Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

提示词设计方法,请从初级到高级一步步进行说明讲解

Answer

以下是从初级到高级的提示词设计方法的讲解:

初级阶段: 在初级阶段,重点是明确表达您的需求和期望。例如,清晰地描述任务、问题或所需的输出类型。

中级阶段: 随着经验的积累,可以尝试更详细和具体的描述。包括提供更多的背景信息、限制条件和关键要点,以引导模型生成更符合期望的结果。

高级阶段:

  1. 自动提示词工程(APE):

    • 提示词生成:利用 LLM 针对特定任务产生多种提示词,借助其语言数据库和上下文理解。
    • 提示词评分:根据清晰度、特定性和推动期望结果的潜力等关键指标对提示词进行严格评估。
    • 完善和迭代:根据评分调整和优化提示词,增强其与任务要求的一致性,通过持续改进提高提示词质量。
  2. 样例驱动的渐进式引导:

    • 把相关的样例文件与提示词同时发送给模型,让模型自行总结所需结果。
    • 经过多次调试和根据测试 bug 微调提示词,以确保稳定运行。
  3. 格式选择:

    • 对于刚入门的朋友,推荐使用直观易懂的 LangGPT 结构化提示词,以便快速上手。
    • 对于进阶用户,一方面可以继续使用 LangGPT 结构化提示词,另一方面如有精力和好奇心,可尝试 Lisp 伪代码格式,有助于精炼提示词和提升对措辞理解、概念认知的能力。

需要注意的是,部署 APE 并非没有挑战,可能需要大量计算资源和建立有效评分指标,初始设置也可能需要精心策划的种子提示词集来有效指导生成过程。重要的是提示词的内容要与 AI 的“理解机制”相契合,而非外在形式。

Content generated by AI large model, please carefully verify (powered by aily)

References

小七姐:精读翻译《提示词设计和工程:入门与高级方法》

自动提示词工程(APE)[15]自动化了创建提示词的复杂过程。通过利用LLM自身生成、评估和完善提示词的能力,APE旨在优化提示词设计过程,确保在引出期望响应方面具有更高的效果和相关性。APE方法(见图21)通过一系列既独立又相互关联的步骤展开:•提示词生成:最初,LLM针对特定任务产生多种提示词,利用其庞大的语言数据库和上下文理解。•提示词评分:随后,这些提示词经过严格的评估阶段,根据清晰度、特定性和推动期望结果的潜力等关键指标进行评分,确保只有最有效的提示词被选中进行完善。•完善和迭代:完善过程涉及根据评分调整和调整提示词,旨在增强它们与任务要求的一致性。这个迭代过程促进了提示词质量的持续改进。通过自动化提示词工程过程,APE不仅减轻了手动创建提示词的负担,而且引入了以前无法达到的精确度和适应性。生成和迭代完善提示词的能力可以显著增强LLM在从自动内容生成到复杂的对话代理等各种应用中的实用性。然而,部署APE并非没有挑战。需要大量的计算资源和建立有效评分指标的复杂性是需要考虑的重要因素。此外,初始设置可能需要精心策划的种子提示词集来有效地指导生成过程。尽管存在这些挑战,APE代表了提示词工程的重大进步,提供了一种可扩展且高效的解决方案,以在各种应用中解锁LLM的全部潜力,从而为更细致和与上下文相关的交互铺平了道路。

小七姐:精读翻译《提示词设计和工程:入门与高级方法》

[1]D.Sculley,Gary Holt,Daniel Golovin,Eugene Davydov,Todd Phillips,Dietmar Ebner,Vinay Chaudhary,和Michael Young.机器学习:技术债务的高利贷。在SE4ML:机器学习软件工程(NIPS 2014研讨会),2014年。[2]Xavier Amatriain,Ananth Sankar,Jie Bing,Praveen Kumar Bodigutla,Timothy J.Hazen,和Michaeel Kazi.Transformer模型:介绍和目录,2023年。[3]Hattie Zhou,Azade Nova,Hugo Larochelle,Aaron Courville,Behnam Neyshabur,和Hanie Sedghi.通过上下文学习教授算法推理,2022年。[4]Yao Lu,Max Bartolo,Alastair Moore,Sebastian Riedel,和Pontus Stenetorp.神奇有序的提示词及其寻找方法:克服少样本提示词顺序敏感性,2022年。[5]Jason Wei,Xuezhi Wang,Dale Schuurmans,Maarten Bosma,brian ichter,Fei Xia,Ed Chi,Quoc V Le,和Denny Zhou.思维链提示词在大型语言模型中引出推理。在S.Koyejo,S.Mohamed,A.Agarwal,D.Belgrave,K.Cho,和A.Oh,编辑,神经信息处理系统进展,第35卷,页码24824–24837。Curran Associates,Inc.,2022年。[6]Zhuosheng Zhang,Aston Zhang,Mu Li,和Alex Smola.大型语言模型中的自动思维链提示词,2022年。[7]Shunyu Yao,Dian Yu,Jeffrey Zhao,Izhak Shafran,Thomas L.Griffiths,Yuan Cao,和Karthik Narasimhan.思维树:与大型语言模型一起进行深思熟虑的问题解决,2023年。

一泽Eze:我的 Prompt 爆火全网| AI 一键生成高颜值社交名片全解析

还记得我们在方案推理环节,得到的「最终样式.html」吗?按照我早先的一篇文章《样例驱动的渐进式引导法》中提到的方法,把这个html文件作为样例,和这段提示词同时发送给Claude,让AI根据@李继刚的提示词中控制样式输出的形式,自行总结我们需要的结果。你将会获得一份这样形式的答卷:只需要稍微调整一下文本结构与引用细节,就可以嵌入到我们的提示词中。这样基本也能让提示词按照预期运行起来:当然,想要更好地控制生成结果,尤其是视觉样式的稳定性,还得经过多次调试,并根据测试bug微调提示词,直至稳定运行。[heading3]拓展:Lisp、Markdown格式是否必需?[content]不是。经过两年的蓬勃发展,大语言模型的提示工程已经呈现出百花齐放的局面。无论LangGPT结构化提示词,还是CRISPE和CARE等框架,业界涌现出了多种提示词方法论。在格式方面,我们看到了LangGPT在用的Markdown格式,也有像刚哥最近青睐的Lisp伪代码格式,甚至还有像我那样灵活混搭的方案。但真正重要的不是提示词的外在形式,而是内容是否与AI的"理解机制"相契合。如果要我推荐提示词的写法:对于刚入门的朋友:首推LangGPT结构化提示词,直观易懂,可以快速上手。对于想要进阶的用户:一方面,LangGPT依然是一个可靠的选择;另一方面,有额外的精力和好奇心,不妨尝试一下刚哥推崇的Lisp伪代码格式,能够强迫自己精炼提示词,对措辞理解、概念认知也有很大帮助。

Others are asking
multi agents讲解
多智能体(MultiAgent)是由多个自主、独立的智能体(Agent)组成的系统。每个智能体都能感知环境、决策并执行任务,且它们之间能信息共享、任务协调与协同行动以实现整体目标。 随着大型语言模型(LLM)的出现,以 LLM 为核心构建的 Agent 系统受广泛关注。目前常见框架集中在单 Agent 场景,其核心是 LLM 与工具协同配合,可能需与用户多轮交互。而多 Agent 场景为不同 Agent 分配角色,通过协作完成复杂任务,与用户交互可能减少。 构建多 Agent 框架主要组成部分包括: 1. 环境:所有 Agent 处于同一环境,包含全局状态信息,Agent 与环境有信息交互与更新。 2. 阶段:采用 SOP 思想将复杂任务分解为多个子任务。 3. 控制器:可以是 LLM 或预先定义好的规则,负责环境在不同 Agent 和阶段间切换。 4. 记忆:因 Agent 数量增多,消息数量及每条消息的记录字段增加。 此外,吴恩达最新演讲提到四种 Agent 设计范式,Reflection 和 Tool Use 相对经典且广泛使用,Planning 和 Multiagent 较新颖有前景。Reflection 类似于 AI 自我纠错和迭代,如让 AI 写代码并自我检查修改。Tool Use 指大语言模型调用插件拓展能力。在一些场景中,Reflection 可用两个 Agent,一个写代码,一个 Debug。
2025-03-14
清华大学deepseek讲解视频
以下是为您找到的与清华大学和 DeepSeek 相关的信息: 清华大学计算机科学与技术系助理教授章明星从大模型当前的发展阶段出发,分享了关于模型架构演进、大模型 Scaling Law 的发展趋势及相应趋势对系统层面影响的看法,并探讨了未来的发展方向。 《DeepSeek 的秘方是硅谷味儿的》提到 DeepSeek 是一家位于杭州的人工智能创业公司,其大语言模型 DeepSeekV3 在全球引发广泛关注。该模型以 550 万美元和 2000 块低配版英伟达 H800 GPU 训练,超越了多个顶级模型,获得硅谷研究者的高度评价。DeepSeek 的成功被视为中国式创新的典范,但其独特之处在于其更像一个研究机构,注重技术创新而非商业化运作,吸引了大量年轻的顶尖研究人才。 但未找到清华大学 deepseek 讲解视频的直接相关内容。
2025-03-05
清华大学deepseek讲解
以下是关于 DeepSeek 的相关信息: 清华大学计算机科学与技术系助理教授章明星从大模型当前的发展阶段出发,分享了关于模型架构演进、大模型 Scaling Law 的发展趋势及相应趋势对系统层面影响的看法,并探讨了未来的发展方向。 DeepSeek 是一家位于杭州的人工智能创业公司,其大语言模型 DeepSeekV3 在全球引发广泛关注。该模型以 550 万美元和 2000 块低配版英伟达 H800 GPU 训练,超越了多个顶级模型,获得硅谷研究者的高度评价。DeepSeek 更像一个研究机构,注重技术创新而非商业化运作,吸引了大量年轻的顶尖研究人才。 关于 DeepSeek 有众多媒体报道和网络文章,如中国新闻网的《突然爆火!中国“神秘力量”震动美国科技圈》、海峡都市报的《“华裔天才”亚历山大·王:DeepSeek 的 AI 大模型发布可能会“改变一切”》、每日经济热点新闻的《突然火爆全网!Deepseek 被“挤”到宕机!创始人 17 岁考入浙大,36 岁管理千亿私募!公司多岗位招新,实习生日薪最高上千元》等。 以上信息涵盖了 DeepSeek 在技术、评价、媒体报道等方面的情况。
2025-03-05
deepseek论文讲解
以下是关于 deepseek 论文解读的相关内容: 直播视频回放:可通过相关链接获取。 相关论文下载:提供了两篇论文,pc 端鼠标移到文章上面,会有下载链接,手机端类似。分别是。 技巧分享:包括万能提示词的使用,以及提示词的优化方法和步骤。 学习笔记心得:可参考等内容。 媒体报道和网络文章精选:涵盖了众多主流媒体和作者的相关文章,如等。
2025-03-04
我想做个生成知识点讲解视频的工具,是转成PPT加自动配音好,还是转成不同的网页然后生成每一页的口播稿更好?
在选择生成知识点讲解视频的工具时,转成 PPT 加自动配音和转成不同的网页然后生成每一页的口播稿各有其优缺点。 转成 PPT 加自动配音的优点在于 PPT 形式较为直观、规范,能够以图文并茂的方式展示知识点,自动配音可以节省录制音频的时间。缺点是可能在页面布局和动画效果上需要较多的调整,且自动配音的质量和语气可能不够自然。 转成不同的网页然后生成每一页的口播稿的优点是网页的设计更加灵活,可以融入更多的交互元素,口播稿能够更贴合讲解的需求。但缺点是网页的制作可能相对复杂,需要一定的技术知识,而且口播稿的生成质量可能参差不齐。 最终的选择取决于您的具体需求和技术能力。如果您更注重展示效果的规范性和简洁性,且对音频质量要求不是特别高,PPT 加自动配音可能是个不错的选择。如果您希望有更多的交互和灵活性,并且有能力处理网页制作和口播稿的优化,那么转成网页和生成口播稿可能更适合您。
2025-02-23
大模型讲解
大模型是指输入大量语料,使计算机获得类似人类“思考”能力,能进行文本生成、推理问答、对话、文档摘要等工作。 大模型的训练和使用过程可以用“上学参加工作”来类比: 1. 找学校:训练大模型需要大量计算,GPU 更合适,只有购买得起大量 GPU 的才有资本训练。 2. 确定教材:大模型需要大量数据,几千亿序列(Token)的输入基本是标配。 3. 找老师:选择合适算法让大模型更好理解 Token 之间的关系。 4. 就业指导:为让大模型更好胜任某一行业,需要进行微调(fine tuning)指导。 5. 搬砖:就业指导完成后,进行如翻译、问答等工作,在大模型里称之为推导(infer)。 在 LLM 中,Token 被视为模型处理和生成的文本单位,会被数字化形成词汇表,便于计算机处理。为让计算机理解 Token 之间的联系,还需把 Token 表示成稠密矩阵向量,这个过程称为 embedding,常见算法有基于统计的 Word2Vec、GloVe,基于深度网络的 CNN、RNN/LSTM,基于神经网络的 BERT、Doc2Vec 等。以 Transform 为代表的大模型采用自注意力(Selfattention)机制来学习不同 token 之间的依赖关系,生成高质量 embedding。大模型的“大”在于用于表达 token 之间关系的参数多,主要是模型中的权重(weight)与偏置(bias)。 从整体分层的角度来看,大模型整体架构分为以下几层: 1. 基础层:为大模型提供硬件支撑、数据支持,如 A100、数据服务器等。 2. 数据层:包括静态的知识库和动态的三方数据集。 3. 模型层:有 LLm(大语言模型,如 GPT,一般使用 transformer 算法实现)或多模态模型(如文生图、图生图等模型,训练数据与 llm 不同,用图文或声音等多模态数据集)。 4. 平台层:如大模型的评测体系、langchain 平台等,提供模型与应用间的组成部分。 5. 表现层:即应用层,是用户实际看到的地方。
2025-02-20
如何一步步学AI,学生
对于学生学习 AI ,可以按照以下步骤进行: 1. 从编程语言入手学习:可以选择 Python 、 JavaScript 等编程语言,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台:例如使用 ChatGPT 、 Midjourney 等 AI 生成工具,体验 AI 的应用场景。还可以探索一些面向学生的 AI 教育平台,如百度的“文心智能体平台”、 Coze 智能体平台等。 3. 学习 AI 基础知识:了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等,学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目:参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动,尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态:关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展,思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 对于新手学习 AI : 1. 了解 AI 基本概念:阅读相关资料熟悉 AI 的术语和基础概念,了解其主要分支以及它们之间的联系,浏览入门文章了解 AI 的历史、应用和发展趋势。 2. 开始 AI 学习之旅:在相关的学习路径中找到为初学者设计的课程,通过在线教育平台(如 Coursera 、 edX 、 Udacity )按照自己的节奏学习,推荐李宏毅老师的课程。 3. 选择感兴趣的模块深入学习:根据自己的兴趣选择特定的模块(如图像、音乐、视频等)进行深入学习,掌握提示词的技巧。 4. 实践和尝试:在理论学习之后进行实践,尝试使用各种产品做出作品,分享实践成果。 5. 体验 AI 产品:与 ChatGPT 、 Kimi Chat 、智谱、文心一言等 AI 聊天机器人互动,了解其工作原理和交互方式。 此外,对于纯小白开发应用,比如通过 Claude 和人类导师的帮助用 Unity 开发小游戏,需要将任务拆解到足够小,针对性地设计学习路径,并密切关注随时解决遇到的问题。小小的任务,AI 可以胜任、非常耐心地指导,但最好有人类导师一开始把任务拆解好,并随时从坑里捞人。
2025-03-04
你是一名资深程序员和经验丰富的编程教授,能够以通俗保姆式的方法教会小白从0开始编程序。现在要你教我完成如下任务:我需要编写一个程序,能够每天和不同的文生图大语言模型对话,生成不同场景下的机器人设计图片。应该怎么一步步实现?
以下是为您提供的从 0 开始编写一个能够每天和不同的文生图大语言模型对话,并生成不同场景下机器人设计图片的程序的步骤: 首先,对于小白来说,可以参考以下教程进行学习和操作: 1. 张梦飞的【保姆级】一步一图,手把手教你把 AI 接入微信: 重点感谢@熊猫大侠的不厌其烦的答疑解惑,并推荐@熊猫大侠的老王。 作者是看着 WaytoAGI 里大佬的文章学习制作的。有代码基础的同学,可以直接移步到这三篇教程中。 本篇教程适合“小白中的小白”,简单粗暴,不做讲解,复制粘贴即可。一步一图,保姆级指引。 本篇文章中,没有写每一步代码的含义和配置文件的对应含义。如果想要深入研究和调优,请移步上方推荐的三篇文章。 2. 大圣的胎教级教程:万字长文带你理解 RAG 全流程: 这是一篇面向普通人的 RAG 科普,不是面向 RAG 研究者的技术向文章。 文章一共 1.6 万字,旨在让您对 RAG 技术有更全面的认知,在使用 RAG 相关产品时,可以更好地理解其能力边界,从而充分发挥其潜力。 本文适合任何人,包括 AI 爱好者、为企业寻找知识库解决方案的老板、AI 产品经理等。 3. Yeadon 的写给小小白的从游戏入手学习搓图像流 bot: 学会将发布的图像流添加进 bot 中,并测试生成海报,解决无法在聊天界面显示图片的问题,重新调整图像流使其在对话窗口显示图片,最后发布 Bot。 通过这份教程,可以学会如何在 Coze 平台上打造一个有趣的 AI 游戏助手,掌握 AI 人格设定和对话逻辑的设计方法,了解如何配置图像生成功能。 希望以上内容对您有所帮助,祝您编程顺利!
2024-12-29
对于一个什么都不懂的 AI小白,你建议他从哪个AI技能开始学?如何一步步开始强大自己使用AI的能力
对于一个 AI 小白,以下是一些学习建议: 1. 编程语言:可以从 Python、JavaScript 等编程语言开始学习,掌握编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. AI 工具和平台:使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。探索面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. AI 基础知识: 了解 AI 背景知识,包括基础理论(人工智能、机器学习、深度学习的定义及其关系)、历史发展(回顾 AI 的发展历程和重要里程碑)。 掌握数学基础,如统计学基础(熟悉均值、中位数、方差等统计概念)、线性代数(了解向量、矩阵等基本概念)、概率论(基础的概率论知识,如条件概率、贝叶斯定理)。 熟悉算法和模型,包括监督学习(了解常用算法,如线性回归、决策树、支持向量机(SVM))、无监督学习(熟悉聚类、降维等算法)、强化学习(简介强化学习的基本概念)。 学习评估和调优,了解如何评估模型性能(包括交叉验证、精确度、召回率等),以及如何使用网格搜索等技术优化模型参数。 掌握神经网络基础,理解网络结构(包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)),了解常用的激活函数,如 ReLU、Sigmoid、Tanh。 4. 实践项目:参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动,尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注前沿动态:关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展,思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 总之,AI 小白可以从编程基础、工具体验、知识学习、实践项目等多个方面入手,全面系统地学习 AI 知识和技能,逐步提升自己使用 AI 的能力。
2024-11-22
嗨喽,我刚接触ComfyUI,想从简单的案例开始,一步步挑战更复杂的项目。有没有什么好地方可以找到这种分层次(基础-进阶)的学习案例呢?我想边学边练,这样印象更深刻。
以下是在飞书学习群中可以找到的 ComfyUI 分层次(基础进阶)的学习案例: 基础课程:陈旭常用节点讲解和简单的节点制作、长风归庭基础教程+工作流创建、王蓉🍀 🎈 Wang Easy 基础搭建和转绘、唯有葵花向日晴基础教程,工作流开发,实际应用场景、苏小蕊基础教程、Sophy 基础课程、啊乐福基础课程、塵优秀案例、风信基础课程➕平面设计应用场景、北南基础课程、Damon 基础课程、雪娴_CC 基础课程(从安装开始)、Joey 实时转绘工作流、三思基础教程、晓珍、戴志伟基础课程、Moana 基础教程、Jl 基础教程、kk 基础教程、samuel 基础 进阶课程:ヘヘ阿甘采样器原理与优化、热辣 HuolarrAI 系统课私聊图生视频、咖菲猫咪基础教程/工作流搭建思路/各版本模型使用的优缺点、傅小瑶 Lucky 如何制作多人转绘视频、云尚工作流节点搭建思路、FǎFá 热门节点功能,搭建、森林小羊基本报错解决方式及基础工作流逻辑分析、蜂老六装一百个最新常用插件后如何快速解决冲突问题、阿苏工作流框架设计、aflyrt comfyui 节点设计与开发、老宋&SD 深度解释虚拟环境部署和缺失模型的安装、Liguo 模型训练、郑个小目标针对于某个插件的深入讲解、波风若川报错解决、皮皮 Peter 工作流的设计规划和调优逻辑、Jāy Līn 锦鲤工作流搭建逻辑和原理、K 如何本地部署基础生图参数选择工作流的基本应用、Adai 基础课程、镜生视频、梦飞基础教程、🙋🙋🙋各个节点讲解和参数含义、Mr.大狐🏝报错解决、Duo 多吉~基础课程、渔舟基础课程+工作流搭建思路、乔木船长工作流、☘️基础教程、☘基础教程、工作流设计+典型案例剖析、麒白掌工作流搭建、OutSider 风格迁移、吴鹏基础+工作流搭建、拾光工作流基础搭建从入门到精通、茶浅浅。视频转绘/节点工作流介绍、百废待.新(早睡版)工作流从入门到进阶、电商应用场景、小马哥人物一致性分镜画面生成、C 张工作流搭建+电商落地应用、uui 视频风格迁移、你头发炸了基础教程搭建思路、阿头实战案例分享
2024-09-24
请你以制定清晰的任务列表和优先级的方式,来制作ai绘画相关的课程,帮助小白一步步上手操作成为大神。
以下是一个针对小白用户,从零开始学习AI绘画的清晰任务列表和优先级建议: 阶段一:基础知识学习 1. 了解AI绘画的基本概念 理解AI绘画与传统绘画的区别 了解AI绘画在艺术创作中的应用 2. 选择合适的AI绘画工具 研究不同AI绘画工具的特点和优缺点 选择一个适合自己的AI绘画工具 3. 学习基础绘画技巧 了解基本的绘画术语和技巧 学习如何使用AI绘画工具进行基础操作 阶段二:AI绘画工具使用 1. 熟悉AI绘画工具的基本操作 学习如何创建、编辑和管理画布 学习如何使用工具箱中的工具 2. 掌握AI绘画工具的功能 学习如何使用AI绘画工具的自动生成功能 学习如何调整AI绘画工具的参数和设置 3. 实践AI绘画工具的基本操作 尝试绘制简单的图形和形状 尝试使用AI绘画工具的自动生成功能创作作品 阶段三:AI绘画创作实践 1. 创作个人风格的作品 学习如何利用AI绘画工具创作具有个人风格的作品 尝试创作不同风格和主题的作品 2. 学习AI绘画工具的高级功能 学习如何使用AI绘画工具的高级功能,如AI生成、AI优化等 尝试创作更复杂和高质量的作品 3. 实践AI绘画创作 尝试创作不同风格和主题的作品,提高创作技巧 不断学习和实践,提升自己的AI绘画水平 阶段四:AI绘画作品展示和交流 1. 分享和展示自己的AI绘画作品 选择合适的平台分享和展示自己的AI绘画作品 与其他AI绘画爱好者交流和分享经验 2. 参加AI绘画相关的比赛和活动 了解和参加AI绘画相关的比赛和活动 通过比赛和活动提升自己的AI绘画水平 3. 持续学习和提升 关注AI绘画领域的新技术和趋势 不断学习和提升自己的AI绘画技巧和水平 通过以上任务列表和优先级建议,小白用户可以逐步学习AI绘画,并逐渐提升自己的创作水平。在学习过程中,建议多实践、多交流,不断提升自己的技能和创作能力。
2024-04-16
我想尝试做一个初级ai项目 我是零基础 需要你告诉我每一步要做什么
如果您是零基础想尝试做一个初级 AI 项目,以下是每一步的建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习。 3. 选择感兴趣的模块深入学习: 根据自己的兴趣选择特定的 AI 模块(比如图像、音乐、视频等)进行深入学习。 掌握提示词的技巧。 4. 实践和尝试: 理论学习之后,进行实践巩固知识,尝试使用各种产品做出作品。 在知识库分享实践后的成果。 5. 体验 AI 产品: 与现有的 AI 产品(如 ChatGPT、Kimi Chat、智谱、文心一言等)进行互动,了解其工作原理和交互方式。 如果您想开发一个 AI 网站项目,具体步骤如下: 1. 需求分析与代码生成:明确项目的目标和需求,让相关工具生成代码。 2. 环境配置自动化:选择合适的技术(如 Vue+TypeScript),无需手动打开终端配置环境。 3. 问题诊断与修复:可能会出现报错,将报错信息返回给相关工具进行自动检查和修复。 4. 界面优化与细节打磨:优化导航栏等细节,插入细节图片,不断调整。 5. 功能迭代与完善:逐步完善项目功能。 如果您想成为一名 AI 提示词工程师,需要具备以下能力: 1. 岗位技能要求:市场调研、观察目标群体工作流、创造并拆解需求、选型现有 AI 解决方案做成产品来解决需求、抽象出来集成为一个互联网 APP 产品、写 PRD、画 APP 产品原型图、组织团队进行 APP 产品开发。 2. 学习方法: 对于零基础小白,可在网上找基础课程学习。 观看科普类教程。 阅读 OpenAI 的文档,理解每个参数的作用。 推荐使用一些练手的 Prompt 工具和相关教程文档。
2025-01-18
写一个关于AI面试B端软件的需求文档,里面核心功能包括AI面试功能、背调功能(比如线上、证明人、应聘者提供的材料)、简历筛选关键词功能(比如UI设计里面负责项目包括用户调研、原型设计、需求缝隙、高保真设计、切图)、提取简历证书项目功能(比如初级设计师、建筑设计师、一级建造师)。
以下是为您生成的关于 AI 面试 B 端软件的需求文档: 一、核心功能 1. AI 面试功能 用友大易 AI 面试产品:具有强大技术底座、高度场景贴合度、招聘全环节集成解决方案、先进防作弊技术及严密数据安全保障,能完成面试、初筛并自动发送面试邀约。 海纳 AI 面试:通过在线方式自动面试、评估,精准度高达 98%,面试效率比人工提升 5 倍以上,候选人到面率提升最高达 30%。 InterviewAI:在线平台提供面试职位相关问题及 AI 生成的推荐答案,候选人用设备麦克风回答,每个问题最多回答三次,会收到评估、建议和得分。 2. 背调功能 线上背调。 证明人背调。 对应聘者提供材料的背调。 3. 简历筛选关键词功能 UI 设计方面,负责项目包括用户调研、原型设计、需求缝隙、高保真设计、切图。 4. 提取简历证书项目功能 初级设计师。 建筑设计师。 一级建造师。 二、案例参考 1. HR 相关案例 HR:团队绩效管理,根据团队和个人绩效的往期数据,分析员工绩效排名,输出绩效考评和迭代改进建议。 HR:面试工具,作者开发使用 GPT4 技术的实时转录工具,帮助求职者在面试中生成完美回答。 2. 其他工作场景案例 销售:话术总结优缺点,涵盖产品特点、服务优势等方面。 销售:定制销售解决方案,涉及企业产品和服务内容等方面。 客服:定制客服话术,包含产品知识、使用方法等关键词库。 三、提示词工程师面试经验分享 某岗位面试一面完不到 2 个小时就通知二面,效率较高。 技术面:面试官直接给出同行美妆 GPT 案例,让判断实现方式,应试者提出 C 端优化方案及补充 B 端商业化方案后通过。 BOSS 面:了解学业情况、经历和意向,询问经典问题。
2024-12-02
作为一个初级插画师有哪些ai工具可以帮助我
对于初级插画师,以下是一些可以提供帮助的 AI 工具: 1. CADtools 12:这是 Adobe Illustrator 的插件,为其添加了 92 个绘图和编辑工具,包括图形绘制、编辑、标注、尺寸标注、转换、创建和实用工具。 2. Autodesk Fusion 360:是 Autodesk 开发的一款集成了 AI 功能的云端 3D CAD/CAM 软件,能帮助创建复杂几何形状和优化设计。 3. nTopology:基于 AI 的设计软件,可创建复杂 CAD 模型,包括拓扑优化、几何复杂度和轻量化设计等。 4. ParaMatters CogniCAD:基于 AI 的 CAD 软件,能根据用户输入的设计目标和约束条件自动生成 3D 模型,适用于拓扑优化、结构设计和材料分布等领域。 5. 生成设计工具:一些主流 CAD 软件,如 Autodesk 系列、SolidWorks 等,提供基于 AI 的生成设计工具,可根据输入的设计目标和约束条件自动产生多种设计方案。 在绘制逻辑视图、功能视图、部署视图方面,以下工具可供选择: 1. Lucidchart:流行的在线绘图工具,支持多种图表创建,包括逻辑视图、功能视图和部署视图,可通过拖放界面轻松创建架构图。 2. Visual Paradigm:全面的 UML 工具,提供创建各种架构视图的功能,包括逻辑视图(类图、组件图)、功能视图(用例图)和部署视图(部署图)。 3. ArchiMate:开源的建模语言,专门用于企业架构,支持逻辑视图创建,可与 Archi 工具一起使用,该工具提供图形化界面创建模型。 4. Enterprise Architect:强大的建模、设计和生成代码工具,支持创建多种架构视图,包括逻辑、功能和部署视图。 5. Microsoft Visio:广泛使用的图表和矢量图形应用程序,提供丰富模板用于创建逻辑视图、功能视图和部署视图等。 6. draw.io(现称为 diagrams.net):免费的在线图表软件,允许创建各种类型图表,包括软件架构图,支持创建逻辑视图和部署视图等。 7. PlantUML:文本到 UML 的转换工具,通过编写描述性文本自动生成序列图、用例图、类图等,帮助创建逻辑视图。 8. Gliffy:基于云的绘图工具,提供创建各种架构图的功能,包括逻辑视图和部署视图。 9. Archi:免费开源工具,用于创建 ArchiMate 和 TOGAF 模型,支持逻辑视图创建。 10. Rational Rose:IBM 的 UML 工具,支持创建多种视图,包括逻辑视图和部署视图。 如果您想快速体验 AI 绘画工具: 1. 最低成本的开始:扣子 + ByteArtist 网址:https://www.coze.cn/home 优点:不需要翻墙,无收费,可以直接生成 注册:手机号或抖音号或飞书号 操作步骤:需要在 coze 的 bot 里面添加绘图插件 时间:5min 2. 先锋的:Midjourney 网址:https://www.midjourney.com/explore?tab=random 优点:图片和描述相关性更大,风格更加显著 限制:需要翻墙,需要 Gmail 注册,不免费,在 discord 上代理使用 时间:30 60min 价格:8 美元一个月/ 200 张图
2024-10-11
我想要做一个给初级小白的 AI 课程,请给列一个目录
以下是为初级小白设计的 AI 课程目录: 1. 初学者课程推荐 微软的 AI 初学者课程 名称:微软的 AI 初学者课程 作者/来源:微软 总结:推荐阅读《Introduction and History of AI》从这里起步 链接: 发布日期:2023/02/10 必看星标:👍🏻 AI for every one(吴恩达教程) 名称:AI for every one 作者/来源:吴恩达 总结:前 ChatGPT 时代的 AI 综述 链接: 发布日期:2023/03/15 必看星标:👍🏻 大语言模型原理介绍视频(李宏毅) 名称:大语言模型原理介绍视频 作者/来源:李宏毅 总结:可以说在众多中文深度学习教程中,李宏毅老师讲的应该是最好的,最通俗易懂 链接: 发布日期:2023/05/01 谷歌生成式 AI 课程 名称:谷歌生成式 AI 课程 作者/来源:谷歌 总结:注:前 4 节课为入门课 链接: ChatGPT 入门 名称:ChatGPT 入门 作者/来源:OpenAI 总结:注册、登录、简单使用方法等 链接: 2. 新手学习 AI 的指南 了解 AI 基本概念 建议阅读「」部分,熟悉 AI 的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,这些文章通常会介绍 AI 的历史、当前的应用和未来的发展趋势。 开始 AI 学习之旅 在「」中,找到一系列为初学者设计的课程。这些课程将引导您了解生成式 AI 等基础知识,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 选择感兴趣的模块深入学习 AI 领域广泛(比如图像、音乐、视频等),可以根据自己的兴趣选择特定的模块进行深入学习。 3. 微软 AI 初学者入门课程 编号:I 课程:人工智能导论 介绍:人工智能导论 PyTorch:人工智能导论 Keras/TensorFlow:人工智能导论 实验:人工智能导论 编号:1 课程:人工智能简介和历史 介绍: 编号:II 课程:符号人工智能 介绍:符号人工智能 PyTorch:符号人工智能 Keras/TensorFlow:符号人工智能 实验:符号人工智能 编号:2 课程:知识表示和专家系统 介绍:
2024-09-03
我现在已经有ppt提示词了 需要生成ppt 那个ai软件可以根据提示词shengchengvppt
以下是一些可以根据提示词生成 PPT 的 AI 软件及相关信息: 闪击: 网址:https://ppt.isheji.com/?code=ysslhaqllp&as=invite 操作流程:选择模版,输入大纲和要点(需将准备的大纲转换成适配闪击的语法),点击文本转 PPT 并在提示框中选择确定,可在线编辑,但导出 PPT 有会员限制。 参考指南:https://zhuanlan.zhihu.com/p/607583650 Claude:可用于生成语文老师 PPT 配图,整个流程为输入 Prompt,用户输入主题、风格,AI 输出最终结果。获取提示词可参考相关开源内容。 此外,还有一些其他与 AI 生成相关的内容,如用 AI 三步制作任意公司的周边图片,流程包括获取 Logo 图片的描述、根据描述和生成意图生成图片提示词、将图片和提示词输入 Comfyui 工作生成等。
2025-03-18
如何写提示词
写提示词(prompt)是一个关键步骤,决定了 AI 模型如何理解并生成文本。以下是一些编写提示词的要点和方法: 1. 明确任务:清晰定义任务,如写故事时包含背景、角色和主要情节。 2. 提供上下文:若任务需特定背景知识,提供足够信息。 3. 使用清晰语言:用简单、清晰的语言描述,避免模糊或歧义词汇。 4. 给出具体要求:如有特定格式或风格,在提示词中明确指出。 5. 使用示例:提供期望结果的示例,帮助 AI 模型理解需求。 6. 保持简洁:简洁明了,避免过多信息导致模型困惑。 7. 使用关键词和标签:有助于模型理解任务主题和类型。 8. 测试和调整:生成文本后检查结果,根据需要调整提示词,可能需多次迭代。 不同的工具和场景中,写提示词还有一些特定的注意事项: 星流一站式 AI 设计工具: 输入语言:通用大模型与基础模型 F.1、基础模型 XL 使用自然语言(如一个长头发的金发女孩),基础模型 1.5 使用单个词组(如女孩、金发、长头发),支持中英文输入。 提示词优化:启用后可扩展提示词,更生动描述画面。 写好提示词:内容准确,包含人物主体、风格、场景特点等;调整负面提示词,帮助 AI 理解不想生成的内容;利用“加权重”功能,让 AI 明白重点内容;还可使用辅助功能,如翻译、删除所有提示词、会员加速等。 预设词组:小白用户可点击提示词上方官方预设词组生图。 【SD】文生图: 描述逻辑:通常包括人物及主体特征(服饰、发型发色等)、场景特征、环境光照、画幅视角、画质、画风等。 辅助方法:可利用功能型辅助网站,如 http://www.atoolbox.net/ 、https://ai.dawnmark.cn/ ;也可去 C 站(https://civitai.com/)抄作业,但要注意图像作者使用的大模型和 LORA。
2025-03-18
Deepseek-R1的系统提示词
以下是关于 DeepSeekR1 的系统提示词的相关内容: 核心原理认知: AI 特性定位:支持文本/代码/数学公式混合输入。 动态上下文:对话式连续记忆(约 8K tokens 上下文窗口,换算成汉字是 4000 字左右)。 任务适应性:可切换创意生成/逻辑推理/数据分析模式。 系统响应机制:采用意图识别+内容生成双通道,自动检测 prompt 中的任务类型/输出格式/知识范围,对位置权重(开头/结尾)、符号强调敏感。 基础指令框架: 四要素模板。 格式控制语法:强制结构使用```包裹格式要求,占位符标记用{{}}标注需填充内容,优先级符号>表示关键要求,!表示禁止项。 进阶控制技巧: 思维链引导:分步标记法,苏格拉底式追问。 知识库调用:领域限定指令,文献引用模式。 多模态输出。 此外,还有关于 DeepSeekR1 的其他相关报道,如宝玉日报 1 月 26 日中对其的介绍,以及利用 DeepSeekR1 一分钟生成小红书爆款单词视频的相关内容,包括生成单词的步骤、角色、技能和限制等。
2025-03-18
会议纪要提示词
以下是为您提供的有关会议纪要提示词的相关内容: Claude 官方提示词: 会议记录员:将会议浓缩成简明摘要,包括讨论主题、重点内容、行动事项。任务是审查提供的会议记录,并创建一个简明扼要的总结,捕捉重要信息,重点关注会议期间分配给特定个人或部门的关键要点和行动项目。使用清晰专业的语言,并使用适当的格式(如标题、小标题和项目符号)以逻辑的方式组织总结。 Kimi 的 15 款官方提示词: 【📋会议精要】整理生成高质量会议纪要,保证内容完整、准确且精炼 智能纪要示例: 模型部署与资源抢占:资源抢占策略包括通过更改配置、加价和更换资源类型等方式抢占资源,如以 3 元抢到资源,阿里云采用拍卖机制,更高价者获得闲置资源。 模型测试情况:对模型进行数值比较和排列组合题的测试,结果有对有错,加系统提示词有一定概率做对。 模型部署操作:从 32B 中蒸馏模型,部署过程中需竞价获取资源,如尝试获取 L20 卡,未成功则加价或更换为 H100 卡等。 代码相关操作:在 Notebook 中进行代码操作,需修改 key、base 等内容,根据硬件获取情况调整代码运行。 基于派平台的模型训练与微调:显存越大的模型一般越贵,如 H100。模型加载时间长与模型大小和读硬盘速度有关,如 34B 模型需占 68G 以上显存。数据蒸馏过程通过向模型提问题获取答案来蒸馏数据,作为训练数据的 question 和 answer,蒸馏数据通常需人工校对,微调模型所需数据量因领域宽窄而异。模型训练方式在派平台上进行训练,可选全仓微调等训练方法,需设置各项参数,如学习率、文本序列长度等,训练时长约 26 小时,价格约 800 元,训练好的模型可下载和部署。系统提示词在训练中让模型知道接受新训练,在推理时激发特定训练数据,取决于训练目的。
2025-03-18
有没有写科研可行性分析报告的提示词之类工具
以下是一些关于写科研可行性分析报告的提示词相关内容: 可以先确定整个调研报告的大纲目录,比如通过老师发的示例报告截图用手机识别。 确定整体的语言风格和特色,调研报告一般和论文差不多,语言风格通常是“逻辑清晰,层层递进,条理分明”,还可以把范文丢给 Claude 2 总结语言风格。 让 GPT4 按照目录逐步生成章节内容,在 workflow 中设置循环结构,生成一段章节内容后经同意再进行下一章节,否则重新生成。 在生成内容前,需要 GPT4 判断某章节是否要调用 webpolit 插件查询相关信息后再来撰写报告章节部分。 为了让 GPT4 有更好的选择性搜索,可以选择使用 webpolit 插件。 不要过于限制 GPT4,否则可能导致生成效果不佳。
2025-03-18
deepsek 提示词
以下是关于 DeepSeek 提示词的相关内容: 1. 生成单词: 开始:输入单词主题、图片风格、单词数量,如非洲动物、真实风格、2。 生成单词数组:选择 deepseekr1 模型,输入单词主题、单词数量,为用户输出指定数量的单词,并以数组方式输出,包括单词、中文、美式音标、英文句子及其中文翻译。提示词中角色设定为专业的单词生成助手,技能是输出关联英语单词,限制为仅围绕用户输入主题输出相关内容,且输出必须为符合要求的数组形式。 2. DeepSeek 时代提示词之关键诉求: 观察发现:完整的提示词可能不如片段有效,甚至可能干扰模型的思考流程,过长提示会带来 Token 浪费和上下文污染,在多轮对话中尤其明显。在 deepseek 时代,用户只需在关键点进行引导,让模型自主发挥,“关键诉求直通车”模式是新一代 LLM 的正确打开方式。新旧提示法对比,传统方法像唠叨家长,新型技巧像对聪明助理打暗号。 3. 集合·DeepSeek 提示词方法论: 核心原理认知:包括 AI 特性定位(多模态理解、动态上下文、任务适应性)和系统响应机制(采用意图识别+内容生成双通道,自动检测 prompt 中的任务类型/输出格式/知识范围,对位置权重、符号强调敏感)。 基础指令框架:如果不知道如何表达,可套用框架指令,包括四要素模板、格式控制语法(强制结构、占位符标记、优先级符号)。 进阶控制技巧:包括思维链引导(分步标记法、苏格拉底式追问)、知识库调用(领域限定指令、文献引用模式)、多模态输出。
2025-03-18