Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

一句话阐述工作流的原理

Answer

工作流的原理通常包括以下几个方面:

  1. 由多个节点构成,节点是基本单元,如大语言模型、自定义代码、判断逻辑等。默认包含起始的 Start 节点和末尾的 End 节点。
  2. 不同节点可能需要不同的输入参数,包括引用前面节点的参数值和自定义的输入值。
  3. 一些工作流通过特定插件实现特定功能,如 SDXL Prompt Styler 插件结合 ControlNet 实现图片风格转化,其原理是在 prompt 中加入预设好的风格关键词组合。
  4. 对于复杂任务场景,通过对插件、大语言模型、代码块等功能的可视化组合,实现复杂、稳定的业务流程编排,例如旅行规划、报告分析等。
  5. 像生成图文短句的工作流,会包含多个步骤,如大模型生成标题、通过代码节点获取标题、生成简介、生成文案、归纳总结、传递给图像流等,并对图像流进行提示词优化和文生图等操作。
Content generated by AI large model, please carefully verify (powered by aily)

References

工作流分享01 | ​SDXL Prompt Styler,可以把图片转化成近百种风格的插件

SDXL Prompt Styler工作流SDXL Prompt Styler是一个集成近百种风格的ComfyUI插件。(文末附工作流下载链接)一、工作流介绍先来看看效果。给它喂一只驴。把驴变成各种风格。剪纸风线条风粘土风我的世界风格GTA风格漫画风这条工作流的核心节点是SDXL Prompt Styler插件+ControlNet,以达到风格转化的结果。SDXL Prompt Styler的style中有近百种风格预设可供选择。我自己试过的其中比较好玩的风格,列举一些:sai-3dmodel(3d模型)、sai-analog film(胶片电影)、sai-lowpoly(低面)game-zelda(塞尔达)、game-mario(马里奥):比较适合人物artstyle-impressionist(印象派):比较适合风景二、插件原理这个插件的原理是在prompt中加入了各风格预设好的关键词组合。我们在SDXL Prompt Styler节点后增加一个Show Text的节点,运行一下,就可以看到这个插件具体是如何工作的。如上图所示,比如选择折纸风(origami)。运行后,发现提示词中增加了很多关于折纸风格的关键词。三、Tips对于不同的对象,进行风格转绘,需要合理的平衡controlnet的组合和参数。

生成有趣的《图文短句》【扣子】来帮你实现,零代码也OK

[heading4]1.2、工作流第二趴:通过"代码节点"从多个标题中获取其中一个(可略过)[content][heading4]1.3、工作流第三趴:通过选出的标题生成简介[content][heading4]1.4、工作流第四趴:通过简介生成和标题生成文案[content][heading4]1.5、工作流第五趴:将文案进行归纳总结[content][heading4]1.6、工作流第六趴:将归纳总结后的文案描述传递给图像流[content][heading3]2、在看图像流(图像流就更为简单了)[heading4]2.1、图像流第一趴:提示词优化[content][heading4]2.2、图像流第二趴:典型的文生图[content][heading3]3、最终的Bot制作以及预览和调试[content][heading3]4、至此图文短句的Bot就算是已经完成了。快行动起来吧。

工作流介绍

工作流支持通过可视化的方式,对插件、大语言模型、代码块等功能进行组合,从而实现复杂、稳定的业务流程编排,例如旅行规划、报告分析等。当目标任务场景包含较多的步骤,且对输出结果的准确性、格式有严格要求时,适合配置工作流来实现。[heading1]功能概述[content]工作流由多个节点构成,节点是组成工作流的基本单元。例如,大语言模型LLM、自定义代码、判断逻辑等节点。工作流默认包含了Start节点和End节点。Start节点是工作流的起始节点,可以包含用户输入信息。End节点是工作流的末尾节点,用于返回工作流的运行结果。不同节点可能需要不同的输入参数,输入参数分为引用和输入两类。引用是指引用前面节点的参数值、输入则是支持设定自定义的参数值。扣子为你提供了以下基础节点,除此之外,你还可以添加插件节点或其他工作流。|节点名称|描述||-|-||LLM|大语言模型节点。使用输入参数和提示词生成处理结果。||Code|代码节点。通过IDE编写代码处理输入参数,并返回输出值。||Knowledge|知识库节点。根据输入参数从关联知识库中召回数据,并返回。||Condition|if-else逻辑节点。用于设计工作流内的分支流程,满足设置条件则运行如果分支,否则运行否则分支。|

Others are asking
一句话阐述推理类模型的原理
推理类模型的原理主要包括以下方面: OpenAI 的推理模型通过强化学习进行训练,以执行复杂推理。此类模型在回答前会思考,能产生长链的思维过程。通过训练,它们学会优化思考过程、尝试不同策略并识别错误,从而遵循特定指南和模型政策,提供更有用的回答,避免产生不安全或不适当的内容。 例如 OpenAI o1 这样的推理模型基于链式思维,逐步推理问题的每个步骤来得到答案。 还有一些概率预测的快速反应模型,通过大量数据训练来快速预测可能的答案。
2025-03-18
一句话阐述ai agent的原理。
AI Agent 的原理主要包括以下几个方面: 1. 其核心通常是大型语言模型(LLM)或大模型。 2. 为 LLM 增加了工具、记忆、行动、规划这四个能力。 工具:如长期记忆,相当于给大模型一个数据库工具来记录重要信息。 记忆:提供长期记忆能力。 行动:将目标进行每一步的拆解,并输出不同的固定格式 action 指令给工具。 规划:在大模型的 prompt 层做逻辑处理,如目标拆解。 3. 目前行业里主要用到的是 langchain 框架,它通过代码或 prompt 的形式将 LLM 与 LLM 之间以及 LLM 与工具之间进行串接。 4. 心灵社会理论认为,智能是由许多简单的 Agent(分等级、分功能的计算单元)共同工作和相互作用的结果。这些 Agent 在不同层次上执行不同的功能,通过协作实现复杂的智能行为。 多重层次:从低层次的感知和反应到高层次的规划和决策,每个层次由多个 Agent 负责。 功能模块:每个 Agent 类似于功能模块,专门处理特定类型的信息或执行特定任务。 分布式智能:智能通过多个相互关联的 Agent 共同实现,提高系统的灵活性和鲁棒性。 5. AI Agent 包括 Chain(步骤,可接受输入变量并产生输出变量)、Router(通过判定让 Agent 走向不同的 Chain)、Tool(工具调用)等概念。同时,还需要 Responser Agent(主 agent,用于回复用户)、Background Agent(背景 agent,用于推进角色当前状态)、Daily Agent(每日 agent,用于生成剧本等)等不同类型的 Agent 协同工作。
2025-03-18
一句话阐述chatgpt的原理。
ChatGPT 的原理可以概括为以下几点: 1. 实质功能是词语接龙,即给定任意长的上文,它会用自己的模型生成下一个词,然后将生成的词与上文组合成新的上文,不断重复生成任意长的下文,此过程称为自回归生成。 2. 训练的主要目的不是记忆,而是学习以单字接龙的方式训练模型,让模型学习提问和回答的通用规律,以便在遇到未记忆过的提问时,能利用所学规律生成用户想要的回答,这种举一反三的目的也称为泛化。 3. 从网络、书籍等来源获取大量人类创作的文本样本,训练神经网络生成“类似”的文本,能够从“提示”开始,继续生成“类似于训练内容”的文本。 4. 其神经网络由简单元素组成,基本操作是为每个新单词生成“输入”,然后将其“通过其元素”。 5. 最终,ChatGPT 从积累的“传统智慧统计数据”中提取“连贯的文本线索”,但结果非常类似于人类生成的文本,这表明人类语言及背后的思维模式结构比想象的更简单和具有“法律属性”。同时,ChatGPT 的基本人工神经网络结构基于大脑的理想化模型,人类生成语言时的许多方面与之相似。
2025-03-18
在办公领域,Deepseek如何进行效率提升,请详细进行原理及操作阐述,我要做成培训课程
以下是关于 DeepSeek 在办公领域提升效率的原理及操作阐述: 原理方面: 1. 强化学习和联网搜索能力改变信息获取方式,从“检索—阅读—摘要”转变为“提问—获得答案”,大幅提升工作效率。 2. 利用“专家混合”和“多头潜在注意力”技术,展现了高效的算力利用。 3. 其开源策略打破了技术垄断,让国内大模型能力迅速提升。 操作方面: 1. 飞书多维表格与 DeepSeek R1 结合,实现批量处理信息,如批量转换文风、快速回复消息,甚至利用 AI 生成文案,操作简单、便捷,普通人无需编程知识也能轻松使用。 2. 有手把手指导在微软 Azure AI Foundry 平台上完成 DeepSeek R1(671B)模型的完整部署流程,包含环境准备、资源管理、模型测试及 API 调用说明。 此外,DeepSeek R1 赏析分享会专为非技术人群设计,通俗易懂地介绍了 R1 和 V3 的技术亮点,深入探讨了业界的困惑与 DeepSeek 的解决方案。同时,也有相关文章通过虚构故事结合真实案例,讲述 AI 在日常工作中的效率提升作用,如分析意图、生成任务说明,并拆分复杂任务成结构化内容,强调最终成果需人工审核、拼接,并以人类主导全流程。
2025-02-25
最喜欢的AI产品,阐述亮点和原因
以下为一些受欢迎的 AI 产品及其亮点和原因: 爱设计 PPT: 亮点:背后有实力强大的团队,技术过硬且对市场需求有敏锐洞察力;成功把握 AI 与 PPT 结合的市场机遇;在国内 AI 生成 PPT 产品中确立市场领先地位。 原因:团队的持续创新推动产品进步,前瞻性的市场洞察和快速执行能力使其成功,产品的优秀品质和用户的高度认可证明其价值。对于经常制作 PPT 的人,能提高效率并保证高质量输出,随着 AI 技术进步,未来有望带来更多惊喜功能和性能提升。 Grammarly、秘塔写作猫: 亮点:利用自然语言处理技术辅助用户进行高质量写作。 原因:Grammarly 可检查语法、拼写错误并提供改进建议,秘塔写作猫能进行智能润色和内容创作辅助。 淘宝拍照搜商品: 亮点:通过图像识别为用户推荐相似商品。 原因:在 AI 技术支持下,用户上传图片后系统能快速推荐类似商品。 小爱同学、Siri: 亮点:为不同需求定制专属语音助手。 原因:小爱同学可控制智能家居、回答问题等,Siri 能进行语音交互和任务处理。 Keep 智能训练计划: 亮点:根据用户数据制定个性化健身方案。 原因:结合用户身体状况和目标生成专属健身方案。 大众点评智能推荐: 亮点:基于用户口味偏好推荐美食。 原因:通过用户评价和偏好数据为用户推荐餐厅和美食。 阿里小蜜等电商客服: 亮点:为企业提供智能客服解决方案。 原因:可自动回答客户问题,处理订单查询等任务。 AI 游戏道具推荐系统: 亮点:根据玩家需求推荐游戏道具。 原因:利用 AI 分析玩家的游戏风格和进度,提供合适道具推荐。 AI 天气预报分时服务: 亮点:提供精准的分时天气预报。 原因:利用 AI 提供每小时的天气预报,方便用户安排出行和活动。 AI 医疗病历分析平台: 亮点:分析医疗病历,辅助诊断。 原因:利用 AI 分析病历中的症状、检查结果等信息,为医生提供辅助诊断建议。 AI 会议发言总结工具: 亮点:自动总结会议发言内容。 原因:在会议中利用 AI 自动总结发言者的主要观点和重点内容,方便回顾和整理。 AI 书法作品临摹辅助工具: 亮点:帮助书法爱好者进行临摹。 原因:利用 AI 识别书法作品的笔画和结构,为用户提供临摹指导和评价。
2024-12-26
最喜欢的AI产品,阐述亮点和原因
以下为一些受欢迎的 AI 产品及其亮点和原因: 爱设计 PPT: 亮点:背后有实力强大的团队,技术过硬且对市场需求洞察力敏锐;成功把握 AI 与 PPT 结合的市场机遇;在国内 AI 生成 PPT 产品中确立市场领先地位。 原因:团队的持续创新推动产品进步,前瞻性的市场洞察和快速执行能力使其成功,产品的优秀品质和用户的高度认可证明其价值。对于经常制作 PPT 的人,能提高效率并保证高质量输出,随着 AI 技术进步,未来有望带来更多惊喜。 Grammarly、秘塔写作猫: 亮点:利用自然语言处理技术辅助用户进行高质量写作。 原因:Grammarly 可检查语法、拼写错误并提供改进建议,秘塔写作猫能进行智能润色和内容创作辅助,满足用户对优质写作的需求。 淘宝拍照搜商品: 亮点:通过图像识别为用户推荐相似商品。 原因:在电商领域,方便用户快速找到心仪的商品,提升购物体验。 小爱同学、Siri: 亮点:为不同需求定制专属语音助手。 原因:能实现语音交互和任务处理,如控制智能家居、回答问题等,满足多样化的生活需求。 Keep 智能训练计划: 亮点:根据用户数据制定个性化健身方案。 原因:结合用户身体状况和目标生成专属健身计划,帮助用户科学健身。 大众点评智能推荐: 亮点:基于用户口味偏好推荐美食。 原因:通过用户评价和偏好数据为用户推荐餐厅和美食,方便用户选择。 阿里小蜜等电商客服: 亮点:为企业提供智能客服解决方案。 原因:可自动回答客户问题,处理订单查询等任务,提高客服效率。 AI 游戏道具推荐系统: 亮点:根据玩家需求推荐游戏道具。 原因:在游戏中分析玩家风格和进度,提供合适道具,增强游戏体验。 AI 天气预报分时服务: 亮点:提供精准的分时天气预报。 原因:利用 AI 提供每小时的天气预报,方便用户安排出行和活动。 AI 医疗病历分析平台: 亮点:分析医疗病历,辅助诊断。 原因:利用 AI 分析病历中的症状、检查结果等信息,为医生提供辅助诊断建议。 AI 会议发言总结工具: 亮点:自动总结会议发言内容。 原因:在会议中利用 AI 自动总结发言者的主要观点和重点内容,方便回顾和整理。 AI 书法作品临摹辅助工具: 亮点:帮助书法爱好者进行临摹。 原因:利用 AI 识别书法作品的笔画和结构,为用户提供临摹指导和评价。
2024-12-26
大语言模型的技术原理
大语言模型的技术原理包括以下几个方面: 1. 相关概念与关系: AI 即人工智能。 机器学习是电脑找规律学习,包括监督学习(有标签的训练数据,算法目标是学习输入和输出之间的映射关系,包括分类和回归)、无监督学习(学习的数据没有标签,算法自主发现规律,经典任务如聚类)、强化学习(从反馈里学习,最大化奖励或最小化损失,类似训小狗)。 深度学习是一种参照人脑有神经网络和神经元的方法(因有很多层所以叫深度),神经网络可用于监督学习、无监督学习、强化学习。 生成式 AI 可以生成文本、图片、音频、视频等内容形式。 LLM 即大语言模型,对于生成式 AI,生成图像的扩散模型不是大语言模型;对于大语言模型,生成只是其中一个处理任务,如谷歌的 BERT 模型可用于语义理解(不擅长文本生成),如上下文理解、情感分析、文本分类。 2. 技术里程碑:2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型,它完全基于自注意力机制(SelfAttention)来处理序列数据,而不需要依赖于循环神经网络(RNN)或卷积神经网络(CNN)。 3. 工作原理: 包括训练数据、算力、模型参数,在训练数据一致情况下,模型参数越大能力越强。 Transformer 是大语言模型训练架构,具备自我注意力机制能理解上下文和文本关联,其工作原理是单词预测,通过嵌入、位置编码、自注意力机制生成内容,模型调教中有控制输出的 temperature。 Transformer 模型通过不断检索和匹配来寻找依赖关系,处理词和词之间的位置组合,预测下一个词的概率,是一个偏向概率预测的统计模型。 4. 可能存在的问题:大模型可能因错误数据导致给出错误答案,即大模型幻觉,优质数据集对其很重要。 5. 相关应用: 国内大模型有通用模型如文心一言、讯飞星火等,处理自然语言;还有垂直模型,专注特定领域如小语种交流、临床医学、AI 蛋白质结构预测等。 Prompt 分为 system prompt、user prompt 和 assistant prompt,写好 prompt 的法则包括清晰说明、指定角色、使用分隔符、提供样本等,核心是与模型好好沟通。 Fine tuning 微调是基于通用大模型,针对特定领域任务提供数据进行学习和调整,以适应特定领域的需求。
2025-03-18
comfy ui 九宫格生图保持人物一致性的原理
Comfy UI 九宫格生图保持人物一致性的原理主要基于 PuLID 技术,具体如下: PuLID 是一种用于在文本生成图像时自定义图像中人物或物体身份(ID)的新技术,它结合了两个不同的模型分支(Lightning T2I 分支和标准扩散模型),引入了两种损失(对比对齐损失和精确 ID 损失)。 Lightning T2I 分支是一个快速、高效的文本到图像生成模型。 标准扩散模型是常见的、生成高质量图像的模型。 对比对齐损失帮助模型学习将输入的文本和生成的图像内容对齐,使生成的图像更符合文本描述。 精确 ID 损失确保生成的图像中的特定身份特征(比如人物的脸部特征)与目标 ID 一致。 此外,在保持人物一致性方面,还有一些操作步骤: 生成图像(提示词加入分割描述,让一张图生成多张同空间小图)。 通过目标图像不断的重复生成,获取更多一致性的角色图像,下载分类(按照视角不同分类)。 上传图像,调用 prefer option set 命令,先写命令名称(一个视角操作一次),再放入该视角的照片(4 5 张)。 放开角色限制生成图像,在确认好的图像上进行局部重绘,框选头部,在原来的命令下加入—快捷命令名称,确认生成即可。 同时,Eva CLIP 也是相关的技术: Eva CLIP 是一种基于对比学习的视觉文本模型,将文本描述和图像内容映射到一个共享的嵌入空间。 对比学习架构:使用对比学习方法,将图像和文本嵌入到一个共享的空间,通过最大化匹配图像和文本对的相似度,同时最小化不匹配对的相似度,学习到图像和文本之间的关联。 强大的特征提取能力:编码器擅长提取图像中的细节特征,并将其转换为有意义的嵌入向量,用于下游任务。 多模态应用:能够处理图像和文本两种模态,广泛应用于多模态任务中,如生成、检索、标注等。 其应用场景包括图像生成、图像检索、图像标注等。Eva CLIP 编码器通常与深度神经网络结合使用,如卷积神经网络(CNN)用于图像特征提取,Transformer 网络用于处理文本描述。 项目地址:https://github.com/ToTheBeginning/PuLID 相关资源: instant ID 脸部特征抓取得比 pulid 好,放在最后一步重绘,先 pulid,再 instantID https://pan.baidu.com/s/1Tro9oQM85BEH7IQ8gVXKsg?pwd=cycy 工作流与模型地址:https://pan.quark.cn/s/2a4cd9bb3a6b 说明文档:https://xiaobot.net/post/6544b1e8 1d90 4373 94cf 0249d14c73c8 测试案例:
2025-03-17
manus的原理是怎样的
Manus 是一款由中国团队研发的全球首款通用型 AI 代理工具,于 2025 年 3 月 5 日正式发布。 其原理包括以下方面: 1. 当前的 Manus 相当于 AI 操纵着一个没有图形界面的 Linux 虚拟机和浏览器,能够感知电脑环境,执行各类操作。它能运行各种 Linux 下的指令、库、程序(如 cd、ls 指令、python 等),也能访问各种网页、获取一些 API 接口的数据,但由于没有图形界面,无法运行图形程序。 2. Manus AI 代理工具的具体技术架构主要基于多智能体(Multiple Agent)架构,运行在独立的虚拟机中。通过规划、执行和验证三个子模块的分工协作,实现对复杂任务的高效处理。其核心功能由多个独立模型共同完成,这些模型分别专注于不同的任务或领域,如自然语言处理、数据分析、推理等。 3. 技术架构还包括以下关键组件: 虚拟机:Manus AI 运行在云端虚拟机中,用户可以随时查看任务进度,适合处理耗时任务。 计算资源:Manus AI 利用计算资源生成算法,用于筛选简历等具体任务。 生成物:Manus AI 能够生成各种类型的输出,如文本、表格、报告等。 内置多个 agents:Manus AI 通过内置多个智能体,实现任务的分解和协同工作。 此外,Manus AI 还采用了“少结构,多智能体”的设计哲学,强调在数据质量高、模型强大、架构灵活的情况下,自然涌现 AI 的能力。这种设计使得 Manus AI 在处理复杂任务时更加高效和准确。
2025-03-15
一句话概括WaytoAGI是什么?
“通往 AGI 之路”(WaytoAGI)是一个由热爱 AI 的专家和爱好者共同建设的致力于人工智能学习的中文开源知识库和社区平台。它为学习者提供了系统全面的 AI 学习路径,涵盖从基础概念到实际应用的各个方面,内容包括 AI 绘画、AI 视频、AI 智能体、AI 3D 等多个版块,并提供丰富的学习资源,如文章、教程、工具推荐以及最新的行业资讯等。此外,还定期组织活动,如视频挑战赛、模型创作大赛等,鼓励成员在实践中学习,促进交流与合作。其品牌 VI 融合了独特的设计元素,以彩虹色彰显多元性和创新,以鹿的形象象征智慧与优雅,通过非衬线字体展现现代感和清晰性。同时,WaytoAGI 还孵化了离谱村这一千人共创项目,目标是大家一起用 AI 构建一个离谱世界。
2025-02-21
一句话向完全不了解AI的人介绍什么是AI,并且让他理解什么是AI
AI 是一种模仿人类思维,可以理解自然语言并输出自然语言的存在。对于不具备理工科背景的人来说,可以把它当成一个黑箱。它就像某种可以理解人类文字但不是人的魔法精灵或器灵,其生态位是似人而非人的。 AI 包含多种技术和概念,比如: 1. 生成式 AI 生成的内容称为 AIGC。 2. 机器学习是电脑找规律学习,包括监督学习(有标签的训练数据,学习输入和输出之间的映射关系,包括分类和回归)、无监督学习(学习的数据没有标签,算法自主发现规律,如聚类)、强化学习(从反馈里学习,最大化奖励或最小化损失,类似训小狗)。 3. 深度学习是一种参照人脑有神经网络和神经元的方法(因为有很多层所以叫深度),神经网络可用于监督学习、无监督学习、强化学习。 4. 生成式 AI 可以生成文本、图片、音频、视频等内容形式。 5. LLM 是大语言模型,对于生成式 AI,生成图像的扩散模型不是大语言模型;对于大语言模型,生成只是其中一个处理任务,如谷歌的 BERT 模型可用于语义理解(不擅长文本生成),像上下文理解、情感分析、文本分类。 2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型,它完全基于自注意力机制处理序列数据,比 RNN 更适合处理文本的长距离依赖性。
2025-01-17
我想一键一句话生成一个网站用什么工具
以下是一些可以一键一句话生成网站的工具: 1. Figma to HTML:适用于 Figma 设计稿,不是图片。使用方法为在设计好的界面中,右击 Plugins Figma to HTML,选取设计稿并设置转换目标为 html 文件,点击 Convert 后开始下载,得到 html 文件。 2. Literally Anything:优点是极其方便,可用于获得复杂网页的部分小组件的代码;缺点是功能单一,很难实现精美网页。使用时描述想要生成的网页,点击 Edit Code 显示 html 代码。 3. Stunning:优点是便捷,制作的网页较为精美;缺点是灵活性不高。使用方法为点击 New Website 新建,根据需求选择对应的模版,和 Stunning AI 交流设计需求,一键生成网页并局部微调细节。 4. GPTs Instant Website :生成的网页可直接通过链接访问。 以下是一些制作网站的 AI 工具: 1. Zyro:网址:。特点:使用 AI 生成网站内容,包括文本、图像和布局建议;提供 AI 驱动的品牌和标志生成器;包含 SEO 和营销工具。 2. 10Web:网址:。特点:基于 AI 的 WordPress 网站构建工具,可自动生成网站布局和设计;提供一键迁移功能;集成 AI 驱动 SEO 分析和优化工具。 3. Jimdo Dolphin:网址:。特点:通过询问用户问题定制网站;提供自动生成的内容和图像;包含电子商务功能。 4. Site123:网址:。特点:简单易用,适合初学者;提供多种设计模板和布局;包括内置的 SEO 和分析工具。 此外还有: 1. Wix ADI。特点:基于用户提供的信息自动生成定制化网站;提供多个设计选项和布局;集成 SEO 工具和分析功能。 2. Bookmark:网址:。特点:AIDA 通过询问用户几个简单问题快速生成网站;提供直观的拖放编辑器;包括多种行业模板和自动化营销工具。 3. Firedrop:网址:。特点:Sacha 可根据用户指示创建和修改网站设计;提供实时编辑和预览功能;包含多种现代设计风格和自定义选项。 4. The Grid:网址:。特点:Molly 可自动调整网站的设计和布局;基于内容和用户互动进行优化;支持多种内容类型。
2024-12-30
我想知道如何用dify搭建rag工作流
要使用 Dify 搭建 RAG 工作流,首先需要在“工程化框架”选择部分了解 Dify 。然后使用 Dify 推出的“工作流”功能将流程设计和提示词进行落地。具体来说,要建立整体工作流程,但此流程可能缺少知识检索环节。您可以通过延申阅读获取更多信息:Dify——工作流:https://docs.dify.ai/v/zhhans/guides/workflow/introduce 。另外,还有案例提到让 Manus 创建一个需要上传文件的 Dify 工作流,如根据上传的多篇文章写一个脱口秀段子,并制作美观、使用简便的网页来使用这个工作流,最后将此工作流的 api 接入进去,各功能与网页 UI 按钮一一对应,直到上线部署可供使用。
2025-03-18
有没有针对AI工具嵌入个人工作流方方面面赋能工作的信息
AI 工作流是将 AI 工具引入到工作流程的各个环节中,以提高工作效率。 在说 AI 工作流之前,要先了解工作流的概念。工作流即工作流程,比如写公众号文章,可拆分为选题、列大纲写初稿、改稿、写标题、排版、发布等步骤,每个步骤都有明确的输入和产出,环环相扣。 搭建 AI 工作流有一套工作流: 1. 找到一个熟悉的工作场景,如写文章、做 PPT 等。 2. 拆解工作流程,例如写文章可拆分为选题、写稿、改稿、写标题等步骤。 3. 针对每个步骤嵌入工具,可参考他人经验,灵活选择最优解,目的是提高工作效率,而非增加工作的含 AI 量。 搭建 AI 工作流需要三层能力: 1. 了解各种 AI 工具,知晓其特点和用途。 2. 学会写提示词,以便向 AI 清晰表述任务。 3. 搭建 AI 智能体,使多个 AI 工具协同工作,自动完成任务。
2025-03-17
除了flowith之外,有哪些类似的产品可用,可以自动创建工作流并执行
以下是一些类似 flowith 可以自动创建工作流并执行的产品: 1. Refly:通过明确使用场景和构建完整的 WorkFlow 来帮助创作者降低认知负担。 2. FunBlocks AIFlow:在产品设计上致力于减少用户的认知负担。 此外,ComfyUI 也可通过拖入工作流文件来自动加载工作流,例如生成绿幕素材和绿幕素材抠图的工作流,其工作流文件链接为:https://pan.quark.cn/s/01eae57419ce 提取码:KxgB 。您可以对照相关内容进行学习。
2025-03-17
如何在coze创建智能体或工作流
在 Coze 创建智能体或工作流的步骤如下: 1. 创建 Bot: 打开 Coze 官网 https://www.coze.cn/home 。 点击页面左上角的⊕,通过【标准创建】填入 bot 的基本信息。 2. 图像工作流: 创建图像工作流。 图像流分为智能生成、智能编辑、基础编辑三类。 空间风格化插件有参数,如 image_url 是毛坯房的图片地址;Strength 是提示词强度,影响效果图;Style 是生成效果的风格,如新中式、日式、美式、欧式、法式等;user_prompt 是用户输入的 Promot 提示词。 按照构架配置工作流,调试效果。调试工作流毛坯房测试用例:https://tgi1.jia.com/129/589/29589741.jpg 。 开始节点对应配置三项内容,进行提示词优化。 3. 分步构建和测试 Agent 功能: 首先进入 Coze,点击「个人空间工作流创建工作流」,打开创建工作流的弹窗。 根据弹窗要求,自定义工作流信息。点击确认后完成工作流的新建。 左侧「选择节点」模块中,根据子任务需要,实际用上的有插件、大模型、代码。 编辑面板中的开始节点、结束节点,分别对应分解子任务流程图中的原文输入和结果输出环节。 按照流程图,在编辑面板中拖入对应的 LLM 大模型、插件、代码节点,完成工作流框架的搭建。 4. Bot 开发调试界面: 人设与回复逻辑(左侧区域):设定 Bot 的对话风格、专业领域定位,配置回复的逻辑规则和限制条件,调整回复的语气和专业程度。 功能模块(中间区域): 技能配置:插件可扩展 Bot 的专业能力;工作流可设置固定的处理流程和业务逻辑;图像流处理和生成图像相关功能;触发器设置自动化响应条件。 知识库管理:文本存储文字类知识材料;表格结构化数据的存储和调用;照片是图像素材库。 记忆系统:变量存储对话过程中的临时信息;数据库管理持久化的结构化数据;长期记忆保存重要的历史对话信息;文件盒子管理各类文档资料。 交互优化(底部区域):开场白设置初次对话的问候语;用户问题建议配置智能推荐的后续问题;快捷指令设置常用功能的快速访问;背景图片自定义对话界面的视觉效果。 预览与调试(右侧区域):实时测试 Bot 的各项功能,调试响应效果,优化交互体验。
2025-03-17
如何实现公众号用智能体+工作流,每天自动发《头条新闻》
要实现公众号用智能体+工作流每天自动发《头条新闻》,可以参考以下步骤: 伊登:最新 Deepseek+coze 实现新闻播报自动化工作流 工作流程详解 第一步:内容获取 1. 只需输入新闻链接,系统就能自动提取核心内容。开始节点,入参包括新闻链接和视频合成插件 api_key。 2. 添加网页图片链接提取插件,承接开始节点的新闻链接。 3. 获取网页里的图片,以 1ai.net 的资讯为例,输入新闻后提取出很多链接,其中第一条链接通常是新闻主图,其他内容多为不重要的 icon。 4. 添加图片链接提取节点,若为节省写代码时间,可直接用大模型节点提取,只拿提取的链接集合的第一条,即可搞定新闻的主要图片。 5. 接着利用调整图片的节点,将 url 属性的图片内容转化为 image 属性的图片(因为 url 节点在画板中是 string 的格式,所以必须转为 img 格式)。 6. 对于文字部分,使用链接读取节点将文字内容提取出来。 7. 在提取链接后面接上一个大模型节点,用来重写新闻成为口播稿子,可使用最强的 DeepseekR1 模型生成有吸引力的口播内容。小 tips,如果想要加上自己的特征,可以在提示词里写:“开头加上‘这里是伊登 AI’之类的个性化台词防伪”。PS:这里的 deepseekR1 基础版本是限额使用,我们可以在专业版手动接入 DeepseekR1 手动接入推理模型。 第二步:画面生成 思路是做成一帧一帧的主图+台词,配合语音合成,保证音屏同步。 1. 用批量化节点,做成一帧一帧的画面,用画板节点完成。批量处理节点输入的是格式变化后的 json 格式的文案。 2. 画面生成的重点是:在批处理中,先把一些固定内容在画板节点安排好,比如背景图片。然后引入变量元素,比如新闻图片(已经提取并转换为 img 属性)、新闻标题(来自链接读取)、口播台词(已经提取并二创)。小 tips:想要找好看的背景图推荐去可画,挑选一个好看的视频模板然后,保存为【图片】格式,然后放在画板节点,当作底图。 第三步:语音合成 使用声音合成的官方插件,引用批处理的一句一句的新闻文案内容,可调节语速和语气,多种播音风格可选。在画板和语音合成的节点后面加入图片音频合成插件。PS:这个插件需要收费,登录 https://ts.fyshark.com//userInfo,【钱包】充值获取 token,【个人中心】获取 token,放入这个节点中,不过充值 10 元可以做好久了,这个插件适合小白同学,也有不收费的插件,但是比较吃操作,如果感兴趣也可以关注后续出相关教程。这个插件的 img_audio_video 的功能是把图片+视频合成,这样就实现了一段一段的口播新闻内容。 【拔刀刘】自动总结公众号内容,定时推送到微信(附完整实操教程) 三、搭建工作流 13、循环将推送内容插入数据库 将本轮推送给用户的内容,写入数据库,下次从 rss 列表中如果再抓取到相同内容,直接跳过,避免重复推送。使用「循环」节点,输入项为第 8 步代码输出的 content_urls,这里有完整的文章内容信息。循环体设置:使用「数据库」节点,输入项为本循环节点 item 中的 url 和 suid,SQL 也是用 AI 生成的。设置循环节点的输出项:output,参数随便选,后边也用不到了。 14、结束节点 选择第 11 步输出的内容,可以在 bot 中也查看到推送的内容。 15、试运行 工作流终于搭建完了,点击右上角的试运行,选择绑定的 bot,输入数据测试。Key:输入你的 server 酱的 sendkey。rss_list:如果你没有现成的数据,可以白嫖我这个,复制下方这两条数据测试使用。试运行结果:如果工作流设置的没有问题,你会在工作流中看到这样的结果。同时,微信上也会收到这条推送,可以查看总结内容,点击链接可以查看公众号原文。点击右上角发布。
2025-03-16
日常工作应用有哪些场景推荐
以下是一些日常工作中的 AI 应用场景推荐: 教师工作: 定制内容场景:可根据学生认知和水平筛选和定制课程材料。 制作课件场景:用 Markdown 语法列出大纲,生成基础课件。 教学执行:协助小组活动、设计分层教学、个性化教学、提供实时反馈、提供策略和知识支持。 学生评估:设计评估,可模仿各类考试题型,生成各种主观反馈和报告,比如写作口语批改反馈、期末学生评价。 深度学习场景:学习学生心理支持,可提供具体场景做案例分析。 专业成长:论文写作辅助、撰写材料,如工作总结、活动简报、领导发言稿、工作邮件,策划活动,如调查问卷、艺术节策划、教师活动策划,行政工作,公众号排版、排校历、排课表。 计划相关: 共学相关。 网页连接制作。 创意构思。 开发网页、小程序、App、桌面应用、浏览器插件等。 本地跑的 PC 应用,如计算器等。 算法学习: 分类问题:例如文本分类、图像识别、手写数字识别、医学诊断等。 回归问题:例如房价预测、股票价格预测等。 异常检测:识别异常值或离群点。 推荐系统:找到与用户兴趣最相似的其他用户或物品,并基于相似性进行推荐。 图像分割:识别图像中的区域,并进行图像分割。 聚类分析:用于聚类任务,尤其是当数据集中的簇不是明显的球形或高斯分布时。
2025-03-16