直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

如何实现ai人物换装

回答

实现AI人物换装是一个复杂的项目,涉及到多个技术领域,包括计算机视觉、图像处理、机器学习以及深度学习等。以下是一个基本的步骤指南,用于实现AI人物换装:

1. 数据收集与预处理

  • 收集大量包含不同人物和衣物的图片作为训练数据。
  • 对图片进行预处理,如调整大小、裁剪、归一化等,以适应模型训练。

2. 特征提取与对象检测

  • 使用深度学习方法,如YOLO、Faster R-CNN等,进行人物和衣物的对象检测。
  • 提取衣物的关键特征,如颜色、款式、材质等。

3. 风格迁移与图像合成

  • 使用风格迁移技术,将新衣物的风格与人物图片中的原有衣物风格相匹配。
  • 通过神经网络学习源图像和目标图像之间的风格差异,并将其应用于目标图像。
  • 使用图像合成技术,将新衣物与人物图片中的相应部位合成。

4. 优化与调整

  • 对合成后的图像进行优化和调整,以改善细节和消除不自然的部分。
  • 可能需要对合成结果进行微调,以达到最佳效果。

5. 用户交互

  • 设计用户友好的界面,允许用户选择或上传衣物图片,并实时预览换装效果。
  • 提供调整功能,如大小、颜色、透明度等,以满足用户的个性化需求。

6. 遵守法律法规和伦理标准

  • 确保AI换装技术的应用符合当地的法律法规。
  • 关注伦理问题,如个人隐私保护,确保技术使用符合社会伦理标准。 实现AI人物换装需要跨学科的技术知识和团队合作。随着技术的不断进步,市场上也出现了许多平台和工具,可以帮助简化实现过程。
内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

其他人在问
AI能根据阶段性成果推断出最终结果吗
在最简单的情形下,我们基本想用人工智能做归纳推理,输入一系列测量结果,让其预测尚未完成的测量结果。此时,我们把人工智能视作黑匣子,只关心其能否给出正确答案,可能认为能设置它“不做任何假设”而“遵循数据”,但人工智能不可避免存在一些底层结构,使其最终要假设某种数据模型。这是机器学习中常见的情况,比如训练神经网络来预测、分类等,若“向内看”很难明白其运作原理。应用图像识别神经网络会有最终结果,网络中约一半层产生的“中间想法”可能存在类似“猫性的最终标志”,但这不在当前科学词典中,无法用于构建解释图像的“科学叙述”。 综上,人工智能在一定程度上能根据阶段性成果进行推断,但存在诸多限制和不确定性。
2024-11-13
AI能回答目前解决不了的问题吗
人工智能不能解决目前所有的问题。例如在科学领域,我们还没有解决所有想要解决的问题,很多时候我们似乎没有选择研究内容的权利,比如大自然会迫使我们去研究某些方面。这就不可避免地让我们面对计算不可约性。 有许多问题都遵循类似的模式,如在游戏图中找到获胜的游戏序列、通过可能性图的移动寻找谜题的解决方案、在给定公理的情况下找到定理的证明、在给定基本反应的情况下寻找化学合成途径,以及解决大量的 NP 问题,这些问题中存在许多“非确定性”的计算路径。 在实际情况中,相关的图通常非常大,所以挑战在于不追踪整个可能性图的情况下找出要采取的步骤。常见的方法包括尝试为不同的可能状态或结果分配分数,并只追求分数最高的路径。在自动定理证明中,也常见从初始命题“向下”和从最终定理“向上”工作,试图找到路径在中间的交汇点。还有一个重要的想法是,如果确定了从 X 到 Y 存在路径,就可以将 X → Y 作为新规则添加到规则集合中。 另外,查看自动编码器内部可以提取出它提出的简化表示。当数据在神经网络中流动时,会努力保留重现原始输入所需的信息。如果某一层的元素较少,那么该层的元素就对应于原始输入的某种简化表示。以经过大量网络图像训练的标准现代图像自动编码器为例,给它输入一张猫的图片,它能成功复制出类似原图的东西,中间会有像素少得多的简化表示,虽然我们不知道模型中元素的含义,但它成功捕捉到了图片的本质。 总之,计算的不可约性将阻止我们完全依靠人工智能解决所有问题,总会有更多有待发现和需要更多计算才能达到的东西。
2024-11-13
AI给我的回答一定是正确的吗
AI 给出的回答不一定总是正确的。以下是一些原因: 在基于知识库的问答场景中,有时 AI 可能无法根据正确的知识库内容进行回答,从而导致回答不准确,甚至出现报价错误、胡编乱造等情况。 写东西时,AI 很容易“产生幻觉”并生成看似合理但实际错误的内容,可能会连续且良好地撒谎,给出的每一件事或信息都可能不正确,需要进行检查。 在最简单的归纳推理场景中,将 AI 视为黑匣子输入测量结果让其预测时,虽然我们希望其不做假设只遵循数据,但不可避免地会存在一些底层结构使其最终假设某种数据模型,这可能影响回答的准确性。 在 AI 领域中,优化 AI 更准确回答问题的过程有一个专业术语叫 RAG(RetrievalAugmented Generation),它由检索器和生成器组成,检索器从外部知识中快速找到与问题相关的信息,生成器利用这些信息来制作精确和连贯的答案。但即使如此,也不能完全消除回答错误的情况。
2024-11-13
AI给我的回答来自于哪里
AI 的回答通常来自以下过程: 1. 知识库检索部分: 将输入的问题通过 Embedding 做向量化。 使用语言模型对问题进行优化,并添加接近的检索词。 进行知识库向量检索,抽取条件包含相似度 0.85,最终抽取 11 个内容块(chunk)。 2. 大模型对话部分: 将问题解析、知识库检索到的信息一起传递给大语言模型(LLM),最终得到 AI 的回答。 整个问答流程包括问题解析阶段、知识库检索阶段、信息整合阶段和大模型生成回答阶段。若要优化回答结果,可从这些环节入手。 此外,RAG(RetrievalAugmented Generation,检索增强生成)是一种结合信息检索和文本生成能力的技术,由检索器和生成器组成。检索器从外部知识中快速找到与问题相关的信息,生成器利用这些信息制作精确连贯的答案,适合处理需要广泛知识的任务,如问答系统。 在生成式 AI Studio 中,每次向模型发送请求时都会应用上下文。例如,可定义场景并告诉 AI 如何响应查询,还能通过调参数和设计提示来影响回答。同时,Google 提供了 API 和 SDK 帮助构建应用程序。对于大型语言模型,可通过调整来提高响应质量。提示是传递给模型的文本输入,及时的设计允许快速试验和定制,但制作提示可能存在措辞或词序影响结果等问题。
2024-11-13
AI的起源
AI(人工智能)的起源最早可以追溯到上世纪。 1943 年,心理学家麦卡洛克和数学家皮特斯提出了机器的神经元模型,为后续的神经网络奠定了基础。 1945 年,Alan Turing 考虑用计算机来模拟人脑,设计了 ACE 来模拟大脑工作。 1950 年,伟大的计算机先驱图灵最早提出了图灵测试,作为判别机器是否具备智能的标准。即在一个对外不可见的房间内放置一台可以与外界沟通的机器,如果外界交互的人无法区分房间里到底是真人还是机器,那么就说房间里的机器具备了智能,通过了图灵测试。 1956 年,在美国的达特茅斯学院,马文·明斯基和约翰·麦凯西在香农的支持下,共同发起召开了著名的达特茅斯会议,在这次会议上,“人工智能(Artificial Intelligence)”一词被正式提出,并作为一门学科被确立下来。 最初,查尔斯·巴贝奇发明了计算机,用于按照一套明确定义的程序(即算法)来对数字进行运算。现代计算机虽更先进,但仍遵循相同的受控计算理念。然而,对于像从照片判断人的年龄这类任务,我们无法明确解法,也难以编写明确程序让计算机完成,这类任务正是人工智能感兴趣的。
2024-11-13
适合ai展位的口号,风趣的,如“想你的风又吹到了XXX"
很抱歉,暂时没有适合 AI 展位的风趣口号相关内容,不过我可以为您现创几个,比如:“AI 的魅力风,又迷倒了众人”“AI 的智慧风,再次席卷而来”“AI 的神奇风,又吹进你心怀”
2024-11-13
如何使用stable diffusion 生成模特换装的工作流
Stable Diffusion 是一种强大的生成模型,常用于图像生成和修改任务。利用 Stable Diffusion 实现模特换装可以通过以下步骤和工作流程进行: 工作流程 1. 准备环境 确保你有合适的硬件配置,特别是具有高性能 GPU 的计算机。 安装必要的软件和依赖项,如 Python、CUDA、PyTorch 等。 2. 获取模型 下载并安装 Stable Diffusion 模型。 可以从 Hugging Face 的模型库中找到合适的预训练模型,也可以使用自己的数据进行微调。 3. 数据准备 模特图像:准备高质量的模特图像,确保背景简单以便后续处理。 服装图像:收集或创建各种服装的图像,最好是带有透明背景的 PNG 格式。 4. 图像预处理 使用图像编辑工具(如 Photoshop 或 GIMP)将模特图像和服装图像裁剪成合适的大小和比例。 如果需要,可以使用 OpenCV 或 PIL 进行自动化预处理。 5. 定义输入格式 将模特图像和服装图像输入 Stable Diffusion 模型的方式需要提前定义。 典型输入包括模特的基本特征(如位置、姿态)和服装的特征(如颜色、纹理)。 6. 生成换装图像 使用 Stable Diffusion 模型,输入模特图像和服装图像,生成换装后的模特图像。 可以调整生成参数(如扩散步数、采样方法)以获得最佳结果。 7. 后处理 对生成的图像进行后处理,如调整亮度、对比度,或者进一步修正细节。 使用图像编辑工具或自动化脚本完成后处理步骤。 8. 评估和优化 评估生成图像的质量,根据需要进行微调或更改模型参数。 可以使用人工评估或引入评价指标(如 FID、IS 分数)进行量化评估。 示例代码 以下是一个简化的 Python 示例代码,展示如何使用 Stable Diffusion 模型进行图像生成: ```python import torch from transformers import StableDiffusionPipeline 加载模型 model_id = "CompVis/stablediffusionv14" pipe = StableDiffusionPipeline.from_pretrained 准备输入 prompt = "A model wearing a red dress standing on a white background" 生成图像 image = pipe.images 保存图像 image.save ``` 工具和资源 1. Hugging Face: 提供预训练的 Stable Diffusion 模型和相关文档。 链接: 2. OpenCV 和 PIL: 用于图像预处理和后处理。 安装:`pip install opencvpython pillow` 3. 图像编辑工具: 如 Photoshop 或 GIMP,用于手动处理图像。 提示 硬件要求:高性能的 GPU 可以显著加快图像生成速度。 数据质量:高质量的输入图像和精细的预处理可以提高生成图像的效果。 参数调整:根据生成结果不断调整模型参数以获得最佳效果。 模型微调:如果预训练模型不能完全满足需求,可以考虑使用自己的数据集进行微调。 通过这些步骤和工具,您可以使用 Stable Diffusion 模型生成模特换装的图像,创建高质量的视觉效果。
2024-05-26
AI 换脸换装
AI 换脸换装是一种基于人工智能技术的应用,它可以将一个人的面部特征和外貌替换为另一个人的面部特征和外貌。以下是一篇关于 AI 换脸换装的文章: AI 换脸换装的方法和应用 一、整体流程介绍 数字人视频的整体制作流程,大致分为三步: 1. 创建视频内容:通过输入文稿内容,确定数字人播出的内容。 2. 生成数字人:通过工具,以及视频内容生产数字人形象及播放语音。 3. AI 换脸:通过 AI 工具,将数字人的脸,转换成你指定宣传的形象,以便以自己的品牌形式宣传。 二、AI 换脸的方法 打开 FaceFusion 软件,需要返回实例列表,点击自定义服务按钮,会打开一个新的浏览器窗口。这样,我们才能够通过 web 浏览器来访问 FaceFusion 提供的 UI 界面。在 FaceFusion 软件界面上(见上图),上传准备好的图片,视频后,在右侧可以看到预览效果。点击下方的开始按钮,执行换脸处理。执行完成后,在输出的位置,会出现处理后的视频,输出窗口的右上角有一个下载按钮,点击它你可以导出变量后的视频到本地。 三、AI 换装的方法 要实现 AI 换装,需要使用到一些图像处理和计算机视觉技术。具体来说,可以通过以下步骤实现: 1. 数据准备:首先需要准备一些包含不同服装的图片数据,这些图片可以从互联网上下载,也可以通过拍摄得到。 2. 模型训练:接下来需要使用深度学习模型对这些图片进行训练,以学习不同服装的特征和样式。可以使用卷积神经网络(CNN)或循环神经网络(RNN)等模型进行训练。 3. 图像处理:在得到训练好的模型后,需要对输入的图片进行处理,以便模型能够识别和理解图片中的服装信息。可以使用图像分割、特征提取等技术进行处理。 4. 模型预测:最后,使用训练好的模型对输入的图片进行预测,以得到换装后的图片。可以使用图像生成、图像融合等技术进行预测。 四、AI 换脸换装的应用 AI 换脸换装技术可以应用于多个领域,如影视制作、虚拟现实、游戏等。在影视制作中,可以使用 AI 换脸换装技术来替换演员的面部特征和外貌,以实现特效和角色转换。在虚拟现实和游戏中,可以使用 AI 换脸换装技术来实现角色自定义和换装功能,以提高用户体验和自由度。 五、总结 AI 换脸换装是一种基于人工智能技术的应用,它可以将一个人的面部特征和外貌替换为另一个人的面部特征和外貌。通过使用深度学习模型和图像处理技术,可以实现高质量的 AI 换脸换装效果。这项技术可以应用于多个领域,如影视制作、虚拟现实、游戏等,以提高用户体验和自由度。
2024-05-20
优质的ai换装工具
以下是一些优质的 AI 换装工具: 1. YouCam Makeup 这是一款移动应用程序,可以让你在照片中轻松更换衣服。只需上传照片,从应用程序的服装库中选择喜欢的服装即可。除了换装,还提供各种滤镜和编辑工具。 2. AI 抠图魔术师 这是一款强大的照片编辑软件,主要功能是可以为照片中的人物换装。运用先进的 AI 技术,能够精准识别照片中的人物,将选定的服装图案应用到人物身上。 3. FaceApp 这是一款非常受欢迎的照片编辑应用程序,可以让照片显得更年轻、更老,或者为照片更换服装。使用先进的 AI 技术,可以精准地修改照片,效果看起来非常自然。 4. PicsArt Photo Editor 这是一款知名的照片编辑软件,具有强大的"更换服装"功能。可以从各种服装风格中选择,无论是休闲、正式还是潮流,一键在照片上换上新衣服。 5. Canva AI Canva 推出的 AI 文本到图像生成工具,可以根据文字描述生成相应的图像。虽然不是专门的换装工具,但也可以尝试生成穿着特定服装的人物图像。 总的来说,这些 AI 换装工具都利用了先进的 AI 技术,能够精准地识别照片中的人物,并将各种服装图案应用到人物身上,达到逼真的换装效果。用户可以根据自己的需求选择合适的工具使用。
2024-04-26
mj如何保持人物一致性
在 MJ 中保持人物一致性可以按照以下步骤进行: 1. 确定画面元素:优先出一张图,保证风格、构图样式及人物角色。 2. 确定前后图的构图风格:出第二张图时,将第二张图提示词描述后加入第一张图的构图风格(iw 参数)。 iw 取值范围为,不填写默认 iw = 1,iw 值越大越接近垫的图像,反之更接近提示词。为确保人物一致性,建议取 iw 2。 3. 确定图片角色一致性: 在得到构图相同后,利用 MJ 重绘功能,对画面进行局部重绘。在重绘提示词里输入 cref cw 来保证角色一致性。cref 所垫图还是用的是刚才一张图,因为第一张图有两个内容我们都要拿:构图、人物。 若出现黑边,将黑边部分框住,重绘输入关键词“background”就能去除黑边,保证背景一致。 需要注意的是,由于 MJ 不可控因素,相较于保证人物位置,先保证构图会容易很多。因为 MJ 在重绘时,如果要将一个角色从镜头一个位置挪到另外一个指定位置,非常难处理。整个 MJ 出图基本也是靠降噪重绘,固定位置重绘局部内容会比改变整个画面结构容易很多。这就好比美术课画画,给一张参考图,一个是把背景风格都做好了,让在固定位置添加内容,另一个是将整个页面内容全部重绘,还要保证画面的主题内容要和参考图一样,相比之下后者的随机性会大非常多(抽卡次数也会很多)。 在生成人物图片时,先确定人物形象,如“a little girl wearing a yellow floral skirt+人物动作+风格词”,在 mj 中生成直到得到一张满意的人物图像。为了确保人物一致性,取 iw 2 。然后可以使用 PS 或者 Canva 将人物和场景合成到一张图,若色调不和谐,可将合成后的图作为垫图(iw 2),mj 重新生图。
2024-11-02
两个人物图合成一张图片,有什么好工具?
以下是一些可以将两个人物图合成一张图片的工具和方法: 1. Midjourney(MJ): 确定人物形象,通过相关提示词生成人物图像。 利用 PS 或者 Canva 将人物和场景合成到一张图,若色调不和谐,可将合成后的图作为垫图在 MJ 中重新生图。 2. Stable Diffusion(SD): 可使用 Roop 插件进行多人物脸部替换。例如生成一张包含两个古风人物的图片,通过图生图调整重绘幅度,并在 Roop 插件中载入相应人物照片形象进行脸部替换,最后使用 PS 扩图。 3. 其他方法: 利用 MJ 画图制作底图,使用 InsightFaceSwap 插件处理脸部,分割裁剪图片、处理后缝合,再用相关软件让图片动起来。 直接在网上寻找能够融合两张照片的软件或项目,若没有则进行纯 P 图,然后利用图生视频的项目完成。
2024-10-28
照片人物与虚拟人合成
以下是关于照片人物与虚拟人合成的相关内容: 使用 Midjourney(MJ)生成人物图片: 确定人物形象,如“a little girl wearing a yellow floral skirt + 人物动作 + 风格词”,在 MJ 中生成直到得到满意的人物图像。可使用垫图 URL 及相关提示词,如“In the forest,a little girl wearing a yellow floral skirt is playing happily,super high details,HDsmooth,by Jon Burgerman,s 400 ar 3:4 niji 5 style expressive iw 2”,其中“iw 取值范围,不填写默认 iw = 1,iw 值越大越接近垫的图像,反之更接近提示词。为了确保人物一致性,取 iw 2”。 合成人物和场景: 使用 PS 或者 Canva 将人物和场景合成到一张图,若色调不和谐,可将合成后的图作为垫图(iw 2),在 MJ 中重新生图,提示词如“垫图 url + Little girl wearing a yellow floral skirt,and her friend brown bear,taking shelter in the cave,rainstorm,super high details,HDsmooth,by Jon Burgerman,s 400 ar 3:4 niji 5 style expressive iw 2”。 在 StableDiffusion(SD)中绘制一致性多角度头像: 准备工作:准备一张人物的多角度图片,尺寸设置为 1328×800px,放大两倍后保证每张小图都是 512×512px。加上网格图,通过 lineart 来分割不同的块面。设置 controlnet,第一张图选择 openpose_face 得到人物的 15 个面部角度,第二张图选择 lineart_standard得到清晰的表格分区,为防止小图模式下人脸崩坏,可增加 ADetailer 的脸部修复插件。 制作数字人的工具: HeyGen:AI 驱动的平台,可创建逼真的数字人脸和角色,适用于游戏、电影和虚拟现实等应用。 Synthesia:AI 视频制作平台,允许创建虚拟角色并进行语音和口型同步,支持多种语言,可用于教育视频、营销内容和虚拟助手等场景。 DID:提供 AI 拟真人视频产品服务和开发,上传人像照片和输入要说的内容,平台提供的 AI 语音机器人将自动转换成语音,然后合成逼真的会开口说话的视频。 更多数字人工具请访问网站查看:https://www.waytoagi.com/category/42 。请注意,这些工具的具体功能和可用性可能会变化,使用时请遵守相关条款和政策,并注意版权和伦理责任。
2024-10-28
怎么用AI绘制一个我指定的动漫人物原型的各类图片,例如日漫《好想告诉你》中的黒沼爽子
要使用 AI 绘制指定的动漫人物原型,如日漫《好想告诉你》中的黑沼爽子,您可以按照以下步骤进行: 1. 选择合适的 AI 绘画工具:目前有许多在线的 AI 绘画平台和软件可供选择,例如 DALL·E2、StableDiffusion 等。 2. 明确描述特征:在输入描述时,尽可能详细地描述黑沼爽子的外貌特征,包括发型(如黑色的长直发)、眼睛(如大而明亮的眼睛)、服装(如校服的款式和颜色)、表情(如羞涩的微笑)等。 3. 参考相关图片:如果可能,找到黑沼爽子的官方图片或其他粉丝绘制的作品,作为参考提供给 AI 绘画工具,以帮助其更好地理解您的需求。 4. 不断调整和优化:根据生成的初步结果,对描述进行调整和优化,例如修改某些特征的描述、增加更多细节等,以获得更符合您期望的图片。 需要注意的是,AI 绘画的结果可能会受到多种因素的影响,不一定能完全符合您的预期,但通过不断尝试和优化,您有机会获得较为满意的作品。
2024-10-17
生成人物图像哪个AI最好
以下为一些生成人物图像较好的 AI 工具及相关信息: PhotoMaker:可以根据文字描述生成人物照片,能混合不同人物特征创造新形象,还能改变照片中人物的性别、年龄。网址:https://photomaker.github.io 。 在人物构图的视角选择方面,有以下几种常见视角: 正视角:拍摄对象正对着相机的姿态,使人像呈现出正面的视角。咒语关键词:Front view 。生成思路:正视角的年轻女孩。生成咒语:young girl,front view,ar 16:9 。 后视角:从被摄对象的背后拍摄的视角,以被摄对象的背部为主要构图元素。咒语关键词:Back view angle & Back angle 。生成思路:后视角的年轻女孩。生成咒语:young girl,back view angle,ar 16:9 。 侧视角:观察或拍摄物体或场景时从侧面的角度观察,可用于展示物体的形状和轮廓,或创造深度和距离的感觉。咒语关键词:Side view & Shoulder level view 。生成思路:侧视角的年轻女孩。生成咒语:young girl,Side view,ar 16:9 。 仰视角:观察或拍摄物体或场景时从底部的角度观察,通常会让物体看起来更为庞大和高大,具有一定的视觉冲击力和震撼效果。咒语关键词:Bottom view & Low angle view 。生成思路:仰视角的年轻女孩。生成咒语:young girl,low angle view,ar 16:9 。 俯视角。 此外,还有 Sam Altman 与 Bill Gates 关于 GPT 的未来讨论,以及 Portkey AI 网关这一连接多种 AI 模型的工具。
2024-10-12
如何在midjourney中只进行照片背景修改,而不修改人物姿态和表情
在 Midjourney 中只修改照片背景而不修改人物姿态和表情,您可以参考以下方法: 1. 得益于cref,midjourney 能够迅速达成角色一致性的目的而无需 Lora。其中,cref 代表 character reference(角色参考);cw 则代表 character weight(参考权重),默认为 100,会参考角色的人脸和服装特点。如果您只想关注人脸,请调低到 0。您不需要对角色原图使用/describe 来贴近目标生成角色的形象,因为cref 会帮您完成这件事情。 2. 风格复制和服装的替换,则应当用提示词(prompt)和sref,默认值 100,越高越接近参考图像的风格。 3. 如果遇到“形似而神不似”的问题,即 MJ 直出和原人物在眼睛、眉毛、鼻子等其他地方的大小、间距有一些细微的差距,您可以按照以下步骤操作: 使用/settings 确保您处于模式并且 Remix 设置为打开。 选择带有您想要更改的面部的图像。使用将其从网格中分离出来,然后选择。 由于您已经开启了 Remix,您将能够编辑提示。 从提示中删除cref 和cw。一旦删除了它们,修改提示以对面部进行更改。例如,您可以慷慨地选择面部的下半部分,并添加“清洁剃须”来除去胡须。您可以尝试使用小的负权重,例如 tattoos::0.5 来移除纹身。 注意:当您对更改满意时,请确保不要再次添加cref 到提示中!一旦添加回来,“面部交换”将再次发生,那些不需要的属性将重新出现。 4. 有时,Midjourney 在正确将角色放置在背景中时会遇到一些困难。如果结果不连贯(例如,您看到头部朝后或图像被奇怪地裁剪),请尝试将 stylize增加到 800 1000。您也可以尝试将cw 同时降低到低于 100 的值,视情况而定。
2024-10-10
我想搜索全面彻底的搜索某方面客观存在的事实信息,有什么工具可以实现
以下是一些可以用于全面彻底搜索某方面客观存在的事实信息的工具和相关信息: Coze 手搓的极简版 Perplexity:它旨在结合搜索引擎和 LLM 的优势,提供更优的信息检索体验。但 LLM 本身作为知识问答工具存在缺陷,如无法实时获取最新信息、有“幻觉”问题、无法给出准确引用来源等,而搜索引擎返回的信息呈现形式原始,需要进一步处理。 基于嵌入的搜索:OpenAI 提出,如果作为输入的一部分提供,模型可以利用外部信息源,例如通过嵌入实现高效的知识检索。文本嵌入是衡量文本字符串相关性的向量,相似或相关的字符串距离更近,利用快速向量搜索算法,可将文本语料库分割成块进行嵌入和存储,给定查询后进行向量搜索找到最相关的文本块。相关示例实现可在中找到。关于如何使用知识检索来最小化模型编造错误事实的可能性,可参阅策略“指示模型使用检索到的知识来回答查询”。
2024-11-13
我希望用即梦来生成一张图片,我想要实现的效果是:空中有悬浮的大理石加金子材质的悬浮台。请协助我生成提示词
以下是为您生成的使用即梦生成空中悬浮的大理石加金子材质悬浮台图片的提示词相关步骤: 1. 工具选择:即梦、可灵、Runway、Suno、剪映。 即梦:是最简单易用的图片重绘工具,云端访问且无需付费。 可灵:具有极强的运动笔刷控制力。 Runway:能很好地实现泼墨和画面上色。 Suno:可尝试新的使用视频制作歌曲的效果。 2. 即梦使用步骤: 使用即梦的图片生成功能,上传同一张图片 2 次,一次选择边缘轮廓,一次选择人物姿势(或者单独使用边缘轮廓也可以)。 在此场景下,不要添加景深,否则会出现“文物感”效果,而非所需的写实风。 可稍微提升精细度,由于原图是竖版,选择竖版切割,所得图片更适合用作首尾帧。 3. Runway 提示词:Static shot:colorful paint splashed onto canvas,transforming into a vibrant,lifelike display 4. 可灵提示词:一个帅气地老头从鹿背上跳下来,释放法术,漂浮在空中,非常自信,非常帅气。鹿向左走出了画面(鹿没有走出画面,但漂浮效果不错,决定不再抽卡,保留这个版本)。 希望这些信息对您有所帮助。
2024-11-10
请问有没有AI工具可以实现把一个物体生成多个角度
目前有一些 AI 工具可以实现把一个物体生成多个角度。例如,在图像生成方面,像 OpenAI 等机构的相关模型能够生成同一场景的多个角度,包括具有物理上准确的光线,甚至在某些情况下还能生成物理上准确的流体和雨水。 在生成 AI 人物形象时,也可以通过选择不同的拍摄角度来实现。常用的角度包括高角度、低角度和平视角度。 高角度:位于被拍摄对象的上方,适合拍摄俯视角度的场景,可以突出被拍摄对象的大小和高度。 低角度:位于被拍摄对象的下方,适合拍摄仰视角度的场景,可以突出被拍摄对象的高度和威严感。 平视角度:与被拍摄对象在同一高度,适合拍摄平面场景,可以突出被拍摄对象的水平线和平衡感。 此外,人物构图的视角还可以按照相机相对于被拍摄对象的位置,分为正面、背面和侧面等不同方向。 正视角:拍摄对象正对着相机的姿态,使人像呈现出正面的视角。 后视角:从被摄对象的背后拍摄的视角,能营造出神秘或者引人遐想的氛围。
2024-11-05
coze是用python实现的码
Coze 可以使用 Python 实现。在 Coze 中,搭建工作流框架时,左侧的“选择节点”模块中有支持编写简单 Python 脚本的“代码”节点,可对数据进行处理。例如,在“大圣:我用 Coze 搓了一个乞丐版的秘塔搜索”中,代码节点的逻辑是将输入的内容处理成两个字段,即 contexts 字段(所有 snippet+title+link 的平铺,用来丢给大模型进行处理)和 references 字段(所有的引用)。代码块对于非程序员来说运用有一定难度,但在 AI 时代,学习一些基础语法就足够,具体逻辑可让 AI 帮忙编写。
2024-11-04
用现有的搭建一个ai网站 实现绘画 聊天 会员 积分 等功能
以下是搭建一个具备绘画、聊天、会员、积分等功能的 AI 网站的步骤: 1. 搭建 OneAPI(https://github.com/songquanpeng/oneapi),用于汇聚整合多种大模型接口,方便后续更换使用各种大模型,同时会告知如何白嫖大模型接口。 2. 搭建 FastGpt(https://fastgpt.in/),这是一个知识库问答系统,将知识文件放入,并接入上面的大模型作为分析知识库的大脑,最后回答问题。若不想接入微信,搭建到此即可,其有问答界面。 3. 搭建 chatgptonwechat(https://github.com/zhayujie/chatgptonwechat)接入微信,并配置 FastGpt 将知识库问答系统接入微信。建议先用小号以防封禁风险。若想拓展功能,可参考 Yaki.eth 同学的教程(https://waytoagi.feishu.cn/wiki/UADkwZ9B0iAWdTkFJIjcN7EgnAh),其中的 cow 插件能实现文件总结、MJ 绘画等能力。 在积分和会员方面,以下是一些相关的活动形式和积分设置示例: 吵爷帮助技能持有者在社区实现虚拟 IPO 审核服务。 Larkspur:扣子 bot 文案生图体验| 10 积分,扣子虚拟女友体验| 10 积分,帮你把 Siri 接入 Llama 3 70B |10 积分。 勿忘心安 Dify 本地部署不成功不要积分 10 积分一次。 Penny 给你解梦,并还原场景 10 积分。 Rachel 倩敏 宠物照片变毛毡头像 5 积分一个,before after 合并呈现 10 积分一个。 梦飞 给全国所有的项目做聚合平台,用户体验一次抽成 3 5 积分。 David 为社区用户做积分银行,可超前消费,存 10 个积分,利息 1 个积分,贷 10 个积分,利息 2 个积分,并为项目 IPO 提供融资服务。 波大波吗 5 分钟,让你的微信变成 chatgpt + MJ + SD +....+ 新闻专家 20 积分一次。 琥珀川 教你用 ai 技能接单、创业 10 积分。 大满满 简约的 mj 转模型|随喜积分。 Matteo 工作日晚 8 11 点,提供微信 1 对 1 视频聊天 30min,互通获取 AI 信息的渠道 + 漫聊 AI 相关使用体验思考 1 积分。 桂大阳 风景壁纸一张 10 积分、手机壳图案 + 手机壳效果图 10 积分。 镜 教你画小鹿动画表情包一个 10 积分,5 个 60 积分,8 个 100 积分。教你如何手绘蒙娜丽莎 10 积分一次,一次 10 分钟。教你做小鹿角色 2 维转 3D 一个 20 积分。 易求无方 与你的虚拟人进行一次心灵交流 20 积分,与你进行一次心灵交流 10 积分。 游小言 虚拟 IP 打造,给视频换脸,一次 10 积分,支持以技能易技能。
2024-11-04
如何借鉴“决战拜年之巅”:这是一款基于 GLM 大模型开发的微信小程序游戏,玩家在 10 个 AI 角色组成的家人群里,面对“七大姑八大姨”的连环拷问,自由对话打出属于自己的结局。实现一个工作场合的游戏
以下是借鉴“决战拜年之巅”实现一个工作场合游戏的相关要点: 1. 开发背景:“决战拜年之巅”是参加 Globalgamejam 游戏比赛时,在 48 小时内开发的,主题源于“make me laugh”,产品负责人谐音想到江浙沪孝子排行榜的“孝”,结合春节想到做类似拜年的东西。 2. 火爆情况:在参赛群发布半成品后,在 QQ、微信迅速火爆,两天内有 200 万用户,最高峰同时在线 6 万人,服务器一度支持不了,凌晨才做好调整,后续有厂商赞助服务器,上线约一周。 3. 游戏特点:基于 GLM 大模型开发,又称过年模拟器,玩家在 10 个 AI 角色组成的家人群里,面对“七大姑八大姨”的连环拷问自由对话打出结局。 4. 借鉴要点: 明确创新主题和玩法,结合特定场景和需求。 注重用户体验,及时应对服务器等技术支持问题。 利用 AI 技术实现角色互动和自由对话。 需要注意的是,“决战拜年之巅”被认为可能是一个 chatbot 而非严格意义上的游戏。在设计工作场合的游戏时,要明确以下三个点:(具体要点未在提供的内容中明确)
2024-11-02