Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

提示词设计方法,请从初级到高级一步步进行说明讲解

Answer

以下是从初级到高级的提示词设计方法的讲解:

初级阶段: 在初级阶段,重点是明确表达您的需求和期望。例如,清晰地描述任务、问题或所需的输出类型。

中级阶段: 随着经验的积累,可以尝试更详细和具体的描述。包括提供更多的背景信息、限制条件和关键要点,以引导模型生成更符合期望的结果。

高级阶段:

  1. 自动提示词工程(APE):

    • 提示词生成:利用 LLM 针对特定任务产生多种提示词,借助其语言数据库和上下文理解。
    • 提示词评分:根据清晰度、特定性和推动期望结果的潜力等关键指标对提示词进行严格评估。
    • 完善和迭代:根据评分调整和优化提示词,增强其与任务要求的一致性,通过持续改进提高提示词质量。
  2. 样例驱动的渐进式引导:

    • 把相关的样例文件与提示词同时发送给模型,让模型自行总结所需结果。
    • 经过多次调试和根据测试 bug 微调提示词,以确保稳定运行。
  3. 格式选择:

    • 对于刚入门的朋友,推荐使用直观易懂的 LangGPT 结构化提示词,以便快速上手。
    • 对于进阶用户,一方面可以继续使用 LangGPT 结构化提示词,另一方面如有精力和好奇心,可尝试 Lisp 伪代码格式,有助于精炼提示词和提升对措辞理解、概念认知的能力。

需要注意的是,部署 APE 并非没有挑战,可能需要大量计算资源和建立有效评分指标,初始设置也可能需要精心策划的种子提示词集来有效指导生成过程。重要的是提示词的内容要与 AI 的“理解机制”相契合,而非外在形式。

Content generated by AI large model, please carefully verify (powered by aily)

References

小七姐:精读翻译《提示词设计和工程:入门与高级方法》

自动提示词工程(APE)[15]自动化了创建提示词的复杂过程。通过利用LLM自身生成、评估和完善提示词的能力,APE旨在优化提示词设计过程,确保在引出期望响应方面具有更高的效果和相关性。APE方法(见图21)通过一系列既独立又相互关联的步骤展开:•提示词生成:最初,LLM针对特定任务产生多种提示词,利用其庞大的语言数据库和上下文理解。•提示词评分:随后,这些提示词经过严格的评估阶段,根据清晰度、特定性和推动期望结果的潜力等关键指标进行评分,确保只有最有效的提示词被选中进行完善。•完善和迭代:完善过程涉及根据评分调整和调整提示词,旨在增强它们与任务要求的一致性。这个迭代过程促进了提示词质量的持续改进。通过自动化提示词工程过程,APE不仅减轻了手动创建提示词的负担,而且引入了以前无法达到的精确度和适应性。生成和迭代完善提示词的能力可以显著增强LLM在从自动内容生成到复杂的对话代理等各种应用中的实用性。然而,部署APE并非没有挑战。需要大量的计算资源和建立有效评分指标的复杂性是需要考虑的重要因素。此外,初始设置可能需要精心策划的种子提示词集来有效地指导生成过程。尽管存在这些挑战,APE代表了提示词工程的重大进步,提供了一种可扩展且高效的解决方案,以在各种应用中解锁LLM的全部潜力,从而为更细致和与上下文相关的交互铺平了道路。

小七姐:精读翻译《提示词设计和工程:入门与高级方法》

[1]D.Sculley,Gary Holt,Daniel Golovin,Eugene Davydov,Todd Phillips,Dietmar Ebner,Vinay Chaudhary,和Michael Young.机器学习:技术债务的高利贷。在SE4ML:机器学习软件工程(NIPS 2014研讨会),2014年。[2]Xavier Amatriain,Ananth Sankar,Jie Bing,Praveen Kumar Bodigutla,Timothy J.Hazen,和Michaeel Kazi.Transformer模型:介绍和目录,2023年。[3]Hattie Zhou,Azade Nova,Hugo Larochelle,Aaron Courville,Behnam Neyshabur,和Hanie Sedghi.通过上下文学习教授算法推理,2022年。[4]Yao Lu,Max Bartolo,Alastair Moore,Sebastian Riedel,和Pontus Stenetorp.神奇有序的提示词及其寻找方法:克服少样本提示词顺序敏感性,2022年。[5]Jason Wei,Xuezhi Wang,Dale Schuurmans,Maarten Bosma,brian ichter,Fei Xia,Ed Chi,Quoc V Le,和Denny Zhou.思维链提示词在大型语言模型中引出推理。在S.Koyejo,S.Mohamed,A.Agarwal,D.Belgrave,K.Cho,和A.Oh,编辑,神经信息处理系统进展,第35卷,页码24824–24837。Curran Associates,Inc.,2022年。[6]Zhuosheng Zhang,Aston Zhang,Mu Li,和Alex Smola.大型语言模型中的自动思维链提示词,2022年。[7]Shunyu Yao,Dian Yu,Jeffrey Zhao,Izhak Shafran,Thomas L.Griffiths,Yuan Cao,和Karthik Narasimhan.思维树:与大型语言模型一起进行深思熟虑的问题解决,2023年。

一泽Eze:我的 Prompt 爆火全网| AI 一键生成高颜值社交名片全解析

还记得我们在方案推理环节,得到的「最终样式.html」吗?按照我早先的一篇文章《样例驱动的渐进式引导法》中提到的方法,把这个html文件作为样例,和这段提示词同时发送给Claude,让AI根据@李继刚的提示词中控制样式输出的形式,自行总结我们需要的结果。你将会获得一份这样形式的答卷:只需要稍微调整一下文本结构与引用细节,就可以嵌入到我们的提示词中。这样基本也能让提示词按照预期运行起来:当然,想要更好地控制生成结果,尤其是视觉样式的稳定性,还得经过多次调试,并根据测试bug微调提示词,直至稳定运行。[heading3]拓展:Lisp、Markdown格式是否必需?[content]不是。经过两年的蓬勃发展,大语言模型的提示工程已经呈现出百花齐放的局面。无论LangGPT结构化提示词,还是CRISPE和CARE等框架,业界涌现出了多种提示词方法论。在格式方面,我们看到了LangGPT在用的Markdown格式,也有像刚哥最近青睐的Lisp伪代码格式,甚至还有像我那样灵活混搭的方案。但真正重要的不是提示词的外在形式,而是内容是否与AI的"理解机制"相契合。如果要我推荐提示词的写法:对于刚入门的朋友:首推LangGPT结构化提示词,直观易懂,可以快速上手。对于想要进阶的用户:一方面,LangGPT依然是一个可靠的选择;另一方面,有额外的精力和好奇心,不妨尝试一下刚哥推崇的Lisp伪代码格式,能够强迫自己精炼提示词,对措辞理解、概念认知也有很大帮助。

Others are asking
数字人讲解产品
以下是关于数字人讲解产品的相关内容: 电商方面: 1. 添加产品/介绍背景:若有自己的视频/图片素材可用,若无,可根据搜索添加。 2. 扣像结合背景:在剪映中把数字人扣下,导入视频,点击画面选择抠像,点击智能抠像,调整大小和位置。 3. 添加字幕和音乐:智能识别字幕,可搜索或手动添加喜欢的音乐。最终形成所需视频,可用于带货或讲解产品,也能应用于直播(直播可能收费,短视频可通过购买邮箱注册使用免费时长或直接购买会员版)。 XiaoHu.AI 日报 1 月 14 日相关: 1. 无需真人模特,上传产品图片,数字人即可手持产品进行口播展示。 2. 支持语音和口型同步,动作、姿势可定制,提供 1000+多国家数字人模特。 3. 覆盖全球 28+种语言,能快速生成产品宣传视频,省去拍摄烦恼。测试视频效果接近成熟,嘴型部分仍需微调。在线体验:
2025-04-11
我有一份青年创新讲稿,想用自己的数字形象和我自己的声音讲解,背景要做一些和讲稿内容相符的视频。什么工具最称手呢?
以下是一些适合您需求的工具: 1. HeyGen:这是一个 AI 驱动的平台,能创建逼真的数字人脸和角色。它运用深度学习算法生成高质量肖像和角色模型,适用于游戏、电影和虚拟现实等领域。 2. Synthesia:一个 AI 视频制作平台,允许创建虚拟角色并进行语音和口型同步,支持多种语言,可用于教育视频、营销内容和虚拟助手等场景。 3. DID:一家提供 AI 拟真人视频产品服务和开发的公司,只需上传人像照片和输入要说的内容,平台的 AI 语音机器人会自动转换成语音,然后合成逼真的会开口说话的视频。 此外,还有以下工具供您参考: 1. 开源且适合小白用户的工具:具有一键安装包,无需配置环境,简单易用。其功能包括生成数字人视频,支持语音合成和声音克隆,操作界面中英文可选,系统兼容 Windows、Linux、macOS,模型支持 MuseTalk(文本到语音)、CosyVoice(语音克隆)。使用时需下载 8G+3G 语音模型包,启动模型即可。相关链接:GitHub: 2. Google Veo 2:能生成逼真的 Vlog 视频,效果接近真实,几乎难以分辨,适合创作和内容制作。相关链接: 请注意,这些工具的具体功能和可用性可能会随时间和技术发展而变化。在使用时,请确保遵守相关使用条款和隐私政策,并注意对生成内容的版权和伦理责任。
2025-04-02
详细讲解一下ragflow框架,同时对比一下ragflow与常规知识库有什么优势,在graphrag的实现方面ragflow又是怎么做的?
RAG(检索增强生成)是一种有效的解决方案,下面为您详细讲解: RAG 工作流程: 1. 检索(Retrieval):如同在图书馆中,系统会从知识库或文档集合中找出与用户问题相关的内容。 2. 增强(Augmented):对检索到的信息进行筛选和优化,挑出最相关和有用的部分。 3. 生成(Generation):将整合的信息生成自然流畅、易于理解的回答。 RAG 类似于一个超级智能的图书馆员,综合起来: 1. 检索:从庞大知识库中找到相关信息。 2. 增强:筛选优化确保找到最相关部分。 3. 生成:整合信息给出连贯回答。 RAG 的优势: 1. 成本效益:相比训练和维护大型专有模型,实现成本更低。 2. 灵活性:能利用多种数据源,包括结构化和非结构化数据,迅速适应不同领域和变化的数据。 3. 可扩展性:随时增加或更新知识库内容,无需重新训练模型。 RAG 与常规知识库的对比优势: 常规知识库可能存在知识更新不及时、数据来源单一等问题。而 RAG 能够从多种数据源获取信息,并且可以根据用户的实时需求进行检索和优化,生成更贴合需求的回答。 在 GraphRAG 的实现方面,目前提供的内容中未明确提及相关具体实现方式。 同时需要注意的是,RAG 也存在一些缺点,比如相比于专有模型的方案,回答准确性可能不够。
2025-03-28
如何将一个现成的PPT用AI生成口语话的讲解文字?
以下是将现成的 PPT 用 AI 生成口语化讲解文字的一些参考方法和示例: 示例一: 标题:张翼然:用 AI 为教师减负(3H).pdf 一级标题:教师的 AI 减负指南生成式人工智能在教学中的应用 二级标题:教师使用 AI 小技巧 三级标题:提示词设计公式之——RTFC 内容: 开场 PPT(口播):大家好,今天我将演示如何利用 AI 助手 Kimi.ai 展自适应学习。Kimi.ai 支持 200k 输入,非常适合用于学习导师。首先,我会给 Kimi.ai 输入一份讲义 PDF,请它提取知识点。 操作录屏(口播):我在对话框输入“请提敢以下溶 DF 中的主要知识点”然后上讲义 PDF 文件。我们看到 i'.aig 快列出了这份讲义的知识点提纲,包活认知负荷、工作记忆等概念。这样学生就能快速了解这堂课的重点内容。 操作录屏(口播):接下来,我输入“认知负荷这个概念我还是不太懂,我只是一个 15 岁的孩子,你能否通俗地解释一下,并举几个例?”。我们看到 Kimi.ai 用通俗的语言解释了认知负荷,并举了背诵课文和学习编程两个例子。通过这种互动式讲解,学生更容易理解概念。 操作录屏(口播):我回复“我懂了,谢谢!那么请你出 5 道难度递增的选择题考考我吧,我可是学霸!”。Kimi.ai 很快生成了 5 道关于认知负荷的选择题。我回答了第一、3、5 题,其中第 3 题答错了。我们看到只imi.ai 的反馈,第一题称赞我掌握了基本概念,第 3 题指出了我的错误并解释正确答案,第 5 题夸赞我的超常发挥并总结了知识点。通过测评反馈,学生能及时查缺补漏、巩固知识。 操作录屏(口播):在最后,我提出了一个拓展问题“认知负荷理论对教学设计有何指导意义?”。Kimi.ai 不仅解答了问题还推荐了两篇相关文献。这种个性化的学习资源推荐,能引导学生深入探充感兴趣的话题。 总结 PPT(口播):通过本次演示,我们看到利用 ChatGPT 进行自适应学习的几个关键环节:提取知识点、互动式讲解、定制练习题、测评与反馈、拓展资源推荐等。在使用中要注意提问要明确、注剩引导过程养成自主探究习惯这样才能真正发挥AI 助手的智能优势,现高效个性化学习。 示例二: 标题:实战:每个人都可以用 10 分钟轻松制作 AI 换脸、AI 数字人视频的方法! 一级标题:二、创建视频内容 内容: 2.1 准备内容:我们需要先准备一段视频中播放的内容文字。内容可以是产品介绍、课程讲解、游戏攻略等任何你希望推广,让大家了解的文字。当然,你也可以利用 AI 来生成这段文字。 2.2 制作视频:我们使用剪映 App 来对视频进行简单的处理。这是一款功能强大的视频编辑软件,个人免费版就足够我们实现制作目的。电脑端打开剪映 App,点击“开始创作”。进入创作页面:我们选择顶部工具栏中的:文本,并点击默认文本右下角的“+”号,这个动作代表了为视频添加一个文字内容的轨道。添加完成后,在界面的右侧。我们将准备好的文字内容替换默认文本内容。视频内容就准备好了,这将为数字人提供语音播放的内容,以及生成与文字内容相对应的口型。 希望以上内容能为您提供一些帮助。
2025-03-26
multi agents讲解
多智能体(MultiAgent)是由多个自主、独立的智能体(Agent)组成的系统。每个智能体都能感知环境、决策并执行任务,且它们之间能信息共享、任务协调与协同行动以实现整体目标。 随着大型语言模型(LLM)的出现,以 LLM 为核心构建的 Agent 系统受广泛关注。目前常见框架集中在单 Agent 场景,其核心是 LLM 与工具协同配合,可能需与用户多轮交互。而多 Agent 场景为不同 Agent 分配角色,通过协作完成复杂任务,与用户交互可能减少。 构建多 Agent 框架主要组成部分包括: 1. 环境:所有 Agent 处于同一环境,包含全局状态信息,Agent 与环境有信息交互与更新。 2. 阶段:采用 SOP 思想将复杂任务分解为多个子任务。 3. 控制器:可以是 LLM 或预先定义好的规则,负责环境在不同 Agent 和阶段间切换。 4. 记忆:因 Agent 数量增多,消息数量及每条消息的记录字段增加。 此外,吴恩达最新演讲提到四种 Agent 设计范式,Reflection 和 Tool Use 相对经典且广泛使用,Planning 和 Multiagent 较新颖有前景。Reflection 类似于 AI 自我纠错和迭代,如让 AI 写代码并自我检查修改。Tool Use 指大语言模型调用插件拓展能力。在一些场景中,Reflection 可用两个 Agent,一个写代码,一个 Debug。
2025-03-14
清华大学deepseek讲解视频
以下是为您找到的与清华大学和 DeepSeek 相关的信息: 清华大学计算机科学与技术系助理教授章明星从大模型当前的发展阶段出发,分享了关于模型架构演进、大模型 Scaling Law 的发展趋势及相应趋势对系统层面影响的看法,并探讨了未来的发展方向。 《DeepSeek 的秘方是硅谷味儿的》提到 DeepSeek 是一家位于杭州的人工智能创业公司,其大语言模型 DeepSeekV3 在全球引发广泛关注。该模型以 550 万美元和 2000 块低配版英伟达 H800 GPU 训练,超越了多个顶级模型,获得硅谷研究者的高度评价。DeepSeek 的成功被视为中国式创新的典范,但其独特之处在于其更像一个研究机构,注重技术创新而非商业化运作,吸引了大量年轻的顶尖研究人才。 但未找到清华大学 deepseek 讲解视频的直接相关内容。
2025-03-05
如何一步步学AI,学生
对于学生学习 AI ,可以按照以下步骤进行: 1. 从编程语言入手学习:可以选择 Python 、 JavaScript 等编程语言,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台:例如使用 ChatGPT 、 Midjourney 等 AI 生成工具,体验 AI 的应用场景。还可以探索一些面向学生的 AI 教育平台,如百度的“文心智能体平台”、 Coze 智能体平台等。 3. 学习 AI 基础知识:了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等,学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目:参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动,尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态:关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展,思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 对于新手学习 AI : 1. 了解 AI 基本概念:阅读相关资料熟悉 AI 的术语和基础概念,了解其主要分支以及它们之间的联系,浏览入门文章了解 AI 的历史、应用和发展趋势。 2. 开始 AI 学习之旅:在相关的学习路径中找到为初学者设计的课程,通过在线教育平台(如 Coursera 、 edX 、 Udacity )按照自己的节奏学习,推荐李宏毅老师的课程。 3. 选择感兴趣的模块深入学习:根据自己的兴趣选择特定的模块(如图像、音乐、视频等)进行深入学习,掌握提示词的技巧。 4. 实践和尝试:在理论学习之后进行实践,尝试使用各种产品做出作品,分享实践成果。 5. 体验 AI 产品:与 ChatGPT 、 Kimi Chat 、智谱、文心一言等 AI 聊天机器人互动,了解其工作原理和交互方式。 此外,对于纯小白开发应用,比如通过 Claude 和人类导师的帮助用 Unity 开发小游戏,需要将任务拆解到足够小,针对性地设计学习路径,并密切关注随时解决遇到的问题。小小的任务,AI 可以胜任、非常耐心地指导,但最好有人类导师一开始把任务拆解好,并随时从坑里捞人。
2025-03-04
你是一名资深程序员和经验丰富的编程教授,能够以通俗保姆式的方法教会小白从0开始编程序。现在要你教我完成如下任务:我需要编写一个程序,能够每天和不同的文生图大语言模型对话,生成不同场景下的机器人设计图片。应该怎么一步步实现?
以下是为您提供的从 0 开始编写一个能够每天和不同的文生图大语言模型对话,并生成不同场景下机器人设计图片的程序的步骤: 首先,对于小白来说,可以参考以下教程进行学习和操作: 1. 张梦飞的【保姆级】一步一图,手把手教你把 AI 接入微信: 重点感谢@熊猫大侠的不厌其烦的答疑解惑,并推荐@熊猫大侠的老王。 作者是看着 WaytoAGI 里大佬的文章学习制作的。有代码基础的同学,可以直接移步到这三篇教程中。 本篇教程适合“小白中的小白”,简单粗暴,不做讲解,复制粘贴即可。一步一图,保姆级指引。 本篇文章中,没有写每一步代码的含义和配置文件的对应含义。如果想要深入研究和调优,请移步上方推荐的三篇文章。 2. 大圣的胎教级教程:万字长文带你理解 RAG 全流程: 这是一篇面向普通人的 RAG 科普,不是面向 RAG 研究者的技术向文章。 文章一共 1.6 万字,旨在让您对 RAG 技术有更全面的认知,在使用 RAG 相关产品时,可以更好地理解其能力边界,从而充分发挥其潜力。 本文适合任何人,包括 AI 爱好者、为企业寻找知识库解决方案的老板、AI 产品经理等。 3. Yeadon 的写给小小白的从游戏入手学习搓图像流 bot: 学会将发布的图像流添加进 bot 中,并测试生成海报,解决无法在聊天界面显示图片的问题,重新调整图像流使其在对话窗口显示图片,最后发布 Bot。 通过这份教程,可以学会如何在 Coze 平台上打造一个有趣的 AI 游戏助手,掌握 AI 人格设定和对话逻辑的设计方法,了解如何配置图像生成功能。 希望以上内容对您有所帮助,祝您编程顺利!
2024-12-29
对于一个什么都不懂的 AI小白,你建议他从哪个AI技能开始学?如何一步步开始强大自己使用AI的能力
对于一个 AI 小白,以下是一些学习建议: 1. 编程语言:可以从 Python、JavaScript 等编程语言开始学习,掌握编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. AI 工具和平台:使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。探索面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. AI 基础知识: 了解 AI 背景知识,包括基础理论(人工智能、机器学习、深度学习的定义及其关系)、历史发展(回顾 AI 的发展历程和重要里程碑)。 掌握数学基础,如统计学基础(熟悉均值、中位数、方差等统计概念)、线性代数(了解向量、矩阵等基本概念)、概率论(基础的概率论知识,如条件概率、贝叶斯定理)。 熟悉算法和模型,包括监督学习(了解常用算法,如线性回归、决策树、支持向量机(SVM))、无监督学习(熟悉聚类、降维等算法)、强化学习(简介强化学习的基本概念)。 学习评估和调优,了解如何评估模型性能(包括交叉验证、精确度、召回率等),以及如何使用网格搜索等技术优化模型参数。 掌握神经网络基础,理解网络结构(包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)),了解常用的激活函数,如 ReLU、Sigmoid、Tanh。 4. 实践项目:参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动,尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注前沿动态:关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展,思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 总之,AI 小白可以从编程基础、工具体验、知识学习、实践项目等多个方面入手,全面系统地学习 AI 知识和技能,逐步提升自己使用 AI 的能力。
2024-11-22
嗨喽,我刚接触ComfyUI,想从简单的案例开始,一步步挑战更复杂的项目。有没有什么好地方可以找到这种分层次(基础-进阶)的学习案例呢?我想边学边练,这样印象更深刻。
以下是在飞书学习群中可以找到的 ComfyUI 分层次(基础进阶)的学习案例: 基础课程:陈旭常用节点讲解和简单的节点制作、长风归庭基础教程+工作流创建、王蓉? ? Wang Easy 基础搭建和转绘、唯有葵花向日晴基础教程,工作流开发,实际应用场景、苏小蕊基础教程、Sophy 基础课程、啊乐福基础课程、塵优秀案例、风信基础课程➕平面设计应用场景、北南基础课程、Damon 基础课程、雪娴_CC 基础课程(从安装开始)、Joey 实时转绘工作流、三思基础教程、晓珍、戴志伟基础课程、Moana 基础教程、Jl 基础教程、kk 基础教程、samuel 基础 进阶课程:ヘヘ阿甘采样器原理与优化、热辣 HuolarrAI 系统课私聊图生视频、咖菲猫咪基础教程/工作流搭建思路/各版本模型使用的优缺点、傅小瑶 Lucky 如何制作多人转绘视频、云尚工作流节点搭建思路、FǎFá 热门节点功能,搭建、森林小羊基本报错解决方式及基础工作流逻辑分析、蜂老六装一百个最新常用插件后如何快速解决冲突问题、阿苏工作流框架设计、aflyrt comfyui 节点设计与开发、老宋&SD 深度解释虚拟环境部署和缺失模型的安装、Liguo 模型训练、郑个小目标针对于某个插件的深入讲解、波风若川报错解决、皮皮 Peter 工作流的设计规划和调优逻辑、Jāy Līn 锦鲤工作流搭建逻辑和原理、K 如何本地部署基础生图参数选择工作流的基本应用、Adai 基础课程、镜生视频、梦飞基础教程、???各个节点讲解和参数含义、Mr.大狐?报错解决、Duo 多吉~基础课程、渔舟基础课程+工作流搭建思路、乔木船长工作流、☘️基础教程、☘基础教程、工作流设计+典型案例剖析、麒白掌工作流搭建、OutSider 风格迁移、吴鹏基础+工作流搭建、拾光工作流基础搭建从入门到精通、茶浅浅。视频转绘/节点工作流介绍、百废待.新(早睡版)工作流从入门到进阶、电商应用场景、小马哥人物一致性分镜画面生成、C 张工作流搭建+电商落地应用、uui 视频风格迁移、你头发炸了基础教程搭建思路、阿头实战案例分享
2024-09-24
请你以制定清晰的任务列表和优先级的方式,来制作ai绘画相关的课程,帮助小白一步步上手操作成为大神。
以下是一个针对小白用户,从零开始学习AI绘画的清晰任务列表和优先级建议: 阶段一:基础知识学习 1. 了解AI绘画的基本概念 理解AI绘画与传统绘画的区别 了解AI绘画在艺术创作中的应用 2. 选择合适的AI绘画工具 研究不同AI绘画工具的特点和优缺点 选择一个适合自己的AI绘画工具 3. 学习基础绘画技巧 了解基本的绘画术语和技巧 学习如何使用AI绘画工具进行基础操作 阶段二:AI绘画工具使用 1. 熟悉AI绘画工具的基本操作 学习如何创建、编辑和管理画布 学习如何使用工具箱中的工具 2. 掌握AI绘画工具的功能 学习如何使用AI绘画工具的自动生成功能 学习如何调整AI绘画工具的参数和设置 3. 实践AI绘画工具的基本操作 尝试绘制简单的图形和形状 尝试使用AI绘画工具的自动生成功能创作作品 阶段三:AI绘画创作实践 1. 创作个人风格的作品 学习如何利用AI绘画工具创作具有个人风格的作品 尝试创作不同风格和主题的作品 2. 学习AI绘画工具的高级功能 学习如何使用AI绘画工具的高级功能,如AI生成、AI优化等 尝试创作更复杂和高质量的作品 3. 实践AI绘画创作 尝试创作不同风格和主题的作品,提高创作技巧 不断学习和实践,提升自己的AI绘画水平 阶段四:AI绘画作品展示和交流 1. 分享和展示自己的AI绘画作品 选择合适的平台分享和展示自己的AI绘画作品 与其他AI绘画爱好者交流和分享经验 2. 参加AI绘画相关的比赛和活动 了解和参加AI绘画相关的比赛和活动 通过比赛和活动提升自己的AI绘画水平 3. 持续学习和提升 关注AI绘画领域的新技术和趋势 不断学习和提升自己的AI绘画技巧和水平 通过以上任务列表和优先级建议,小白用户可以逐步学习AI绘画,并逐渐提升自己的创作水平。在学习过程中,建议多实践、多交流,不断提升自己的技能和创作能力。
2024-04-16
我想尝试做一个初级ai项目 我是零基础 需要你告诉我每一步要做什么
如果您是零基础想尝试做一个初级 AI 项目,以下是每一步的建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习。 3. 选择感兴趣的模块深入学习: 根据自己的兴趣选择特定的 AI 模块(比如图像、音乐、视频等)进行深入学习。 掌握提示词的技巧。 4. 实践和尝试: 理论学习之后,进行实践巩固知识,尝试使用各种产品做出作品。 在知识库分享实践后的成果。 5. 体验 AI 产品: 与现有的 AI 产品(如 ChatGPT、Kimi Chat、智谱、文心一言等)进行互动,了解其工作原理和交互方式。 如果您想开发一个 AI 网站项目,具体步骤如下: 1. 需求分析与代码生成:明确项目的目标和需求,让相关工具生成代码。 2. 环境配置自动化:选择合适的技术(如 Vue+TypeScript),无需手动打开终端配置环境。 3. 问题诊断与修复:可能会出现报错,将报错信息返回给相关工具进行自动检查和修复。 4. 界面优化与细节打磨:优化导航栏等细节,插入细节图片,不断调整。 5. 功能迭代与完善:逐步完善项目功能。 如果您想成为一名 AI 提示词工程师,需要具备以下能力: 1. 岗位技能要求:市场调研、观察目标群体工作流、创造并拆解需求、选型现有 AI 解决方案做成产品来解决需求、抽象出来集成为一个互联网 APP 产品、写 PRD、画 APP 产品原型图、组织团队进行 APP 产品开发。 2. 学习方法: 对于零基础小白,可在网上找基础课程学习。 观看科普类教程。 阅读 OpenAI 的文档,理解每个参数的作用。 推荐使用一些练手的 Prompt 工具和相关教程文档。
2025-01-18
写一个关于AI面试B端软件的需求文档,里面核心功能包括AI面试功能、背调功能(比如线上、证明人、应聘者提供的材料)、简历筛选关键词功能(比如UI设计里面负责项目包括用户调研、原型设计、需求缝隙、高保真设计、切图)、提取简历证书项目功能(比如初级设计师、建筑设计师、一级建造师)。
以下是为您生成的关于 AI 面试 B 端软件的需求文档: 一、核心功能 1. AI 面试功能 用友大易 AI 面试产品:具有强大技术底座、高度场景贴合度、招聘全环节集成解决方案、先进防作弊技术及严密数据安全保障,能完成面试、初筛并自动发送面试邀约。 海纳 AI 面试:通过在线方式自动面试、评估,精准度高达 98%,面试效率比人工提升 5 倍以上,候选人到面率提升最高达 30%。 InterviewAI:在线平台提供面试职位相关问题及 AI 生成的推荐答案,候选人用设备麦克风回答,每个问题最多回答三次,会收到评估、建议和得分。 2. 背调功能 线上背调。 证明人背调。 对应聘者提供材料的背调。 3. 简历筛选关键词功能 UI 设计方面,负责项目包括用户调研、原型设计、需求缝隙、高保真设计、切图。 4. 提取简历证书项目功能 初级设计师。 建筑设计师。 一级建造师。 二、案例参考 1. HR 相关案例 HR:团队绩效管理,根据团队和个人绩效的往期数据,分析员工绩效排名,输出绩效考评和迭代改进建议。 HR:面试工具,作者开发使用 GPT4 技术的实时转录工具,帮助求职者在面试中生成完美回答。 2. 其他工作场景案例 销售:话术总结优缺点,涵盖产品特点、服务优势等方面。 销售:定制销售解决方案,涉及企业产品和服务内容等方面。 客服:定制客服话术,包含产品知识、使用方法等关键词库。 三、提示词工程师面试经验分享 某岗位面试一面完不到 2 个小时就通知二面,效率较高。 技术面:面试官直接给出同行美妆 GPT 案例,让判断实现方式,应试者提出 C 端优化方案及补充 B 端商业化方案后通过。 BOSS 面:了解学业情况、经历和意向,询问经典问题。
2024-12-02
作为一个初级插画师有哪些ai工具可以帮助我
对于初级插画师,以下是一些可以提供帮助的 AI 工具: 1. CADtools 12:这是 Adobe Illustrator 的插件,为其添加了 92 个绘图和编辑工具,包括图形绘制、编辑、标注、尺寸标注、转换、创建和实用工具。 2. Autodesk Fusion 360:是 Autodesk 开发的一款集成了 AI 功能的云端 3D CAD/CAM 软件,能帮助创建复杂几何形状和优化设计。 3. nTopology:基于 AI 的设计软件,可创建复杂 CAD 模型,包括拓扑优化、几何复杂度和轻量化设计等。 4. ParaMatters CogniCAD:基于 AI 的 CAD 软件,能根据用户输入的设计目标和约束条件自动生成 3D 模型,适用于拓扑优化、结构设计和材料分布等领域。 5. 生成设计工具:一些主流 CAD 软件,如 Autodesk 系列、SolidWorks 等,提供基于 AI 的生成设计工具,可根据输入的设计目标和约束条件自动产生多种设计方案。 在绘制逻辑视图、功能视图、部署视图方面,以下工具可供选择: 1. Lucidchart:流行的在线绘图工具,支持多种图表创建,包括逻辑视图、功能视图和部署视图,可通过拖放界面轻松创建架构图。 2. Visual Paradigm:全面的 UML 工具,提供创建各种架构视图的功能,包括逻辑视图(类图、组件图)、功能视图(用例图)和部署视图(部署图)。 3. ArchiMate:开源的建模语言,专门用于企业架构,支持逻辑视图创建,可与 Archi 工具一起使用,该工具提供图形化界面创建模型。 4. Enterprise Architect:强大的建模、设计和生成代码工具,支持创建多种架构视图,包括逻辑、功能和部署视图。 5. Microsoft Visio:广泛使用的图表和矢量图形应用程序,提供丰富模板用于创建逻辑视图、功能视图和部署视图等。 6. draw.io(现称为 diagrams.net):免费的在线图表软件,允许创建各种类型图表,包括软件架构图,支持创建逻辑视图和部署视图等。 7. PlantUML:文本到 UML 的转换工具,通过编写描述性文本自动生成序列图、用例图、类图等,帮助创建逻辑视图。 8. Gliffy:基于云的绘图工具,提供创建各种架构图的功能,包括逻辑视图和部署视图。 9. Archi:免费开源工具,用于创建 ArchiMate 和 TOGAF 模型,支持逻辑视图创建。 10. Rational Rose:IBM 的 UML 工具,支持创建多种视图,包括逻辑视图和部署视图。 如果您想快速体验 AI 绘画工具: 1. 最低成本的开始:扣子 + ByteArtist 网址:https://www.coze.cn/home 优点:不需要翻墙,无收费,可以直接生成 注册:手机号或抖音号或飞书号 操作步骤:需要在 coze 的 bot 里面添加绘图插件 时间:5min 2. 先锋的:Midjourney 网址:https://www.midjourney.com/explore?tab=random 优点:图片和描述相关性更大,风格更加显著 限制:需要翻墙,需要 Gmail 注册,不免费,在 discord 上代理使用 时间:30 60min 价格:8 美元一个月/ 200 张图
2024-10-11
我想要做一个给初级小白的 AI 课程,请给列一个目录
以下是为初级小白设计的 AI 课程目录: 1. 初学者课程推荐 微软的 AI 初学者课程 名称:微软的 AI 初学者课程 作者/来源:微软 总结:推荐阅读《Introduction and History of AI》从这里起步 链接: 发布日期:2023/02/10 必看星标:?? AI for every one(吴恩达教程) 名称:AI for every one 作者/来源:吴恩达 总结:前 ChatGPT 时代的 AI 综述 链接: 发布日期:2023/03/15 必看星标:?? 大语言模型原理介绍视频(李宏毅) 名称:大语言模型原理介绍视频 作者/来源:李宏毅 总结:可以说在众多中文深度学习教程中,李宏毅老师讲的应该是最好的,最通俗易懂 链接: 发布日期:2023/05/01 谷歌生成式 AI 课程 名称:谷歌生成式 AI 课程 作者/来源:谷歌 总结:注:前 4 节课为入门课 链接: ChatGPT 入门 名称:ChatGPT 入门 作者/来源:OpenAI 总结:注册、登录、简单使用方法等 链接: 2. 新手学习 AI 的指南 了解 AI 基本概念 建议阅读「」部分,熟悉 AI 的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,这些文章通常会介绍 AI 的历史、当前的应用和未来的发展趋势。 开始 AI 学习之旅 在「」中,找到一系列为初学者设计的课程。这些课程将引导您了解生成式 AI 等基础知识,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 选择感兴趣的模块深入学习 AI 领域广泛(比如图像、音乐、视频等),可以根据自己的兴趣选择特定的模块进行深入学习。 3. 微软 AI 初学者入门课程 编号:I 课程:人工智能导论 介绍:人工智能导论 PyTorch:人工智能导论 Keras/TensorFlow:人工智能导论 实验:人工智能导论 编号:1 课程:人工智能简介和历史 介绍: 编号:II 课程:符号人工智能 介绍:符号人工智能 PyTorch:符号人工智能 Keras/TensorFlow:符号人工智能 实验:符号人工智能 编号:2 课程:知识表示和专家系统 介绍:
2024-09-03
生成提示词的提示词
以下是关于生成提示词的相关内容: 生成提示词的思路和方法: 可以根据效果好的图片中的高频提示词去反推效果,结合不同字体效果的描述,打包到一组提示词中。提示词给到 AI 后,AI 会根据给定文字的文义,判断适合的情绪风格,然后给出适合情绪的字体和风格描述、情感氛围等,加上一些质量/品质词,形成输出提示词结构。为了让 AI 更能描述清晰风格,可以先给定多种参照举例。 具体操作步骤: 打开 AI 工具的对话框,将相关提示词完整复制粘贴到对话框。推荐使用 ChatGPT 4o。 当 AI 回复后,发送您想要设计的文字。可以仅发送想要的文字,也可以发送图片(适合有多模态的 AI)让 AI 识别和反推。 将 AI 回复的提示词部分的内容复制到即梦 AI。 对生成提示词的一些观点: 提示词生成提示词并非必要,不一定能生成最好的 Prompt 框架,修改过程可能耗时且不一定能修改好,不如花钱找人写。 一句话生成完整符合需求的 Prompt 非常困难,只能大概给出框架和构思,需要更低成本地调整需求和修改 Prompt。 不同生图工具生成提示词的特点: 即使是简短的描述,生成的提示词也非常细节、专业。 会解析需求,找出核心要点和潜在的诠释点,并给出不同的提示词方案。 提示词构建更多在于增强,而不是发散,生成的内容更符合期望。 同时生成中、英双版本,国内外工具通用无压力。 14 款 AI 生图工具实测对比: 本次实测用到的工具包括国内版的即梦 3.0(https://jimeng.jianying.com/aitool/home)、WHEE(https://www.whee.com)、豆包(https://www.doubao.com/chat)、可灵(https://app.klingai.com/cn/texttoimage/new)、通义万相(https://tongyi.aliyun.com/wanxiang/creation)、星流(https://www.xingliu.art)、LibiblibAI(https://www.liblib.art),以及国外版的相关工具。
2025-04-20
大模型的系统提示词
大模型的系统提示词主要包括以下方面: 1. 在“五津:一键生成‘摸鱼打工猫’视频”中,针对用户选择的主题和回答,总结用户的创作意图,如“打工猫摸鱼的 2 小时,在巴厘岛能看一场日落”,并根据此生成 4 组体现幽默风趣、以宫崎骏风格描绘主角为摸秋刀鱼橘猫的绘图提示词,以数组形式输出到“tishici”,将用户意图输出到“biaoti”。 2. 在“云中江树:智能对决:提示词攻防中的 AI 安全博弈”中,系统提示词的相关防御措施分为输入侧、模型侧和输出侧三个部分。输入侧可进行意图识别、语义匹配等综合判断用户输入是否恶意;模型侧对于有能力的厂商应增强安全性并平衡性能,开发者则要在开发中带着安全意识优化系统提示词,加入安全引导和禁止内容等;输出侧可使用传统防御和内容过滤手段,并针对大模型特点进行私有数据泄露等检查。此外,还提到间接注入和提示词泄露的情况,间接注入常发生在应用获取依赖外部数据资源时,攻击者通过隐藏恶意指令完成攻击;提示词泄露指试图操纵模型输出获取部分或全部系统提示词,大模型输出内容可分为系统提示词、用户提示和助手提示词三段,通过攻击手段可获取系统提示词。
2025-04-18
你是福州市政府工作人员,中国移动拟邀请福州市委书记参加中国移动人工智能生态大会并致辞,该大会是第八届数字峰会的组成部分,需要撰写市委书记的致辞稿,需要中国移动准备哪些素材,请告诉我提示词
以下是为您整理的相关内容: 《促进创新的人工智能监管方法》:包含了关于通用人工智能价值链、相关案例研究以及对人工智能监管框架的探讨等内容。 陶力文律师关于律师写好提示词用好 AI 的方法:包括初始化的欢迎语、遵循的规则、获取案例洞察报告和目标群体、输出纲要和写作方案、根据用户反馈调整等流程。 开幕式主持稿:涉及基地代表发言的时间、主题、物料配合和人员配合等信息。 但这些素材似乎与为中国移动准备市委书记致辞稿所需的素材关联不大。一般来说,为撰写市委书记在中国移动人工智能生态大会上的致辞稿,中国移动可能需要准备以下素材: 1. 本次大会的详细介绍,包括主题、目标、议程安排等。 2. 中国移动在人工智能领域的发展成果、战略规划和未来愿景。 3. 中国移动人工智能生态的构建情况,如合作伙伴、合作项目等。 4. 本次大会在第八届数字峰会中的地位和作用。 5. 相关行业的人工智能发展现状和趋势。 6. 福州市在人工智能领域的发展情况和与中国移动合作的展望。
2025-04-18
调教ai的利器,提示词工程
提示词工程是调教 AI 的重要手段,以下是关于提示词工程的相关知识: 作用:避免 AI 掉入“幻觉”陷阱,引导 AI 生成更可靠的内容。 原理:AI 对提示词的理解能力与幻觉的产生密切相关,清晰、具体的提示词能帮助其更好地理解意图,减少错误。 技巧: 明确要求 AI 引用可靠来源,如在询问历史事件时要求引用权威文献,询问科学事实时要求引用科研论文,询问法律条款时要求引用官方文件。 要求 AI 提供详细的推理过程,如询问数学公式时展示推导过程,询问代码功能时逐行解释含义。 明确限制 AI 的生成范围,如询问名人名言时指定名人姓名和相关主题,询问新闻事件时指定时间范围和关键词。 通过这些清晰、具体、有针对性的提示词技巧,可以引导 AI 生成更准确和可靠的内容。但提示词工程只是辅助手段,从根本上解决 AI 幻觉问题还需从数据、模型、训练方法等多方面努力。 提示词工程就像与博学但有点固执的老教授交流,精心设计输入文本能引导 AI 更好地理解需求并给出更准确有用的回答。比如,问“请用简单的语言,为一个 10 岁的小朋友解释什么是人工智能,并举一个生活中的例子”,AI 更可能给出通俗易懂的解释。 在使用 AI 工具的过程中,可能会出现答非所问、回答格式不标准等问题,为让 AI 更好地服务,需要学习提示词工程。当用户的需求接近 AI 真实范围时,可通过写提示词甚至创建 BOT 来优化使用效果。
2025-04-15
提示词
提示词是让 AI 听懂您的需求并生成想要画面的关键。 基础公式(新手必学):景别+运镜+主体+动作+风格。示例:特写镜头|镜头旋转|发光水晶球悬浮|星尘特效|赛博朋克风格。 进阶公式(提升质感):景别+运镜+主体(细节)+动作(速率)+场景(层次)+氛围+光影。示例:全景俯拍|无人机跟拍|雪山湖泊(镜面倒影)|慢动作|冷色调光线|自然纪录片风格。 在星流一站式 AI 设计工具中,prompt 输入框可输入提示词,使用图生图功能辅助创作。 提示词用于描绘您想生成的画面,支持中英文输入。不同模型对输入语言有不同要求,如通用大模型与基础模型 F.1、基础模型 XL 使用自然语言,基础模型 1.5 使用单个词组。 写好提示词要做到: 1. 内容准确,包含人物主体、风格、场景特点、环境光照、画面构图、画质等,比如:一个女孩抱着小猫,背景是一面红墙,插画风格、孤独感,高质量。 2. 调整负面提示词,点击提示框下方的齿轮按钮,弹出负面提示词框,负面提示词可帮助 AI 理解不想生成的内容,如不好的质量、低像素、模糊、水印。 3. 利用“加权重”功能,让 AI 明白重点内容,可在功能框增加提示词,并进行加权重调节,权重数值越大,越优先。还可对已有的提示词权重进行编辑。 4. 借助辅助功能,如翻译功能可一键将提示词翻译成英文,还有删除所有提示词、会员加速等功能。 如果您接触过大量提示工程相关的示例和应用,会注意到提示词由一些要素组成,包括指令(想要模型执行的特定任务或指令)、上下文(包含外部信息或额外的上下文信息,引导语言模型更好地响应)、输入数据(用户输入的内容或问题)、输出指示(指定输出的类型或格式)。但提示词所需的格式取决于想要语言模型完成的任务类型,并非所有要素都是必须的。
2025-04-15
如何成为提示词工程师
提示词工程师是在与人工智能模型交互时,负责设计和优化提示的专业人员,旨在通过精心构造的提示引导模型产生准确、有用和相关的回答。 其主要职责包括: 1. 设计提示:根据用户需求和模型能力设计有效的提示,考虑提示的长度、结构、措辞和信息量等因素,以清晰传达用户意图并引导模型生成满意结果。 2. 优化提示:通过收集用户反馈、分析模型结果和实验不同的提示策略等方式不断优化提示,提高模型性能。 3. 评估提示:使用各种指标如模型的准确率、流畅度和相关性等来评估提示的有效性。 提示词工程师需要具备以下技能和知识: 1. 领域知识:对所工作的领域有深入了解,以便设计出有效的提示。 2. 自然语言处理(NLP):了解 NLP 的基本原理和技术,能够理解和生成自然语言文本。 3. 人工智能(AI):了解 AI 的基本原理和技术,以便理解和使用 AI 模型。 4. 沟通能力:具备良好的沟通能力,与用户、团队成员和其他利益相关者有效沟通。 以下是一些提示词工程师工作的实际案例,比如在市场营销类和商业类中,有自动优化 Prompt 的案例,如 JackeyLiu 熟悉的转化步骤包括: 1. 角色和能力:基于问题思考 chatGPT 最适合扮演的角色,应是该领域最资深的专家,适合解决问题。 2. 上下文说明:思考提出问题的原因、背景和上下文。 3. 任务陈述:基于问题进行陈述。 提示词工程师是一个新兴职业,随着人工智能技术的不断发展,对其需求将会越来越大。
2025-04-15