直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

优质的ai换装工具

回答

以下是一些优质的 AI 换装工具:

  1. YouCam Makeup 这是一款移动应用程序,可以让你在照片中轻松更换衣服。只需上传照片,从应用程序的服装库中选择喜欢的服装即可。除了换装,还提供各种滤镜和编辑工具。

  2. AI 抠图魔术师 这是一款强大的照片编辑软件,主要功能是可以为照片中的人物换装。运用先进的 AI 技术,能够精准识别照片中的人物,将选定的服装图案应用到人物身上。

  3. FaceApp 这是一款非常受欢迎的照片编辑应用程序,可以让照片显得更年轻、更老,或者为照片更换服装。使用先进的 AI 技术,可以精准地修改照片,效果看起来非常自然。

  4. PicsArt Photo Editor 这是一款知名的照片编辑软件,具有强大的"更换服装"功能。可以从各种服装风格中选择,无论是休闲、正式还是潮流,一键在照片上换上新衣服。

  5. Canva AI Canva 推出的 AI 文本到图像生成工具,可以根据文字描述生成相应的图像。虽然不是专门的换装工具,但也可以尝试生成穿着特定服装的人物图像。

总的来说,这些 AI 换装工具都利用了先进的 AI 技术,能够精准地识别照片中的人物,并将各种服装图案应用到人物身上,达到逼真的换装效果。用户可以根据自己的需求选择合适的工具使用。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

其他人在问
有没有可以帮我做作品集的ai工具?
以下为您介绍一些可以帮助制作作品集的 AI 工具: 1. GPT4、WPS AI 和 chatPPT:可以用于制作 PPT 类型的作品集。例如,在制作 PPT 时,大纲内容、排版、动画等都可以借助这些工具完成。 2. Kickresume 的 AI 简历写作器:使用 OpenAI 的 GPT4 语言模型自动生成简历,能为简历摘要、工作经验和教育等专业部分编写内容,并保持一致语调。 3. Rezi:是一个受到众多用户信任的领先 AI 简历构建平台,使用先进的 AI 技术自动化创建可雇佣简历的各个方面,包括写作、编辑、格式化和优化。 4. Huntr 的 AI 简历构建器:提供免费的简历模板,以及 AI 生成的总结、技能、成就生成器和 AI 驱动的简历工作匹配。 更多相关工具,您还可以查看:https://www.waytoagi.com/category/79 。 需要注意的是,AI 工具生成的内容可能需要您进一步甄别和调整,以满足您的具体需求。
2024-11-12
什么是AI
AI 是一门令人兴奋的科学,它研究如何使计算机表现出智能行为,例如做一些人类所擅长的事情。 对于 AI 的理解,对于不具备理工科背景的文科生来说可能较困难,可将其当成一个黑箱,只需要知道它是某种能模仿人类思维、理解自然语言并输出自然语言的东西即可。其生态位是一种似人而非人的存在,即便技术再进步,这一生态位也不会改变。 在实际应用中,有些任务无法明确编程让计算机完成,比如根据照片判断一个人的年龄,而这类任务正是 AI 所感兴趣的。 AI 健身是利用人工智能技术辅助或改善健身训练和健康管理的方法,能根据用户情况提供定制化训练计划和建议。相关的 AI 工具包括 Keep、Fiture、Fitness AI、Planfit 等。
2024-11-12
如何使用ai帮助我写作
利用 AI 帮助写作可以参考以下步骤和方法: 1. 确定写作主题:明确您的研究兴趣和目标,选择一个具有研究价值和创新性的主题。 2. 收集背景资料:使用 AI 工具如学术搜索引擎和文献管理软件来搜集相关的研究文献和资料。 3. 分析和总结信息:利用 AI 文本分析工具来分析收集到的资料,提取关键信息和主要观点。 4. 生成大纲:使用 AI 写作助手生成写作的大纲,包括引言、文献综述、方法论、结果和讨论等部分。 5. 撰写初稿:可以利用 AI 写作工具草拟任何东西的初稿,如博客文章、论文、宣传材料、演讲、讲座等。 6. 优化内容:将文本粘贴到 AI 中,要求它改进内容,或就如何为特定受众提供更好的建议。也可以要求它以不同风格创建多个草稿,使事物更生动,或者添加例子,以激发您做得更好。 7. 帮助完成任务:AI 可以做您没有时间做的事情,像实习生一样使用它写邮件,创建销售模板,提供商业计划的下一步等。 8. 数据分析(若涉及):如果写作内容涉及数据收集和分析,可以使用 AI 数据分析工具来处理和解释数据。 9. 生成参考文献:使用 AI 文献管理工具来生成正确的参考文献格式。 10. 审阅和修改:利用 AI 审阅工具来检查写作的逻辑性和一致性,并根据反馈进行修改。 11. 提交前的检查:最后,使用 AI 抄袭检测工具来确保写作的原创性,并进行最后的格式调整。 需要注意的是,AI 工具可以作为辅助,但不能完全替代您的专业判断和创造性思维。在使用 AI 进行写作时,应保持批判性思维,并确保写作的质量和学术诚信。 目前,一些较好的写作工具包括: 最佳免费选项: 付费选项:带有插件的4.0/ChatGPT 此外,GPT4 仍然是功能最强的人工智能写作工具,您可以在 Bing(选择“创新模式”)上免费访问,或者通过购买 ChatGPT 的$20/月订阅来访问。Claude 是紧随其后的第二名,也提供了有限的免费选项。这些工具也被直接集成到常见的办公应用程序中,如 Microsoft Office 将包括一个由 GPT 提供支持的副驾驶,Google Docs 将整合 Bard 的建议。
2024-11-12
为什么AI那么厉害
AI 之所以厉害,原因主要包括以下几点: 1. 具有非凡的潜力,能够在众多领域得到应用,如改善社会和经济,其影响力可与电力和互联网相媲美,能推动增长并创造就业机会。 2. 可支持人们完成现有工作,提高劳动力效率和工作场所安全性。 3. 是人类研究世界的有力工具,能帮助解决基础科学面临的瓶颈,例如在生物领域能快速计算蛋白质的折叠结构。 4. 不断发展和创新,如 GPT4 的升级,能为用户提供更多帮助。但同时也存在耗能等问题。
2024-11-12
国内有哪些AI出海产品
国内的 AI 出海产品有 ThinkAny、GenSpark、Devv 等。 在图像类 AI 产品方面,国内有可灵和通义万相。可灵由快手团队开发,用于生成高质量的图像和视频,图像质量高,但价格相对较高;通义万相是阿里旗下的工具,在中文理解和处理方面表现出色,用户可选择多种艺术和图像风格,操作界面简洁直观,且目前免费,但在某些方面存在局限性。 在 PPT 类 AI 产品方面,国内推荐爱设计 PPT,其背后有强大的团队,能敏锐把握市场机遇,已确立市场领先地位,能提高制作效率并保证高质量输出。
2024-11-12
0基础怎么快速学会做AI
对于 0 基础学习 AI,您可以参考以下步骤: 1. 了解 AI 基本概念: 建议阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,您能找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 此外,您还可以参考以下具体的学习活动: 1. 参加“AI 编程共学”活动,例如: 10 月 28 日 20:00 开始的“0 基础做小游戏分享:通往 AGI 之路增量小游戏、转生之我是野菩萨”,回放链接:。 10 月 29 日 20:00 开始的“0 编程基础入门 Cursor 极简使用指南”,回放链接:。 10 月 30 日 20:00 开始的“0 基础学做 AI 拍立得:Coze 工作流实现手把手教学、AI 拍立得开源代码开箱即用”,回放链接:。 10 月 31 日 20:00 开始的“0 基础做小游戏分享:猪猪🐷撞南墙”,回放链接:。 2. 对于技术纯小白,您可以: 从一个最最基础的小任务开始,让 AI 先帮您按照 best practice 写一个 say hello 的示例程序,并解释每个文件的作用及程序运行的逻辑,学会必备的调试技能。 通过和 AI 的对话,逐步明确项目需求,让 AI 帮助您梳理出产品需求文档。
2024-11-12
如何使用stable diffusion 生成模特换装的工作流
Stable Diffusion 是一种强大的生成模型,常用于图像生成和修改任务。利用 Stable Diffusion 实现模特换装可以通过以下步骤和工作流程进行: 工作流程 1. 准备环境 确保你有合适的硬件配置,特别是具有高性能 GPU 的计算机。 安装必要的软件和依赖项,如 Python、CUDA、PyTorch 等。 2. 获取模型 下载并安装 Stable Diffusion 模型。 可以从 Hugging Face 的模型库中找到合适的预训练模型,也可以使用自己的数据进行微调。 3. 数据准备 模特图像:准备高质量的模特图像,确保背景简单以便后续处理。 服装图像:收集或创建各种服装的图像,最好是带有透明背景的 PNG 格式。 4. 图像预处理 使用图像编辑工具(如 Photoshop 或 GIMP)将模特图像和服装图像裁剪成合适的大小和比例。 如果需要,可以使用 OpenCV 或 PIL 进行自动化预处理。 5. 定义输入格式 将模特图像和服装图像输入 Stable Diffusion 模型的方式需要提前定义。 典型输入包括模特的基本特征(如位置、姿态)和服装的特征(如颜色、纹理)。 6. 生成换装图像 使用 Stable Diffusion 模型,输入模特图像和服装图像,生成换装后的模特图像。 可以调整生成参数(如扩散步数、采样方法)以获得最佳结果。 7. 后处理 对生成的图像进行后处理,如调整亮度、对比度,或者进一步修正细节。 使用图像编辑工具或自动化脚本完成后处理步骤。 8. 评估和优化 评估生成图像的质量,根据需要进行微调或更改模型参数。 可以使用人工评估或引入评价指标(如 FID、IS 分数)进行量化评估。 示例代码 以下是一个简化的 Python 示例代码,展示如何使用 Stable Diffusion 模型进行图像生成: ```python import torch from transformers import StableDiffusionPipeline 加载模型 model_id = "CompVis/stablediffusionv14" pipe = StableDiffusionPipeline.from_pretrained 准备输入 prompt = "A model wearing a red dress standing on a white background" 生成图像 image = pipe.images 保存图像 image.save ``` 工具和资源 1. Hugging Face: 提供预训练的 Stable Diffusion 模型和相关文档。 链接: 2. OpenCV 和 PIL: 用于图像预处理和后处理。 安装:`pip install opencvpython pillow` 3. 图像编辑工具: 如 Photoshop 或 GIMP,用于手动处理图像。 提示 硬件要求:高性能的 GPU 可以显著加快图像生成速度。 数据质量:高质量的输入图像和精细的预处理可以提高生成图像的效果。 参数调整:根据生成结果不断调整模型参数以获得最佳效果。 模型微调:如果预训练模型不能完全满足需求,可以考虑使用自己的数据集进行微调。 通过这些步骤和工具,您可以使用 Stable Diffusion 模型生成模特换装的图像,创建高质量的视觉效果。
2024-05-26
AI 换脸换装
AI 换脸换装是一种基于人工智能技术的应用,它可以将一个人的面部特征和外貌替换为另一个人的面部特征和外貌。以下是一篇关于 AI 换脸换装的文章: AI 换脸换装的方法和应用 一、整体流程介绍 数字人视频的整体制作流程,大致分为三步: 1. 创建视频内容:通过输入文稿内容,确定数字人播出的内容。 2. 生成数字人:通过工具,以及视频内容生产数字人形象及播放语音。 3. AI 换脸:通过 AI 工具,将数字人的脸,转换成你指定宣传的形象,以便以自己的品牌形式宣传。 二、AI 换脸的方法 打开 FaceFusion 软件,需要返回实例列表,点击自定义服务按钮,会打开一个新的浏览器窗口。这样,我们才能够通过 web 浏览器来访问 FaceFusion 提供的 UI 界面。在 FaceFusion 软件界面上(见上图),上传准备好的图片,视频后,在右侧可以看到预览效果。点击下方的开始按钮,执行换脸处理。执行完成后,在输出的位置,会出现处理后的视频,输出窗口的右上角有一个下载按钮,点击它你可以导出变量后的视频到本地。 三、AI 换装的方法 要实现 AI 换装,需要使用到一些图像处理和计算机视觉技术。具体来说,可以通过以下步骤实现: 1. 数据准备:首先需要准备一些包含不同服装的图片数据,这些图片可以从互联网上下载,也可以通过拍摄得到。 2. 模型训练:接下来需要使用深度学习模型对这些图片进行训练,以学习不同服装的特征和样式。可以使用卷积神经网络(CNN)或循环神经网络(RNN)等模型进行训练。 3. 图像处理:在得到训练好的模型后,需要对输入的图片进行处理,以便模型能够识别和理解图片中的服装信息。可以使用图像分割、特征提取等技术进行处理。 4. 模型预测:最后,使用训练好的模型对输入的图片进行预测,以得到换装后的图片。可以使用图像生成、图像融合等技术进行预测。 四、AI 换脸换装的应用 AI 换脸换装技术可以应用于多个领域,如影视制作、虚拟现实、游戏等。在影视制作中,可以使用 AI 换脸换装技术来替换演员的面部特征和外貌,以实现特效和角色转换。在虚拟现实和游戏中,可以使用 AI 换脸换装技术来实现角色自定义和换装功能,以提高用户体验和自由度。 五、总结 AI 换脸换装是一种基于人工智能技术的应用,它可以将一个人的面部特征和外貌替换为另一个人的面部特征和外貌。通过使用深度学习模型和图像处理技术,可以实现高质量的 AI 换脸换装效果。这项技术可以应用于多个领域,如影视制作、虚拟现实、游戏等,以提高用户体验和自由度。
2024-05-20
如何实现ai人物换装
实现AI人物换装是一个复杂的项目,涉及到多个技术领域,包括计算机视觉、图像处理、机器学习以及深度学习等。以下是一个基本的步骤指南,用于实现AI人物换装: 1. 数据收集与预处理 收集大量包含不同人物和衣物的图片作为训练数据。 对图片进行预处理,如调整大小、裁剪、归一化等,以适应模型训练。 2. 特征提取与对象检测 使用深度学习方法,如YOLO、Faster RCNN等,进行人物和衣物的对象检测。 提取衣物的关键特征,如颜色、款式、材质等。 3. 风格迁移与图像合成 使用风格迁移技术,将新衣物的风格与人物图片中的原有衣物风格相匹配。 通过神经网络学习源图像和目标图像之间的风格差异,并将其应用于目标图像。 使用图像合成技术,将新衣物与人物图片中的相应部位合成。 4. 优化与调整 对合成后的图像进行优化和调整,以改善细节和消除不自然的部分。 可能需要对合成结果进行微调,以达到最佳效果。 5. 用户交互 设计用户友好的界面,允许用户选择或上传衣物图片,并实时预览换装效果。 提供调整功能,如大小、颜色、透明度等,以满足用户的个性化需求。 6. 遵守法律法规和伦理标准 确保AI换装技术的应用符合当地的法律法规。 关注伦理问题,如个人隐私保护,确保技术使用符合社会伦理标准。 实现AI人物换装需要跨学科的技术知识和团队合作。随着技术的不断进步,市场上也出现了许多平台和工具,可以帮助简化实现过程。
2024-04-17
如何写一个优质的提示词
以下是关于如何写一个优质提示词的建议: 1. 明确任务:清晰定义任务,如写故事时包含背景、角色和主要情节。 2. 提供上下文:若任务需特定背景知识,在提示词中提供足够信息。 3. 使用清晰语言:尽量用简单、清晰的语言描述,避免模糊或歧义词汇。 4. 给出具体要求:如有特定格式或风格要求,在提示词中明确指出。 5. 使用示例:如有特定期望结果,提供示例帮助模型理解需求。 6. 保持简洁:提示词简洁明了,避免过多信息导致模型困惑。 7. 使用关键词和标签:有助于模型理解任务主题和类型。 8. 测试和调整:生成文本后仔细检查结果,根据需要调整提示词,可能需多次迭代。 此外,对于律师写提示词还有一些特殊要求: 1. 第一部分:说清要解决的问题、问题背景及可能导致的损失。 2. 第二部分:以案例引入,包括案号、案件事实经过、裁判结果、关键依据等要点。 3. 第三部分:对案例进一步分析,写明注意关键点。 4. 第四部分:给出具体操作建议,分事前、事中、事后,各给出三条清晰具体的建议。 5. 第五部分:结语及作者宣传。 写文章时需注意: 1. 文章结构要精华,自己对输出成果有结构化理解。 2. 所有结论有案例基础,不违反法律规定,不编造。 3. 文字简练精准,信息密度足够,建议具体细致且易于操作。 4. 对案例进行脱敏,替换人物姓名、时间和地点。 5. 按要求控制各部分字数,组合成可直接发布、吸引目标群体、高质量实用的公众号普法文章。
2024-11-06
如何利用ChatGPT写优质论文
以下是利用 ChatGPT 写优质论文的一些方法: 1. 精简和重塑段落:可以利用 ChatGPT 来半自动化地缩短学术论文摘要,辅助自动笔记记录。 2. 清晰表达观点:在撰写学术论文(比如摘要和提案)及其他类似文档时,ChatGPT 能帮助清晰、简洁地表达观点。 3. 英语语法纠错:对于非英语母语者,ChatGPT 在这方面表现出色。可以请它不仅重写,还突出并解释错误,以改进写作并在学习中提高。 此外,ChatGPT 是以“词”为单位进行文本生成的。每一步都会生成一个带有概率的单词列表,但如果总是选择概率最高的单词,通常会得到平淡的文章,有时随机选择排名较低的单词,能得到更有趣的文章。
2024-09-12
如何写出优质的提示词
以下是关于如何写出优质提示词的一些建议: 1. 明确任务:清晰地定义任务,比如写故事时包含背景、角色和主要情节。 2. 提供上下文:若任务需特定背景知识,在提示词中提供足够信息。 3. 使用清晰语言:尽量用简单、清晰的表述,避免模糊或歧义词汇。 4. 给出具体要求:明确格式、风格等要求,如文章遵循的格式或引用的文献类型。 5. 使用示例:提供期望结果的示例,帮助模型理解需求。 6. 保持简洁:避免过多信息,防止模型困惑,确保结果准确。 7. 使用关键词和标签:有助于模型理解任务主题和类型。 对于律师写提示词,还有以下特殊要求: 1. 检索报告可自行整理,也可用专门的 AI 法律案例检索应用自动生成。 2. 采用权威教育性语气,融入专业法律术语和商业术语。 3. 结构化组织内容,使用编号、子标题和列表。 4. 遵循规定概述内容解读结语的结构。 5. 结合实际案例和潜在挑战,提供实用解决方案。 6. 结合法规和实际操作,给出详细解释和建议。 此外,写提示词时还需注意: 1. 文字简练精准,有足够信息密度,给出的建议具体细致且易于操作。 2. 对案例进行脱敏处理,替换人物姓名、时间和地点。 3. 按要求分部分输出,组合成完整的高质量实用文章。 4. 初始化时使用中文与用户对话,欢迎语为“十方诸天尊,其数如沙尘,化形十方界,普济度天人。灵机应召来也!”
2024-08-12
如何利用AI 制作优质的短视频
利用 AI 制作优质短视频可以参考以下方法: 1. 视频粗剪: 先确定画面逻辑,声音可作部分参考。 粗剪画面无需精美,主要是对片子全貌有整体把握,便于后续调整和替换素材。 2. 视频定剪: 将画面素材调整和替换到满意效果。 3. 音效/音乐: 以剪映为例,其有简单音效库,复杂真实音效可能需另外制作。 商用音乐注意购买版权或使用无版权音乐。 4. 特效: 以剪映为例,可添加一些光的效果,弥补 AI 视频生成吃掉的光影。 如果想用 AI 把小说做成视频,可按以下流程操作: 1. 小说内容分析:使用 AI 工具(如 ChatGPT)分析小说内容,提取关键场景、角色和情节。 2. 生成角色与场景描述:根据小说内容,使用工具(如 Stable Diffusion 或 Midjourney)生成角色和场景的视觉描述。 3. 图像生成:使用 AI 图像生成工具根据描述创建角色和场景的图像。 4. 视频脚本制作:将提取的关键点和生成的图像组合成视频脚本。 5. 音频制作:利用 AI 配音工具(如 Adobe Firefly)将小说文本转换为语音,添加背景音乐和音效。 6. 视频编辑与合成:使用视频编辑软件(如 Clipfly 或 VEED.IO)将图像、音频和文字合成为视频。 7. 后期处理:对生成的视频进行剪辑、添加特效和转场,以提高视频质量。 8. 审阅与调整:观看生成的视频,根据需要进行调整,比如重新编辑某些场景或调整音频。 9. 输出与分享:完成所有编辑后,输出最终视频,并在所需平台上分享。 根据视频脚本生成短视频的 AI 工具有: 1. ChatGPT + 剪映:ChatGPT 生成视频小说脚本,剪映自动分析出视频所需要素并生成素材和文本框架,实现从文字到画面的快速转化。 2. PixVerse AI:在线 AI 视频生成工具,支持将多模态输入转化为视频。 3. Pictory:AI 视频生成器,用户提供文本描述即可生成相应视频内容。 4. VEED.IO:提供 AI 图像生成器和 AI 脚本生成器,帮助从图像制作视频并规划内容。 5. Runway:AI 视频创作工具,能将文本转化为风格化视频内容,适用于多种场景。 请注意,具体操作步骤和所需工具可能因项目需求和个人偏好有所不同。此外,AI 工具的可用性和功能可能会随时间变化,建议直接访问工具网址获取最新信息和使用指南。
2024-08-11
优质的会议纪要prompt
编写优质的会议纪要(会议记录)需要涵盖会议的关键细节、讨论的主要议题、决定的事项以及后续的行动计划。以下是一个详细的会议纪要模板prompt,可以帮助你记录会议内容: 会议纪要 会议基本信息 会议主题: 会议时间: 会议地点: 主持人: 记录人: 参会人员: (列出所有参会人员的名字和职位) 缺席人员: (列出所有缺席人员的名字和职位) 会议议程 1. 欢迎及开场白 2. 上次会议回顾 3. 主要议题讨论 议题1: 议题2: 议题3: 4. 其他事项 5. 总结及下次会议安排 详细记录 1. 欢迎及开场白 主持人介绍了会议的主要目的和议程。 2. 上次会议回顾 主持人简要回顾了上次会议的主要内容和决议。 行动项: 负责人: 进展情况: 3. 主要议题讨论 议题1: (简要描述议题内容) 发言人: 讨论内容: 讨论的主要观点、意见和建议。 各方达成的一致意见或仍存的分歧。 决议: 具体的决定或结论。 后续行动: 任务: 负责人: 截止日期: 议题2: (简要描述议题内容) 发言人: 讨论内容: 讨论的主要观点、意见和建议。 各方达成的一致意见或仍存的分歧。 决议: 具体的决定或结论。 后续行动: 任务: 负责人: 截止日期: 议题3: (简要描述议题内容) 发言人: 讨论内容: 讨论的主要观点、意见和建议。 各方达成的一致意见或仍存的分歧。 决议: 具体的决定或结论。 后续行动: 任务: 负责人: 截止日期: 4. 其他事项 记录任何未包含在主要议题中的讨论内容或事项。 5. 总结及下次会议安排 主持人总结会议的主要内容和决议。 确定下次会议的时间、地点和主要议题。 备注 记录员的其他备注或补充信息。 通过这个模板,你可以确保会议纪要详细、结构清晰且包含所有重要信息,有助于后续跟踪和执行会议决策。
2024-06-03
我有一份PPT,我想对这个PPT进行图像设计等美观化处理,怎么来做?使用哪个工具好?
以下为您介绍一些可用于对 PPT 进行图像设计等美观化处理的工具及相关信息: 1. Gamma:这是一个在线 PPT 制作网站,允许用户通过输入文本和想法提示快速生成幻灯片。它支持嵌入多媒体格式,如 GIF 和视频,以增强演示文稿的吸引力。网址:https://gamma.app/ 2. 美图 AI PPT:由知名图像编辑软件“美图秀秀”的开发团队推出。用户通过输入简单的文本描述来生成专业的 PPT 设计,包含丰富的模板库和设计元素,可根据需求选择不同风格和主题的模板,适用于多种场合。网址:https://www.xdesign.com/ppt/ 3. Mindshow:一款 AI 驱动的 PPT 辅助工具,提供一系列智能设计功能,如自动布局、图像选择和文本优化等,还可能包括互动元素和动画效果。网址:https://www.mindshow.fun/ 4. 讯飞智文:由科大讯飞推出的 AI 辅助文档编辑工具,利用科大讯飞在语音识别和自然语言处理领域的技术优势,提供智能文本生成、语音输入、文档格式化等功能。网址:https://zhiwen.xfyun.cn/ 在对 PPT 进行排版时,工具的选择可根据个人顺手程度决定,对于打工人来说,PPT 是较为熟练的选择。关于尺寸问题,如果想要打印,4:3 的比例比较适合童书绘本的比例,出图时可按此比例,文字可直接排版到画面上;若出图为 16:9 横板,排版时 4:3 可把文字放在图片下面。若要发小红书或者小绿书,竖版更合适,比例选 3:4,出图也选竖版。制作 H5 时,出图选竖版,比例选 9:16。所有排版尺寸在 PPT 里都可以选。另外,PPT 里的删除背景功能对于基础抠图很有用。用 PPT 另存为图片时,直接选 jpg 或 png 格式会降低图片清晰度,可先另存为“增强型 Windows 源文件”格式,再用画图软件打开另存为 JPG 以得到高清图。
2024-11-12
可以调用不同大预言模型的整合工具推荐
以下是为您推荐的可以调用不同大语言模型的整合工具: 1. Poe:由 Quora 开发,有 APP 版本,支持跨端使用。集成了 Chat GPT、GPT4、Claude+、Claude、Dragonfly 等模型,同时支持用户自建 Chatbot。不同语言模型回复效果有差异,适合需要调用多种大语言模型的用户。访问地址: 。Dragonfly 擅长给出较短的回答,并擅长在输入中给出示例时遵循指示。Claude 更擅长创造性回复,配合 Poe 中的提问引导,非常适合在查阅资料时使用,有时能够给出超越直接使用 Chat GPT 时的体验(但和 Chat GPT 一样,Claude 也时常会给出一些错误回复,一些问题可以尝试在两个模型中都问一遍提升信息准确性)。此外支持分享用户和模型的对话内容,但 GPT4、Claude+产品需要付费订阅使用。 2. 国内的一些模型,如智谱和文心,在文生图方面有一定能力。 另外,大模型工具可根据自身条件准备,推荐顺序为:1. chatGPT 4.0 2. kimichat 3. 智谱清言 4 。
2024-11-12
有哪些工具直接可以调用国外的多个LLM
以下是一些关于能够调用国外多个 LLM 的相关信息: 开源项目作者 ailm 提出一种仅使用提示词工程和精巧的代码设计,让 LLM 获得稳定的 tool calling 能力,使用多个不具备该功能的 LLM 进行实验,成功率达 100%,工作基于 comfyui 开发,适合无代码基础的人员复现和修改。 在高级提示词工程领域,工具、连接器和技能的整合能显著增强 LLM 的能力。工具是指 LLM 可利用的外部功能或服务,扩展任务范围;连接器是 LLM 与外部工具或服务的接口,管理数据交换和通信;技能是 LLM 可执行的专门功能。 目前开源模型与专有产品存在差距但在缩小,如 Meta 的 LLaMa 模型引发一系列变体。当开源 LLM 达到一定准确度水平时,预计会有大量实验等。开发人员对 LLM 操作工具的研究尚不深入,一些工具如缓存(基于 Redis)、Weights & Biases、MLflow、PromptLayer、Helicone 等得到较广泛使用,还有新工具用于验证 LLM 输出或检测攻击。多数操作工具鼓励使用自身的 Python 客户端进行 LLM 调用。
2024-11-12
集成LLM的工具
以下是关于集成 LLM 的工具的相关内容: 一、“手臂和腿部”:赋予模型使用工具的能力 1. 从知识挖掘转向行动导向,增加模型使用工具的能力,有望在消费者和企业领域实现一系列用例。 对于消费者,LLMs 可能给出菜谱建议并订购食材,或推荐早午餐地点并预订餐桌。 在企业领域,创始人可接入 LLMs 使应用程序更易用,如在 Salesforce 等应用中,用户能用自然语言更新,模型自动更改,减少维护 CRM 所需时间。 2. LLM 虽对常见系统有复杂理解能力,但无法执行提取的信息。不过,公司在不断改善其使用工具的能力。 老牌公司如必应、谷歌和初创公司如 Perplexity、You.com 推出搜索 API。 AI21 Labs 推出 JurassicX,解决独立 LLMs 缺陷。 OpenAI 推出 ChatGPT 插件测试版,允许与多种工具交互,在 GPT3.5 和 GPT4 中引入函数调用,允许开发者将 GPT 能力与外部工具链接。 二、无需微调,仅用提示词工程就能让 LLM 获得 tool calling 的功能 1. 提示词工程主要由提示词注入和工具结果回传两部分代码组成。 2. 提示词注入用于将工具信息及使用工具的提示词添加到系统提示中,包含 TOOL_EAXMPLE、tools_instructions、REUTRN_FORMAT 三个部分。 TOOL_EAXMPLE 提示 LLM 如何理解和使用工具,编写时用无关紧要工具作示例避免混淆。 tools_instructions 是通用工具字典转换成 LLM 可读的工具列表,可动态调整。 REUTRN_FORMAT 定义调用 API 格式。 3. 工具结果回传阶段利用正则表达式抓取输出中的“tool”和“parameters”参数,对于 interpreter 工具使用另一种正则表达式提取 LLM 输出的代码,提高使用成功率。通过识别 LLM 返回的调用工具字典,提取对应值传入工具函数,将结果以 observation 角色返回给 LLM,对于不接受某些角色的 LLM 接口,可改为回传给 user 角色。通过以上提示词工程,可让无 tool calling 能力的 LLM 获得稳定的该能力。
2024-11-12
利用gpt-4模型的AI工具有哪些
以下是一些利用 GPT4 模型的 AI 工具: 1. Kickresume 的 AI 简历写作器:使用 GPT4 语言模型自动生成简历,能为简历摘要、工作经验和教育等专业部分编写内容,并保持一致语调。 2. Rezi:受到超过 200 万用户信任的领先 AI 简历构建平台,使用先进的 AI 技术自动化创建可雇佣简历的各个方面,包括写作、编辑、格式化和优化。 3. Huntr 的 AI 简历构建器:提供免费的简历模板,以及 AI 生成的总结/技能/成就生成器和 AI 驱动的简历工作匹配。 更多 AI 简历产品,还可以查看这里:https://www.waytoagi.com/category/79 。您可以根据自己的需要选择最适合的工具。 此外,在生成式人工智能领域,GPT4 有以下突破点: 1. 赋予模型使用工具的能力,如 OpenAI 推出的 ChatGPT 插件测试版,允许与多种工具交互。 2. 在计划和解决问题方面具有一定能力,能通过玩游戏或模拟环境快速学习和从经验中学习。 3. 在许多任务上达到人类水平的表现,对人类的理解有所提升。 4. 但也存在一些限制,如架构中的自回归特性导致缺乏规划能力等。
2024-11-12