:定义模型后,传递训练数据集和验证数据集及训练时期数,训练完成后评估性能,如达到 85%准确率。 模型性能可视化:绘制准确性和随时间的损失图。 保存与加载模型:使用 model.save 方法导出并保存模型到本地路径,保存后可加载进行预测。 预测示例:对不同情感的评论句子进行预测。 部署模型到 Vertex AI:检查模型签名,上传本地保存的模型到 Google Cloud 存储桶,在 Vertex 上部署模型并获得在线预测。 提示工程: 策略:将复杂任务分解为更简单的子任务。 技巧:使用意图分类识别用户查询中最相关的指令。例如在故障排除场景中,根据客户查询分类提供具体指令,如检查路由器连接线、询问路由器型号、根据型号提供重启建议等。模型会在对话状态变化时输出特定字符串,使系统成为状态机,更好控制用户体验。 OpenAI 官方指南: 战术:将复杂任务拆分为更简单的子任务。 策略:使用意图分类来识别与用户查询最相关的指令。例如在故障排除场景中,基于客户查询分类向 GPT 模型提供具体指令。已指示模型在对话状态变化时输出特殊字符串,将系统变成状态机,通过跟踪状态等为用户体验设置护栏。
2025-02-12
请把机器学习相关和大模型相关的知识点形成一个结构化的知识树,包括但是不限于算法、框架、工具、注意力机制等
以下是一个关于机器学习和大模型的结构化知识树: 一、基础数学知识 1. 线性代数 2. 概率论 3. 优化理论 二、机器学习基础 1. 监督学习 分类 回归 2. 无监督学习 聚类 3. 强化学习 三、深度学习 1. 神经网络 卷积网络 递归网络 注意力机制 2. Transformer 模型 四、自然语言处理 1. 语言模型 2. 文本分类 3. 机器翻译 五、计算机视觉 1. 图像分类 2. 目标检测 3. 语义分割 六、前沿领域 1. 大模型 2. 多模态 AI 3. 自监督学习 4. 小样本学习 七、工具与框架 1. TensorFlow 2. PyTorch 八、应用领域 1. 自然语言处理 2. 计算机视觉 3. 推荐系统 九、数据处理 1. 数据采集 2. 数据清洗 3. 特征工程 十、模型部署 1. 模型优化 2. 模型服务 十一、科研实践 1. 论文阅读 2. 模型实现 3. 实验设计 十二、行业实践 1. 项目实战 2. 案例分析
2025-02-11
机器学习的子领域包括: 监督学习,常用算法如线性回归、决策树、支持向量机(SVM)。 无监督学习,如聚类、降维等算法。 强化学习,那深度学习是哪一种啊
深度学习是机器学习的一个子领域。 在机器学习中,深度学习是一种利用深度神经网络来学习数据特征和模式的方法。 深度学习的特点包括: 1. 具有复杂的网络结构,如前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)等。 2. 能够自动从大量数据中提取高级特征。 深度学习在图像识别、语音识别、自然语言处理等领域取得了显著的成果。
2025-01-21
不同厂家的AI产品是底层算法不一样吗?比如ChatGPT和豆包
不同厂家的 AI 产品底层算法通常是不一样的。 以常见的 ChatGPT 和豆包为例,ChatGPT 是由 OpenAI 开发的,其底层算法具有独特的特点和优势。而豆包是由字节跳动开发的,也有其自身的算法设计和优化。 在当前的 AI 领域,大多数 AI 应用程序都由大型语言模型(LLMs)驱动,其中只有几个基础模型,由少数几个组织创建。例如 OpenAI 制作了 GPT3.5 和 GPT4,Google 有 Bard 等。 从相关的访问量数据来看,不同的 AI 产品在市场上的表现也有所不同。比如在某些月份,ChatGPT 的访问量较高,而豆包的访问量也在不断变化。但这并不能直接反映其底层算法的差异,只是从侧面反映了它们在用户中的受欢迎程度和使用情况。
2025-01-17
我想知道目前最新、效果最好、代码和模型开源的动作捕捉算法,也叫做人体姿态估计,是哪篇文章
目前最新、效果较好且代码和模型开源的人体姿态估计(动作捕捉算法)相关的研究有以下两篇: 1. 【SD】最强手部识别,controlnet 新预处理器 dw openpose 作者:白马少年|公众号:【白马与少年】 发布时间:20230813 20:00 原文网址:https://mp.weixin.qq.com/s/_RiKxWy9MXt4DUJIKH5w 介绍:在 controlnet 中,手部识别一直使用的是 openpose 预处理器,但复杂手势有时无法识别。新的 dw openpose 预处理器能完美解决手部识别问题,将其放入特定目录即可使用。但需说明的是,目前这个 DW Pose 只是更精确的 openpose 预处理器,未对 ControlNet 的 openpose 模型做改动。 2. YOLONAS Pose:一个开源的实时人体姿态估计模型 应用场景:基于骨骼标记为基础,适用于智慧体育等场景,可对训练过程的姿态、数据、状态等进行统计和管理。 技术类型:视频、AI 学习模型 简介:主要功能是识别图片和视频中人的姿势,能快速处理图像并实时返回姿态数据,适应不同场景和设备。 主要特点: 实时性能:旨在提供实时的姿态估计,适用于需要即时反馈的应用。 高精度:利用神经网络架构搜索(NAS)提高姿态估计的准确性。 优化的网络结构:NAS 自动测试不同网络结构,找到最优模型。
2024-12-31
模态分解算法的详细代码
很抱歉,目前知识库中没有模态分解算法的详细代码。但您可以通过以下途径获取相关代码: 1. 学术研究网站,如 arXiv 等,许多学者会在上面分享他们的研究成果及代码。 2. 相关的开源代码库,如 GitHub 等,您可以通过搜索关键词找到相关项目。 3. 专业的技术论坛,在那里与其他开发者交流,可能会获得有用的信息和代码示例。
2024-12-30
我想用deepseek 写微信公众号文章,我将要写的主题告诉他,让它为我生成个人角度的文章,我要写的主题一般围绕着软件分享,技术分享等。请你根据我的要求为我写一份适用的提示词
以下是为您生成的适用于使用 DeepSeek 写微信公众号文章的提示词: 我要写一篇关于软件分享或技术分享的微信公众号文章,文章标题要足够吸引人,以便能广泛传播。文章内容要详细且有条理,先介绍分享的软件或技术的基本情况,包括其功能、特点和优势;然后结合实际案例或个人使用体验,阐述其在实际应用中的效果和价值;最后总结并展望其未来的发展前景。请为我生成这样一篇完整的文章。
2025-02-12
deepseek技术原理
DeepSeek 技术原理包括以下方面: 核心原理认知: AI 特性定位:支持文本/代码/数学公式混合输入,具有动态上下文(约 4K tokens 上下文窗口)和任务适应性(可切换创意生成/逻辑推理/数据分析模式)。 系统响应机制:采用意图识别+内容生成双通道理,自动检测 prompt 中的任务类型、输出格式、知识范围,对位置权重(开头/结尾)、符号强调敏感。 基础指令框架: 可以套用框架指令,如四要素模板。 格式控制语法包括强制结构(使用```包裹格式要求)、占位符标记(用{{}}标注需填充内容)、优先级符号(>表示关键要求,!表示禁止项)。 进阶控制技巧: 思维链引导:分步标记法,如请逐步思考:1.问题分析→2.方案设计→3.风险评估;苏格拉底式追问,即在得出最终结论前,请先列举三个可能存在的认知偏差。 知识库调用:领域限定指令,如基于 2023 版中国药典,说明头孢类药物的配伍禁忌;文献引用模式,如以 Nature 2022 年发表的论文为参考,解释 CRISPRCas9 最新突破。 多模态输出。 此外,1 月 30 日社区动态速览中提到了 DeepSeek 相关的基本术语,阐述其省钱原因,包括高效硬件使用、创新训练方法、高效模型压缩、避免无效尝试等,还提及成本对比及创新蒸馏技术。接着从核心思想、技术实现方式(知识表示、温度调节)、训练过程(基本流程、关键点)、DeepSeek 的创新及有效性原因(信息压缩、概率分布学习、泛化能力)等方面详细讲述了蒸馏工作原理。1 月 26 日社区动态速览中提到 Deepseek 提示词框架的四大模块:任务目的(Purpose)、计划规则(Planning Rules)、格式规则(Format Rules)、输出说明(Output)。
2025-02-11
你是基于什么技术搭建的?
很抱歉,没有查询到关于我基于什么技术搭建的相关确切内容。但为您提供以下相关信息: Udio 由一群领先的人工智能研究人员和技术专家创立,在当今许多最具前瞻性和创造力的音乐家的指导下构建了其技术,得到了 a16z、will.i.am 等的支持。udio.com 允许用户通过指定主题、流派和其他描述符,根据简单的文本提示创建音乐,然后将其转换为专业品质的曲目。 另外,关于飞书搭建的 AI 知识库,飞书的官方技术同学使用 RAG 技术将的内容进行处理,然后在飞书大群中接入一个智能机器人,当机器人被艾特回答问题时,其背后就是针对这个 AI 知识库进行的提问,RAG 技术会将知识库中最符合的相关文档回复给用户。
2025-02-08
传感器技术与智慧养老的联系
传感器技术在智慧养老中具有重要作用。在感知模块中,通过多种传感器来收集和处理信息,常见的传感器包括: 1. 可见光相机:负责收集彩色图像。 2. 红外相机:能收集热成像、进行温度测量、实现夜视和透视。可检测物体热辐射,在黑暗中生成图像,用于夜视、热成像、设备过热检测、能源审计和医学成像等,还能穿透烟雾等遮挡物用于应急救援和安全监控。 3. 深度相机:测量图像中各点与相机的距离,获取三维坐标信息。 4. 激光雷达(LiDAR):测量目标物体距离和速度,发射激光脉冲并接收反射光来计算距离,生成高精度三维点云数据,广泛应用于自动驾驶和机器人导航。 5. 超声波传感器:用于避障,通过发射和接收超声波脉冲确定机器人与障碍物的距离,判断障碍物是否存在。 6. 压力传感器:测量机器人手或脚部压力,用于行走和抓取力控制以及避障。 7. 麦克风:负责收音。 以医疗保健为例,在智慧养老场景中,智能传感器可发挥多种作用,如检测临床医生是否正确洗手后进入病人房间、跟踪手术器械、在病人面临跌倒风险时提醒护理团队等。这些技术如同额外的眼睛,为养老服务提供环境智能。还可想象自主机器人运输医疗用品、用增强现实技术引导外科医生更安全高效操作,甚至严重瘫痪病人用脑电波控制机器人完成日常任务。
2025-02-08
学习对AI技术在PDF中的使用
以下是关于 AI 技术在 PDF 中的使用的相关内容: PDF 翻译: DeepL(网站):点击页面「翻译文件」按钮,上传 PDF、Word 或 PowerPoint 文件即可。 沉浸式翻译(浏览器插件):安装插件后,点击插件底部「更多」按钮,选择「制作双语 BPUB 电子书」、「翻译本地 PDF 文件」、「翻译 THML/TXT 文件」、「翻译本地字幕文件」。 Calibre(电子书管理应用):下载并安装 calibre,并安装翻译插件「Ebook Translator」。 谷歌翻译(网页):使用工具把 PDF 转成 Word,再点击谷歌翻译「Document」按钮,上传 Word 文档。 百度翻译(网页):点击导航栏「文件翻译」,上传 PDF、Word、Excel、PPT、TXT 等格式的文件,支持选择领域和导出格式(不过进阶功能基本都需要付费了)。 彩云小译(App):下载后点击「文档翻译」,可以直接导入 PDF、DOC、DOCX、PPT、PPTX、TXT、epub、srt 等格式的文档并开始翻译(不过有免费次数限制且进阶功能需要付费)。 微信读书(App):下载 App 后将 PDF 文档添加到书架,打开并点击页面上方「切换成电子书」,轻触屏幕唤出翻译按钮。 从 PDF 中获取图片: 可以使用 PyMuPDF 组件,让 ChatGPT 编写相关 Python 脚本,运行该脚本即可导出 PDF 电子书中的所有图片。但需要声明的是,此方法仅供个人学习娱乐,请勿用于盗版意图。 处理 PDF 文本: Claude 2 在处理 PDF 文本方面表现出色,可以将整本书粘贴到 Claude 的前一版本中取得令人印象深刻的结果,新模型更强大。还可以给它复杂的学术文章并要求总结结果,通过询问后续问题来审问材料,但需要注意这些系统仍可能产生幻觉,若要确保准确性,需检查结果。
2025-02-08