Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

请预测,随着国内AI水平的发展,2030年,可能会代替多少打工人的工作?

Answer

根据现有资料,关于 2030 年国内 AI 发展可能替代打工人工作的数量,不同的研究和观点有所不同。

咨询公司麦肯锡发布最新预测:截止到 2030 年时,50%工作将被 AI 取代。吴恩达认为 2023 年 AI 将会替代 4 亿 - 8 亿工作岗位,同时 AI 会增加 5.55 - 8.90 亿新岗位。总体而言,越具体、重复性高的工作越容易被取代,而灵活、非常规、创造性的岗位更难被取代。

需要注意的是,对于 AI 对就业的影响,还需要综合更多因素进行辩证看待。

Content generated by AI large model, please carefully verify (powered by aily)

References

MIT给孩子开了免费AI课,全攻略都在这儿了

大家好,我是卷卷兔。咨询公司[麦肯锡发布最新预测:截止到2030年时,50%工作将被AI取代](https://mp.weixin.qq.com/s?__biz=Mzg4ODY1NTUwOQ==&mid=2247563686&idx=1&sn=6d6c3ac1e188f7988b1d2f856d349fef&scene=21#wechat_redirect)。对于这代孩子来说,与AI协作的能力,将成为刚需。到底去哪儿才能找到适合孩子的AI课程呢?全球人工智能专业排名第一、顶级名校麻省理工MIT出手了——上线了一门给8-18岁孩子的AI课程Day of AI,席卷全球,来自110多个国家的50万名学生都在用。更令人惊喜的是,完全免费!早在几年前,MIT官网就有这样一句话:「人工智能所能做到的每一件事,都潜藏着滥用和不平等蔓延的可能性」。MIT作为世界级学府肩负着社会责任,不计成本用最好的资源为绝大多数没法接受AI教育的孩子们打造了一个网站,用技术去实现教育平等。有意思的是,国内不少机构已经将其提供免费的课程下载,开卖录播课收家长费用了……今天,我们细细研究了这个网站并出具了一份详细攻略,收藏起来,让孩子在AI时代的狂风肆虐中长出更丰满的羽翼。■唯一一个门槛是,这个网站的AI课程资源面向的是家长、老师群体,大孩子完全可以自学,小孩子可能需要家长辅助(这个网站的pdf资源我也都下载好了,文末领取)。MIT的免费AI工具Day of AI课程,其实是包含在MIT一个叫做RAISE的项目中。

学习笔记:AI for everyone吴恩达

发展中国家的经济发展的必要步骤,会因为AI而直接被取代,导致发展中国家无法正常发展(待辩证看待)吴恩达建议,发展中国家在垂直领域完成优势积累。[heading5]人工智能与就业[content]2023年AI将会替代4亿-8亿工作岗位,同时AI会增加5.55-8.90亿新岗位。如何计算被替代的岗位,实际是查看岗位的任务构成,看其中可以自动化的任务占比。重复性高的很容易被替代,而灵活,非常规,创造性的岗位更难被取代。如何应对人工智能的影响?[heading5]结论[content]大家一起为AI世界努力吧,冲!

2024年度AI十大趋势报告:AI如何影响文化产业

总体而言,越接近于综合性思考、策划层面,对于AI来讲就越难,而越具体的工作越容易被取代。——陈宇,《满江红》编剧4、市场前景广阔,5年内有望达千亿级市场我们在《AI视频生成研究报告》中,对影视行业市场规模做了粗略估算。△图:2023年海内外影视市场规模估计,《AI视频生成研究报告》如图所示,国内影视市场规模在2023年约可达3835亿元,若假设2027年AI影视市场可以获得上述国内总市场份额的10%,则国内AI影视总市场规模预计将达约380亿元以上;若假设2030年可以获得25%以上市场份额,则国内AI影视总市场规模将达千亿级别。三、AI+营销:AI让只为⼀人打造广告成为可能自20世纪80年代改革开放以来,中国营销行业经历了从传统到数字化再到智能化的变革。最初,营销依赖电视、广播和报纸等传统媒体。随着互联网和社交媒体的兴起,以SEO、内容营销、社交媒体营销、视频营销和直播营销等形式为主的数字营销逐渐成为新趋势。而到了今天,AI不仅提高营销内容生成的效率和质量,也使得营销更加精准和自动化,如通过机器学习分析消费者行为,预测市场趋势,以及自动化执行营销任务等。目前,营销行业或成生成式AI最早实现商业化落地的行业之⼀。未来,AI技术还将持续推动营销行业的深刻变革。△图:营销行业或成最快实现生成式AI落地的领域,《中国AIGC广告营销产业全景报告》1、AI营销行业呈现全新特点•回归营销本质:广告主营销需求和用户的需求能进行直接匹配,从「人与机器」单向交互,回归到了「人与人的交流」

Others are asking
2030年前全国中小学普及人工智能是哪发布 的
目前没有明确的权威信息表明“2030 年前全国中小学普及人工智能”这一具体说法的发布来源。但以下信息可能对您有所帮助: 美国第 116 届国会第二次会议提到,国家科学基金会主任应授予 K12 等教育阶段的教育项目资助,以支持人工智能系统相关的多样化劳动力培养、提高对其伦理、社会、安全等影响的认识,并促进对人工智能原理和方法的广泛理解。 北京市大中小学推广了 AI 学伴和 AI 导学应用。
2025-01-24
ai编程
以下是关于 AI 编程的相关信息: Trae 国内版 是国内首个 AI IDE,自带豆包 1.5pro 和满血版 DeepSeek R1、V3 模型。 具有以下特性: 对国内用户友好,有中国官网、中文界面、国内模型,稳定且快速。 使用完全免费,无需折腾会员,下载后可直接使用。 内置预览插件,写完代码一键运行,所见即所得。 网址:Trae.com.cn 或点击文末【阅读原文】直接访问。 借助 AI 学习编程的关键 打通学习与反馈循环,包括验证环境、建立信心、理解基本概念,实现“理解→实践→问题解决→加深理解”的循环。 建议使用流行语言和框架(如 React、Next.js、TailwindCSS),先运行再优化,小步迭代,一次解决一个小功能,借助 AI 生成代码后请求注释或解释以帮助理解代码,遇到问题时采取复现、精确描述、回滚的步骤。 用好 AI 编程工具(如 Cursor)的关键技能 准确描述需求,清晰表达目标和问题。 具备架构能力,将复杂系统拆解为松耦合的模块,便于 AI 高效处理。 拥有专业编程能力,能够判断 AI 生成代码的优劣。 具备调试能力,快速定位问题并解决,可独立或借助 AI 完成调试。
2025-03-26
AI免费学习网站
以下为您推荐一些 AI 免费学习网站: 1. 麻省理工学院(MIT)推出的 Day of AI 课程:这门课程包含在 MIT 的 RAISE 项目中,面向 8 18 岁孩子,席卷全球,来自 110 多个国家的 50 万名学生都在使用,且完全免费。不过其课程资源主要面向家长、老师群体,大孩子可自学,小孩子可能需要家长辅助。 网站:RAISE 项目官网 相关免费 AI 工具: RAISE Playground:一个交互式编程平台,任何人都可以学习模型、机器人和 AI 引擎完成有趣的 AI 项目。网址:https://playground.raise.mit.edu/ App Inventor:让孩子可以制作属于自己的手机 APP。网址:https://appinventor.mit.edu/ Dancing with AI:针对中学生的交互式 AI 机器人项目,只要会用 Scratch 编程就能训练机器人。网址:https://dancingwithai.media.mit.edu/curriculum Picaboo:让孩子像李飞飞一样训练自己的图像分类模型。网址:https://appinventor.mit.edu/explore/resources/ai/picaboo 2. 对于新手学习 AI,您可以: 了解 AI 基本概念:建议阅读「」部分,熟悉 AI 的术语和基础概念。浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 开始 AI 学习之旅:在「」中,您将找到一系列为初学者设计的课程。通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。特别推荐李宏毅老师的课程。 选择感兴趣的模块深入学习:AI 领域广泛(比如图像、音乐、视频等),您可以根据自己的兴趣选择特定的模块进行深入学习。建议掌握提示词的技巧,它上手容易且很有用。 实践和尝试:理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 体验 AI 产品:与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。
2025-03-26
ai大模型和工具组合使用技巧
以下是关于 AI 大模型和工具组合使用的技巧: 1. 在 Obsidian 中的使用: 简单方法:通过命令面板打开创建的页面(默认快捷键 Ctrl+P),在弹出的搜索框中输入插件名称(如 custom frames),选择 OpenKimi 并打开设置好的窗口。 进阶配置:包括笔记仓库嵌入大模型(Copilot)、笔记内容作为 RAG 嵌入大模型(Smart Conections)、笔记内使用大模型编写内容。 2. 利用大模型与工具的典型例子:如使用 Kimi Chat 查询问题时,它会在互联网上检索相关内容并总结分析给出结论,同时还有很多不同领域类型的工具为大模型在获取、处理、呈现信息上做补充。 3. Agentic Workflow 方面: Agent 通过自行规划任务执行的工作流路径,面向简单或线性流程的运行。 多 Agent 协作:吴恩达通过开源项目 ChatDev 举例,让大语言模型扮演不同角色相互协作开发应用或复杂程序。 AI Agent 基本框架:OpenAI 的研究主管 Lilian Weng 提出“Agent=LLM+规划+记忆+工具使用”的基础架构,其中大模型 LLM 扮演“大脑”,规划包括子目标分解、反思与改进。 4. 从提示词优化到底层能力提升: 任务拆解:将复杂任务的提示词拆解成若干步骤的智能体,每个智能体负责特定子任务。 工作流构建:组合多个提示词或 AI 工具搭建高频重复工作的工作流。 创作场景的灵活应用:在创作过程中使用简单提示词和连续追问调整大模型回答。 深度思考辅助:将大模型用于辅助深度思考,从居高临下的指挥变为伙伴式的协作和相互学习,关注利用大模型训练和增强认知能力。
2025-03-26
目前中国市面上什么好用的AI工具
以下是中国市面上一些好用的 AI 工具: 内容仿写 AI 工具: 秘塔写作猫:https://xiezuocat.com/ 。写作猫是 AI 写作伴侣,能推敲用语、斟酌文法、改写文风,还能实时同步翻译。支持全文改写,一键修改,实时纠错并给出修改建议,智能分析文章属性并打分。 笔灵 AI 写作:https://ibiling.cn/ 。是得力的智能写作助手,支持多种文体写作,能一键改写/续写/扩写,智能锤炼打磨文字。 腾讯 Effidit 写作:https://effidit.qq.com/ 。智能创作助手,探索提升写作者效率和创作体验。 更多 AI 写作类工具可查看:https://www.waytoagi.com/sites/category/2 。 图生图产品: Artguru AI Art Generator:在线平台,生成逼真图像,给设计师提供灵感。 Retrato:将图片转换为非凡肖像,有 500 多种风格选择。 Stable Diffusion Reimagine:通过稳定扩散算法生成精细、具细节的全新视觉作品。 Barbie Selfie Generator:将上传照片转换为芭比风格。 图像类产品: 可灵:由快手团队开发,用于生成高质量图像和视频,图像质量高,但价格相对较高,有不同收费档次。 通义万相:在中文理解和处理方面出色,可选择多种艺术和图像风格,操作界面简洁直观,用户友好度高,目前免费,每天签到获取灵感值即可,但存在一些局限性,如某些类型图像无法生成,处理非中文或国际化内容可能不够出色,处理多元文化内容可能存在偏差。
2025-03-26
让ai完美总结课堂文本的提示词
以下是一些关于让 AI 完美总结课堂文本的提示词相关知识: 单人发言版:基于李继刚老师的“通知消息整理助手”修改了一份“文字排版大师”的 Prompt,重点 Prompt 语句已标出。 多人发言版:需要编写一套提示词让 AI 执行总结文字内容的工作。将提示词和文字原文发送给 GPT,等待其输出完毕后,复制粘贴到文本编辑器中并整理,删掉无关内容,使用替换法替换掉双星号。 提示词设计思路:按照方案推理环节得到的「最终样式.html」,把它作为样例和提示词同时发送给 Claude,让 AI 根据提示词中控制样式输出的形式自行总结结果。经过多次调试,并根据测试 bug 微调提示词,直至稳定运行。对于刚入门的朋友,首推 LangGPT 结构化提示词;对于想要进阶的用户,可以尝试 Lisp 伪代码格式。 面向大模型 API:对于大模型 API,需要利用插件预先获取的网页内容变量、提示词和 API 请求参数,拼搭出完整的 API 提示请求,精确引导 API 返回想要的生成结果。设定系统提示词定义基础任务,设定用户提示词提供具体任务数据并要求按 JSON 格式返回生成结果,根据经验和调试情况设定其他关键参数。缺少参数设定经验时,可先询问 AI 相关设定。
2025-03-26
我一个如何向ai提问
向 AI 提问可以采用以下方法: 1. 给 AI 设定一个角色:只需加上“你是一个XXXX角色”,这句话蕴含了角色应了解的背景和输出要求。因为不同角色背景不同,AI 明确角色后能更好地应对问题。 2. 举例子:很多时候,通过举实际例子能更有效地说明要求,使 AI 准确了解您的需求。 3. 连续提问:现在的 AI 能处理多轮对话,对于一个问题可连续提问,根据回复不断细化要求。 4. 当不知道如何提问时,可以直接问 AI 如何提问,然后用它产生的问题再问它。 在软件开发面试中,可观察候选人: 1. 如何向 AI 提问。 2. 如何判断 AI 代码的正确性。 3. 如何调整 AI 生成的代码。 市场营销面试中,让候选人用 AI 生成营销文案,并问“为什么用这个 Prompt”,观察其是否能调整提示词、判断 AI 生成内容的质量。 产品管理面试中,让候选人用 AI 解析用户反馈,提炼产品改进建议,考察其是否能验证 AI 结论的准确性,并提出优化方案。 面试时,可以问以下 AI 相关问题快速判断候选人是否真正懂 AI: 1. “你遇到过 AI 给出明显错误答案的情况吗?你是怎么处理的?” 2. “最近有没有新出的 AI 工具或功能是你学习并实际应用的?能举个例子吗?” 3. “如果 AI 生成的内容和你的预期不符,你会怎么优化它?” 4. “你觉得 AI 目前有哪些无法解决的业务难题?遇到这些问题你会怎么做?” 有效评估候选人的 AI 能力,需要综合考虑其在上述方面的表现。
2025-03-26
MJ和runaway用什么软件代替比较好
以下是一些可以替代 MJ(Midjourney)和 Runway 的软件: Luma 发布的 DIT 视频生成模型 Dream Machine 图生视频表现惊艳,具有电影级效果。 出图工具方面,还有 SD(Stable Diffusion)和悠船。MJ 稳定性好、协作性强且有成熟经验参考,但并非所有人都拥有;SD 有独特能力但需本地部署且上手门槛高;悠船对中文支持好、交互友好简单易上手,但管控严格,有很多敏感词不能使用。 如果您想了解更多关于这些软件的详细信息或有其他特定需求,请进一步向我提问。
2025-03-24
去除外网需要翻墙的AI,国内有什么可以代替的AI
以下是一些国内可替代外网需要翻墙的 AI 产品: 1. Kimi 智能助手: 是 ChatGPT 的国产平替,实际上手体验好,适合新手入门学习和体验 AI。 不用科学上网、不用付费、支持实时联网。 是国内最早支持 20 万字无损上下文的 AI,对长文理解做得较好。 能一次搜索几十个数据来源,无广告,能定向指定搜索源(如小红书、学术搜索)。 PC 端: 移动端(Android/ios): 2. 302.ai:如果不想折腾,尤其推荐国内用户使用。 3. XiaoHu.AI: 适合编程小白,对新手友好。 深度理解中国开发场景和技术生态。 完全免费,无需翻墙,流畅稳定。 具备完整 IDE 功能(代码编写、项目管理、插件管理、源代码管理等)。 网址:
2025-03-24
有没有能代替人工的ai
以下是关于能否有替代人工的 AI 的相关信息: 目前 AI 仍处于“任务渗透”阶段,而非“职业颠覆”。AI 最常用于编程(37%)和写作(10%),对体力劳动和专业职业影响较小。中等收入、高学历职业 AI 采用率最高,低收入和极高收入较低。AI 增强人类工作比例(57%)大于完全自动化(43%),短期内 AI 主要是辅助工具,而非取代人工。未来可能从“人机共创”模式向“任务外包”模式演进。 Inflection AI 的联合创始人 Mustafa Suleyman 提出了现代版的图灵测试,要求 AI 具备采取行动和取得成就的能力,以及对世界产生有意义的影响,如仅用十万美元投资,在几个月内通过零售网络平台赚取一百万美元,这需要 AI 完成一系列复杂任务,包括制定策略、撰写文案、研究设计产品、与制造商和物流合作、谈判合同、创立及管理市场营销活动等,同时面临分层规划和可靠记忆等技术挑战。 3 月 4 日的 AI 资讯中,在多个领域有新进展,如在 3D 方面,Meshcapade 可从视频/图像中捕捉面部表情并具有逼真的 3D 发丝,InsTaG 能通过几秒钟视频学习快速形成逼真的 3D 说话头像效果,还有新型 3D 场景记忆框架 3DMem;在 AI 绘图方面,智谱开源了可在图像中生成中文字符的 AI 绘图 CogView4,海螺推出了 Image01 多功能文本转图像模型;在 AI 视频方面,Runway 内测能力可根据参考图像进行 Video to Video 视频风格化,Vidu 的 API 开放平台全面开放;在 AI 模型方面,Google Colab 推出 Data Science Agent,微软为医疗行业提供首个统一语音 AI 助手 Dragon Copilot,Opera 宣布推出网页浏览器的 AI 代理。
2025-03-06
怎样代替客服
以下是关于代替客服的相关内容: 目前已成熟的方式是采用 RAG+知识问答+语音条,主要场景是替代掉传统客服或者对内做培训的知识库。可以开发点击鼠标等动作的 RPA,搭配 RAG 的系统,方便现场 demo 演示。 实现难点包括 GPT4 等很多测试并不具备 planning 的能力,只能 plan 模型学过的知识库里的东西。面对更深层次的用户需求,需要一个产品经理将问题一层层拆开,未来很长时间是人与 GPT 同时存在的状态。 AIGC 在客户关系管理(CRM)领域有着广阔的应用前景,在客户服务方面,基于 AIGC 的对话模型,可以开发智能客服系统,通过自然语言交互的方式解答客户的咨询、投诉等,缓解人工客服的压力。 对于中小企业,利用人工智能(AI)技术,尤其是 AI 聊天机器人来自动化处理客户服务中的常见咨询,不仅可以提升客户服务的效率和质量,还可以减轻人工客服人员的工作负担。具体做法包括部署 AI 聊天机器人处理常见的客户咨询,根据企业需求和预算选择合适的解决方案并定制回答库,将其集成到多种客户服务渠道;通过机器人提供 24/7 客户支持,提升响应速度和服务质量,定期监控其性能并根据反馈优化,随着 AI 技术发展定期更新算法和知识库。
2025-02-19
AI可以代替人工数控编程吗?
AI 目前不能完全代替人工数控编程。虽然 AI 编程技术在不断发展,辅助编程效率也有所提高,但在复杂和商业化的应用中仍存在困难。 初级程序员可能会受到一定冲击,但中高级岗位仍有需求。软件开发需要人工主导复杂流程,AI 更像是“助手”而非“接管者”。代码编写只是开发中的一环,程序员的工作还包括需求评估沟通、架构设计、调试部署等多个模块。而且,大语言模型面对复杂项目可能面临改好一个 bug,产生一个新 bug 的情况。 例如,Cursor 是一款不错的编程工具,集代码编写、报错调试、运行于一体,能让小白无压力入门代码,但它比较适合简单、原型类的项目,在复杂和商业化应用时会面临挑战。 总之,在目前,AI 不能完全替代人工数控编程,未来可能会是一种人工和智能混合的工作模式。
2025-02-14
我想要能代替我直播的数字人工具
以下是一些能代替您直播的数字人工具相关信息: 数字人类型和应用场景: 1. 二维/三维虚拟人:用于游戏、IP 品牌(柳夜熙)、内容创作等。 2. 真人形象数字人:用于直播卖货、营销/投流广告视频录制(Heygen)、语言学习(CallAnnie)等。 数字人的价值: 1. 代替人说话,提升表达效率和营销效率,例如真人做不到 24 小时直播,但数字人可以。 2. 创造真实世界无法完成的对话或交流。 数字人面临的问题: 1. 平台限制:目前数字人水平参差不齐,平台担心直播观感,有一定打压限制。比如抖音出台一些标准,而微信视频号容忍度更低,人工检查封号。 2. 技术限制:形象只是皮囊,智能水平和未来想象空间,依赖大模型技术提升。 3. 需求限制:直播带货算个落地场景,但不刚。“懂得都懂”的刚需场景,国内搞不了。目前更多是体验新鲜感。 4. 伦理/法律限制:声音、影像版权等,比如换脸、数字永生等等。 数字人直播盈利方式: 1. 直接卖数字人工具软件。分实时驱动和非实时驱动两类,实时驱动在直播时能改音频话术,真人接管。市面价格在一年 4 6 万往上(标准零售价)。非实时一个月 600 元,效果很差,类似放视频的伪直播,市场价格混乱,靠发展代理割韭菜。 2. 提供数字人运营服务,按直播间成交额抽佣。 AI 直播卖货适用品类和场景: 1. 适用于不需要强展示的商品,如品牌食品饮料。如果服装就搞不了,过品快,衣服建模成本高。 2. 适用于虚拟商品,如门票、优惠券等。 3. 不适用于促销场景,这涉及主播话术、套路,调动直播间氛围能力等。 4. 电商直播分为达播跟店播,数字人直播跑下来效果最好的是店播,数据基本能保持跟真人一样(朋友公司数据)。 AI 直播的壁垒和未来市场格局: 1. 时间拉长,技术上没壁垒。但目前看仍有技术门槛,单纯靠开源算法拼的东西,实时性、可用性不高。比如更真实的对口型,更低的响应延迟等。 2. 不会一家独大,可能 4 5 家一线效果,大多二三线效果公司。因为它只是工具,迁移成本低。 3. 真正把客户服务好,能规模化扩张的公司更有价值。疯狂扩代理割韭菜,不考虑客户效果的公司,售后问题很麻烦。 4. 有资源、有业务的大平台下场,可能会带来降维打击,例如剪映马上要做,如果不仅提供数字人,还提供货品供应链、数据复盘分析等等,全环节打通会绑定商家,很难打。 虚拟主播的驱动方式: 目前,虚拟数字人从技术驱动方式上可以分为两类,一种是“中之人”驱动,另一种是由 AI 驱动。 “中之人”通过动作捕捉和面部捕捉技术,实现虚拟人与现实的交互。动作捕捉技术可以提供一套全身动捕硬件设备,售价约为 29000 元,另需缴纳 800 元的软件年度服务费。如果只需要捕捉面部表情,价格则约为 6000 元左右。总的来说,“中之人”是虚拟人物的“皮囊”,而“中之人”才是其真正的灵魂。 AI 驱动是通过 AI 技术实现虚拟人的创建、驱动和内容生成的综合技术,使其具备感知、表达等交互能力。AI 驱动的虚拟人能够智能地读取并解析外部输入信息,并根据解析结果做出决策,然后驱动人物模型生成相应的语音和动作,从而与用户进行互动。这种“一站式”技术让虚拟数字人具备更加自然、智能、人性化的交互能力。
2025-01-31
剧本分析(NLP):AI 读取剧本,分析情节、角色发展,甚至预测观众反应。
以下是关于剧本分析(NLP)中 AI 读取剧本并进行相关处理的一些信息: 人物剧本与角色状态: 对人物如李洛云进行“剧本推演”,每天生成 20 40 个时间段剧本,依据人物背景和增长记忆体生成。 可使用 LLM 生成英文提示词用于 Stable Diffusion 出图,图存于“手机相册”用于对话多模态中的图片回复。 选择剧本和图片生成朋友圈文案。 拟人行为: 反感度系统:通过 LLM 分析对话判断角色是否产生反感度。 延迟回复:根据状态忙闲或是否睡觉决定回复时间。 接受多轮输入,一并回复:避免每一条输入回复一句,不像真人。 响应拆分与响应延迟:将一大段响应文本拆分成多段,模拟人类打字速度(3 5 字/秒),回复时概率性使用表情包,有概率主动聊天(与亲密度正相关)。 微信朋友圈:根据每天人物剧本挑选 1 2 个发布朋友圈并配图,目前内容由 AI 生成但手工发布。 将小说做成视频的制作流程: 1. 小说内容分析:使用 AI 工具(如 ChatGPT)提取关键场景、角色和情节。 2. 生成角色与场景描述:用工具(如 Stable Diffusion 或 Midjourney)生成视觉描述。 3. 图像生成:用 AI 图像生成工具创建图像。 4. 视频脚本制作:将关键点和图像组合成脚本。 5. 音频制作:利用 AI 配音工具(如 Adobe Firefly)转换语音,添加背景音乐和音效。 6. 视频编辑与合成:用视频编辑软件(如 Clipfly 或 VEED.IO)合成。 7. 后期处理:剪辑、添加特效和转场提高质量。 8. 审阅与调整:观看视频并根据需要调整。 9. 输出与分享:完成编辑后输出并分享。 Inworld AI: Inworld AI 是一家专注于游戏和人工智能的初创公司,开发了 Inworld 的 AI 角色引擎,可将游戏 NPC 进行 AI 化并集成到游戏中。该引擎超越大语言模型,增加可配置的安全性、知识、记忆、叙事控制、多模态等功能,使 NPC 能够自我学习和适应,具有情绪智能。其角色引擎可创建具有独特个性和上下文意识的角色,无缝集成到实时应用中,内置优化规模和性能的功能。Character Brain(性格大脑)引擎使 AI NPC 能够学习和适应,具有情绪智能的关系导航能力、记忆和回忆能力,并能自主发起目标、执行动作并遵循动机。功能包括目标和行动、长期记忆、个性、情绪等。
2025-03-20
1、Puzzle 选择一个你(们)感兴趣的社会问题或者现象。 “赛博信仰”指在网络环境下衍生的一系列超现实、寄托心理期许的新兴文化现象。这种现象反映了人们在数字化时代中对精神寄托、心理安慰和未来预测的需求。赛博信仰不仅是一种文化现象,也反映了现代社会中人们对科技、信仰和现实之间关系的重新思考。 2、Facts 关于这个问题/现象,都有哪些基本事实? 比如有人购买电子形式的马克思、爱因斯坦的脑子,象征着对智慧的渴望;借助塔罗测试程序、deepseek算命等AI工具,尝试预知命运;夸赞鹿童、转发锦鲤
关于“赛博信仰”这一现象,目前所了解到的基本事实包括:有人购买电子形式的马克思、爱因斯坦的脑子以象征对智慧的渴望;借助塔罗测试程序、deepseek 算命等 AI 工具尝试预知命运;夸赞鹿童、转发锦鲤等。但目前掌握的相关事实相对有限,还需要进一步的研究和观察来更全面地了解这一现象。
2025-03-13
根据论文题目:"基于机器学习的中国股市波动率预测与美股市场对比分析",列出详细框架列出框架,每条框架要明确具体方向内容及数据图表要求
以下是为您提供的关于“基于机器学习的中国股市波动率预测与美股市场对比分析”的论文框架: 一、引言 1. 研究背景和意义 阐述机器学习在金融领域的应用现状 强调股市波动率预测的重要性 说明中、美股市对比的价值 2. 研究目的和问题 明确预测股市波动率的具体目标 提出中、美股市对比的关键问题 3. 研究方法和数据来源 介绍所采用的机器学习算法 说明中国股市和美股市场的数据获取途径 二、相关理论与文献综述 1. 机器学习在股市预测中的应用 列举常见的机器学习模型及其在股市预测中的效果 分析其优缺点 2. 股市波动率的理论和测量方法 解释波动率的概念和计算方法 介绍常用的波动率模型 3. 中、美股市的特点和差异 对比两国股市的交易制度、投资者结构等方面 总结已有研究中关于中、美股市波动率的差异 三、数据预处理与特征工程 1. 数据收集与清洗 详细描述中国股市和美股市场的数据收集范围和时间跨度 处理缺失值、异常值等数据问题 2. 特征选择与构建 确定影响股市波动率的关键特征 构建新的特征变量 3. 数据标准化与归一化 说明对数据进行标准化和归一化的方法和目的 四、模型构建与训练 1. 选择合适的机器学习模型 比较不同模型(如随机森林、支持向量机、神经网络等)的适用性 确定最终选用的模型 2. 模型训练与优化 描述训练过程中的参数调整和优化方法 展示模型的性能评估指标 3. 模型验证与比较 使用交叉验证等方法验证模型的准确性 对比不同模型的预测效果 五、中国股市波动率预测结果与分析 1. 预测结果展示 以图表形式呈现中国股市波动率的预测值 与实际波动率进行对比 2. 结果分析与讨论 分析预测结果的准确性和可靠性 探讨影响预测效果的因素 3. 敏感性分析 研究模型参数和输入特征对预测结果的敏感性 六、美股市场波动率预测结果与分析 1. 预测结果展示 以图表形式呈现美股市场波动率的预测值 与实际波动率进行对比 2. 结果分析与讨论 分析美股市场预测结果的特点和差异 对比中、美股市预测结果的异同 3. 影响因素分析 探讨美股市场特有的影响波动率的因素 七、中、美股市波动率对比分析 1. 波动率特征对比 比较中、美股市波动率的均值、方差、峰度等统计特征 分析波动率的周期性和趋势性 2. 影响因素对比 对比两国股市中影响波动率的宏观经济因素、政策因素等 讨论投资者行为对波动率的影响差异 3. 风险评估与管理对比 评估中、美股市的风险水平 对比风险管理制度和策略 八、结论与展望 1. 研究结论总结 概括中、美股市波动率预测的主要成果 总结对比分析的关键发现 2. 研究的局限性 指出研究过程中存在的不足之处 3. 未来研究方向 提出进一步改进模型和拓展研究的方向 对中、美股市波动率研究的展望 数据图表要求: 1. 中、美股市历史波动率的折线图 2. 不同机器学习模型预测效果的对比柱状图 3. 中、美股市波动率特征的统计表格 4. 影响中、美股市波动率的因素的相关性矩阵图 5. 中、美股市风险评估的雷达图
2025-03-11
1.根据论文题目:"基于机器学习的中国股市波动率预测与美股市场对比分析",列出详细框架列出框架,每条框架要明确具体方向内容及数据图表要求。
很抱歉,暂时没有关于“基于机器学习的中国股市波动率预测与美股市场对比分析”这一论文题目的详细框架相关内容。但我可以为您提供一个大致的框架思路供您参考: 一、引言 1. 研究背景和意义 阐述中国股市和美股市场的重要性 说明波动率预测的价值 2. 研究目的和问题 明确对比分析的主要目标 提出具体的研究问题 二、文献综述 1. 机器学习在股市波动率预测中的应用 总结相关方法和模型 分析其优缺点 2. 中国股市和美股市场波动率的特征 回顾已有研究成果 指出研究空白 三、理论基础与方法 1. 机器学习算法介绍 如随机森林、支持向量机等 解释其原理和适用场景 2. 数据来源和预处理 说明中国股市和美股市场的数据来源 描述数据清洗和预处理的步骤 3. 波动率计算方法 介绍常用的波动率计算指标 四、实证分析 1. 模型构建与训练 运用所选机器学习算法构建预测模型 展示训练过程和参数调整 2. 结果评估与比较 评估中国股市和美股市场预测结果的准确性 进行对比分析 数据图表要求:绘制预测结果与实际波动率的对比图 3. 影响因素分析 探讨可能影响波动率预测的因素 数据图表要求:绘制影响因素与波动率的关系图 五、结论与展望 1. 研究结论总结 概括中国股市和美股市场波动率预测的成果 对比分析的主要发现 2. 研究的局限性 指出研究中存在的不足 3. 未来研究方向 提出进一步研究的建议和方向 以上框架仅供参考,您可以根据实际研究需求进行调整和完善。
2025-03-10
根据论文题目:"基于机器学习的中国股市波动率预测与美股市场对比分析",列出详细框架列出框架,每条框架要明确具体方向内容及数据图表要求
以下是为您提供的关于“基于机器学习的中国股市波动率预测与美股市场对比分析”的论文框架: 一、引言 1. 研究背景和意义 阐述机器学习在金融领域的应用现状 强调股市波动率预测的重要性 说明中美股市对比的价值 2. 研究目的和问题 明确预测中国股市波动率的目标 提出与美股市场对比的关键问题 3. 研究方法和数据来源 介绍所采用的机器学习算法 说明中国股市和美股市场的数据获取途径 二、相关理论与文献综述 1. 机器学习在股市预测中的应用 列举常见的机器学习模型 分析其在股市预测中的优缺点 2. 股市波动率的理论和测量方法 解释波动率的概念和计算方式 介绍常用的波动率测量指标 3. 中美股市的特点和差异 对比中美股市的交易制度、投资者结构等方面 总结前人关于中美股市对比的研究成果 三、数据预处理与特征工程 1. 数据收集与清洗 收集中国股市和美股市场的历史数据 处理缺失值、异常值等 2. 特征选择与构建 提取影响股市波动率的关键特征 构建新的特征变量 3. 数据标准化与归一化 对数据进行标准化处理,使其具有可比性 四、模型建立与训练 1. 选择合适的机器学习模型 比较不同模型的性能,如随机森林、支持向量机等 确定最终使用的模型 2. 模型训练与优化 使用训练数据进行模型训练 调整参数以提高模型性能 3. 模型评估指标 确定评估模型预测效果的指标,如均方误差、准确率等 五、中国股市波动率预测结果与分析 1. 预测结果展示 以图表形式呈现中国股市波动率的预测值 与实际波动率进行对比 2. 结果分析与讨论 分析预测结果的准确性和可靠性 探讨影响预测效果的因素 六、美股市场波动率预测结果与分析 1. 预测结果展示 以图表形式呈现美股市场波动率的预测值 与实际波动率进行对比 2. 结果分析与讨论 分析美股市场预测结果的特点 与中国股市预测结果进行对比 七、中美股市波动率对比分析 1. 波动率特征对比 比较中美股市波动率的均值、方差等统计特征 分析波动率的周期性和趋势性 2. 影响因素对比 探讨宏观经济因素、政策法规等对中美股市波动率的不同影响 分析投资者行为和市场结构的差异 3. 风险评估与投资策略 根据对比结果评估中美股市的风险水平 提出针对中美股市的投资策略建议 八、结论与展望 1. 研究总结 总结研究的主要成果和发现 2. 研究不足与展望 指出研究中存在的局限性 对未来研究方向提出展望 数据图表要求: 1. 展示中国股市和美股市场的历史波动率走势对比图。 2. 呈现不同机器学习模型在预测中国股市和美股市场波动率时的性能评估指标对比图。 3. 绘制中美股市波动率的统计特征(均值、方差等)对比柱状图。 4. 以图表形式展示影响中美股市波动率的关键因素的对比分析。
2025-03-07
供应链预测
在制造业领域,AIGC 技术在供应链管理方面有以下应用: AI 可以根据历史数据和市场变化,自动生成采购计划、库存预测、物流优化等内容,提高供应链管理效率。 在中小企业转型中,关于供应链风险的管理: 首先,使用 AI 工具进行风险评估。利用数据分析软件、预测模型等工具,收集财务报表、市场数据、供应链信息等相关数据进行分析,预测潜在的风险,如财务风险、供应链风险等,并识别风险的来源和可能的影响。 其次,基于 AI 分析结果,制定相应的风险应对策略。根据风险类型和程度,制定具体的应对措施,如制定应急计划、调整业务策略等,并持续监控效果,根据变化调整策略,定期复审风险评估模型和管理策略。 在扣子模板分享中,关于供应链的部分: 供应链与营销联动:结合供应链数据,预测市场需求,调整生产和库存,避免缺货或积压。
2025-02-17