Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

comfyUI和webUI的区别

Answer

ComfyUI 和 WebUI 的区别主要体现在以下几个方面:

ComfyUI

  • 简介:是一个基于节点流程式的 stable diffusion AI 绘图工具 WebUI,将 stable diffusion 的流程拆分成节点,实现更精准的工作流定制和完善的可复现性。
  • 优势:
    • 对显存要求相对较低,启动速度快,出图速度快。
    • 具有更高的生成自由度。
    • 可以和 WebUI 共享环境和模型。
    • 可以搭建自己的工作流程,可以导出流程并分享给别人,报错时能清晰发现错误所在步骤。
    • 生成的图片拖进后会还原整个工作流程,模型也会选择好。
  • 劣势:
    • 操作门槛高,需要有清晰的逻辑。
    • 生态没有 WebUI 多(常用的都有),但也有一些针对 ComfyUI 开发的有趣插件。
  • 官方链接:从 github 上下载作者部署好环境和依赖的整合包,按照官方文档安装即可:https://github.com/comfyanonymous/ComfyUI
  • 插件推荐:
    • 插件安装管理器:https://github.com/ltdrdata/ComfyUI-Manager
    • SDXL 风格样式:https://github.com/twri/sdxl_prompt_styler
    • ComfyUI 界面汉化:https://github.com/AIGODLIKE/AIGODLIKE-COMFYUI-TRANSLATION
    • 中文提示词输入:https://github.com/AlekPet/ComfyUI_Custom_Nodes_AlekPet
    • 蟒蛇八卦工具箱:https://github.com/pythongosssss/ComfyUI-Custom-Scripts
    • 提示词权重调节器:https://github.com/BlenderNeko/ComfyUI_AD

WebUI

  • 采样器与调度器:在 ComfyUI 中,采样器与调度器分开,而在 WebUI 中的采样方法是把两者合并在一起。ComfyUI 通过采样器+调度器组合的方式与 WebUI 中的一致,一般选择 karras 调度器效果较好。

在插件安装方面,WebUI 有较好的用户界面,安装插件后可直观看到并使用;而 ComfyUI 安装插件后可能看不到,需通过节点连接才能感受到其功能。

Content generated by AI large model, please carefully verify (powered by aily)

References

问:ComfyUI 是什么?

ComfyUI是一个基于节点流程式的stable diffusion AI绘图工具WebUI,你可以把它想象成集成了stable diffusion功能的substance designer,通过将stable diffusion的流程拆分成节点,实现了更加精准的工作流定制和完善的可复现性。[heading2]优劣势[content]优势:1.对显存要求相对较低,启动速度快,出图速度快;2.具有更高的生成自由度;3.可以和webui共享环境和模型;4.可以搭建自己的工作流程,可以导出流程并分享给别人,报错的时候也能清晰的发现错误出在哪一步;5.生成的图片拖进后会还原整个工作流程,模型也会选择好。劣势:1.操作门槛高,需要有清晰的逻辑;2.生态没有webui多(常用的都有),也有一些针对Comfyui开发的有趣插件。[heading2]官方链接[content]从github上下载作者部署好环境和依赖的整合包,按照官方文档按照即可:https://github.com/comfyanonymous/ComfyUI[heading2]截图示例[content][heading2]延伸阅读:[content]内容由AI大模型生成,请仔细甄别。

【ComfyUI】爽玩必备!6大插件汇总推荐

作者:白马少年介绍:SD实践派,出品精细教程发布时间:2023-09-14 19:01原文网址:https://mp.weixin.qq.com/s/EUbvrf4q_9EojydlkkObUg工欲善其事必先利其器,今天来给大家介绍6款ComfyUI中必备的插件,有了它们,你才能真正的享受到连连看的快乐!排名分先后,越往后越重要!插件安装管理器:https://github.com/ltdrdata/ComfyUI-ManagerSDXL风格样式:https://github.com/twri/sdxl_prompt_stylerComfyUI界面汉化:https://github.com/AIGODLIKE/AIGODLIKE-COMFYUI-TRANSLATION中文提示词输入:https://github.com/AlekPet/ComfyUI_Custom_Nodes_AlekPet蟒蛇八卦工具箱:https://github.com/pythongosssss/ComfyUI-Custom-Scripts[heading1]提示词权重调节器:https://github.com/BlenderNeko/ComfyUI_AD[content]在webUI中我们安装插件是可以很直观的看到并且使用的,因为它有一个很好的用户界面。但是comfyUI就不一样,可能你安装了插件之后也看不到它在哪,只有通过节点连接之后才能感受到它的功能存在,所以我觉得有必要给大家演示一下用法。安装方法很简单,就是将解压好的文件夹放入以下目录“E:\ComfyUI_windows_portable\ComfyUI\custom_nodes”就可以了,然后重新启动。[heading1]#01

WebUI到ComfyUI过渡需要了解的

在comfyui中,把采样器与调度器分开了。这点不同于在webui中的采样方法(sampier)是把两者合并在一起sde是增加了图像的发挥性和创意,让图像生成更有创造力。后缀gpu的事调用gpu来生成的。速度也会快一些comfyui通过采样器+调度器组合的方式与webui中的一致关于调度器,这边给一个总结,选择karras一般来说效果比较好,

Others are asking
我要学ComfyUI,我们有哪些学习资源?
以下是一些学习 ComfyUI 的资源: 1. 网站资源: ComfyUI 官方文档:提供使用手册和安装指南,适合初学者和有经验的用户。网站:https://www.comfyuidoc.com/zh/ 优设网:有详细的入门教程,介绍了 ComfyUI 的特点、安装方法及生成图像等内容。教程地址:https://www.uisdc.com/comfyui3 知乎:有用户分享的部署教程和使用说明,适合有一定基础并希望进一步了解的用户。教程地址:https://zhuanlan.zhihu.com/p/662041596 Bilibili:有一系列涵盖从新手入门到精通各个阶段的视频教程。教程地址:https://www.bilibili.com/video/BV14r4y1d7r8/ 2. 飞书学习群资源: 王蓉🍀🎈Wang Easy 基础搭建和转绘 唯有葵花向日晴 基础教程,工作流开发,实际应用场景 热辣 Huolarr AI 系统课私聊图生视频 咖菲猫咪 基础教程/工作流搭建思路/各版本模型使用的优缺点 傅小瑶 Lucky 如何制作多人转绘视频 云尚 工作流节点搭建思路 FǎFá 热门节点功能,搭建 森林小羊 基本报错解决方式及基础工作流逻辑分析 苏小蕊 基础教程 Sophy 基础课程 蜂老六 装一百个最新常用插件后如何快速解决冲突问题 阿苏 工作流框架设计 aflyrt comfyui 节点设计与开发 老宋&SD 深度解释虚拟环境部署和缺失模型的安装 Liguo 模型训练 啊乐福 基础课程 塵 优秀案例 风信 基础课程➕平面设计应用场景 北南 基础课程 视频工作流框架设计 Damon 基础课程 渔舟 基础课程+工作流搭建思路 乔木船长 工作流 ☘️ 基础教程 ☘ 基础教程 工作流设计+典型案例剖析 麒白掌 工作流搭建 OutSider 风格迁移 吴鹏 基础+工作流搭建 拾光 工作流基础搭建从入门到精通 茶浅浅。视频转绘/节点工作流介绍 百废待.新(早睡版)工作流从入门到进阶 电商应用场景 Stuart 风格迁移 红泥小火炉 基础课程 大雨 换背景图 Anna 娜娜° 图生 3D 🎵柒小毓 基础课程 Ting 基础课程 郑个小目标 针对于某个插件的深入讲解 波风若川 报错解决 chen 工作流的研发 朱敏🎈 基础课程,工作流 王卓圻 基础课程 南城 基础课程 Zero one 工作流开发 梓阳 基础课程 蓝牙耍手机 工作流搭建思路 皮皮 Peter 工作流的设计规划和调优逻辑 Jāy Līn 锦鲤 工作流搭建逻辑和原理 K 如何本地部署基础生图参数选择工作流的基本应用 Adai 基础课程 镜生 视频 x 基础教程 梦飞 基础教程 🙋🙋🙋 各个节点讲解和参数含义 戴志伟 基础课程 雪娴_CC 基础课程,从安装开始 Joey 实时转绘工作流 倪星宇 22 换脸换背景实践落地 早点睡觉 CT 优秀案例 三思 基础教程 晓珍 Mr.大狐🏝 报错解决 Duo 多吉~ 基础课程 陈旭 常用节点讲解和简单的节点制作 长风归庭 基础教程+工作流创建 ヘヘ阿甘 采样器原理与优化 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-03-12
如何学习comfyUI
以下是一些学习 ComfyUI 的途径和资源: 1. 官方文档:ComfyUI 官方文档提供了使用手册和安装指南,适合初学者和有经验的用户,可在获取相关信息。 2. 优设网:有一篇详细的 ComfyUI 入门教程,适合初学者,详细介绍了其特点、安装方法及如何生成图像等内容,教程地址是。 3. 知乎:有用户分享了 ComfyUI 的部署教程和使用说明,适合有一定基础并希望进一步了解的用户,可在找到相关教程。 4. Bilibili:提供了一系列涵盖从新手入门到精通各个阶段的视频教程,可在找到。 此外,还有以下 ComfyUI 共学快闪的学习内容: 王蓉🍀🎈Wang Easy 基础搭建和转绘 唯有葵花向日晴 基础教程,工作流开发,实际应用场景 热辣 HuolarrAI 系统课私聊图生视频 咖菲猫咪 基础教程/工作流搭建思路/各版本模型使用的优缺点 傅小瑶 Lucky 如何制作多人转绘视频 云尚 工作流节点搭建思路 FǎFá 热门节点功能,搭建 森林小羊 基本报错解决方式及基础工作流逻辑分析 苏小蕊 基础教程 Sophy 基础课程 蜂老六 装一百个最新常用插件后如何快速解决冲突问题 阿苏 工作流框架设计 aflyrt comfyui 节点设计与开发 老宋&SD 深度解释虚拟环境部署和缺失模型的安装 Liguo 模型训练 啊乐福 基础课程 塵 优秀案例 风信 基础课程➕平面设计应用场景 北南 基础课程 视频工作流框架设计 Damon 基础课程 渔舟 基础课程+工作流搭建思路 乔木船长 工作流 ☘️ 基础教程 ☘ 基础教程 工作流设计+典型案例剖析 麒白掌 工作流搭建 OutSider 风格迁移 吴鹏 基础+工作流搭建 拾光 工作流基础搭建从入门到精通 茶浅浅 视频转绘/节点工作流介绍 百废待.新(早睡版)工作流从入门到进阶 电商应用场景 学习使用 ComfyUI 的原因包括: 更接近 SD 的底层工作原理。 实现自动化工作流,消灭重复性工作。 作为强大的可视化后端工具,可实现 SD 之外的功能,如调用 api 及本文所讲的内容等。 可根据定制需求开发节点或模块。 例如,金属文创建工作流是因为工作室需要抠图素材,传统途径存在问题,近期在 github 上看到相关项目后创建了工作流,不仅可用于绿幕素材抠图,还能自动生成定制需求的抠图素材,全程只需几秒。
2025-03-12
comfyui 随机种子是什么意思
在 ComfyUI 中,随机种子(seed)主要用于控制潜空间的初始噪声。如果您想重复生成一模一样的图片,就需要用到这个随机种子。需要注意的是,要生成完全相同的图片,种子和 Prompt 都要相同。每次生成完图片后,上面的 seed 数字都会变化,而 control_after_generate 配置项则是设置这个变化规则,包括 randomize(随机)、increment(递增 1)、decrement(递减 1)、fixed(固定)。例如在某些工作流中,随机种子可能被设置为特定的值,如 30 或 79 等,以实现特定的效果或结果重现。
2025-03-12
ComfyUI的生图原理
ComfyUI 的生图原理主要包括以下几个方面: 1. Pixel Space 和 Latent Space: Pixel Space(像素空间):图的左边表示输入图像的像素空间,在 ComfyUI 中,可能通过“图像输入”模块或直接从文本提示生成随机噪声图像,生成过程结束时会将处理后的潜在表示转换回像素空间生成最终图像。 Latent Space(潜在空间):ComfyUI 的许多操作都在潜在空间中进行,如 KSampler 节点执行采样过程。图像被映射到潜在空间后,扩散过程在这个空间中进行,可通过节点调整对潜在空间的操作,如噪声添加、去噪步数等,通常由潜在空间操作模块实现。 2. 扩散过程(Diffusion Process): 噪声的生成和逐步还原:扩散过程表示从噪声生成图像的过程,通常通过调度器(如 Normal、Karras 等)控制,可通过“采样器”节点选择不同调度器控制潜在空间中噪声处理及逐步去噪回归到最终图像。 时间步数:生成图像时,扩散模型会进行多个去噪步,在 ComfyUI 中可通过控制步数影响图像生成的精细度和质量。 3. Denoising UNet(去噪 UNet 结构): UNet 模型:ComfyUI 底层依赖 Stable Diffusion,去噪过程由 UNet 网络完成,它是一种编码器解码器结构,能处理多尺度特征表示,在 ComfyUI 中去噪的每个步骤通过模型推理模块实现,调用训练好的 UNet 模型逐步将噪声图像还原成有意义的图像。 Cross Attention(交叉注意力):交叉注意力机制在 Stable Diffusion 中尤为重要,允许模型在生成过程中融入文本提示、图像、语义信息等条件,在 ComfyUI 中通过“文本提示”和“条件输入”节点实现,可调整文本提示的权重影响生成图像的内容。 Skip Connection(跳跃连接):是 UNet 的核心部分,能在不同尺度之间共享特征,在 ComfyUI 的节点网络中表示为中间过程数据的流转,可在不同推理步骤中查看中间生成结果并通过跳跃连接调整特定尺度上的生成效果。 Switch(切换器):在去噪过程中的不同阶段对特征流进行控制,在 ComfyUI 中可通过修改模型的参数节点或自定义网络结构节点,对不同阶段的噪声去除策略进行微调。 4. 基础模型:ComfyUI 使用预训练的扩散模型作为核心,通常是 Stable Diffusion 模型,包括 SD1.5、SD2.0、SDXL、SD3、FLUX 等模型,这些模型通过大量图像和文本对的训练,学会将文本描述与视觉概念关联起来。 5. 文本编码:当用户输入文本提示时,ComfyUI 首先使用 CLIP 文本编码器将文本转换为向量表示,该向量捕捉文本的语义信息。
2025-03-12
comfyUI是什么
ComfyUI 是一个基于节点流程式的 stable diffusion AI 绘图工具 WebUI,您可以将其视为集成了 stable diffusion 功能的 substance designer。通过把 stable diffusion 的流程拆分成节点,实现了更精准的工作流定制和良好的可复现性。 其具有以下优势: 1. 对显存要求相对较低,启动速度快,出图速度快。 2. 具有更高的生成自由度。 3. 可以和 webui 共享环境和模型。 4. 可以搭建自己的工作流程,可以导出流程并分享给别人,报错时能清晰发现错误所在步骤。 5. 生成的图片拖进后会还原整个工作流程,模型也会选择好。 但也存在一些劣势: 1. 操作门槛高,需要有清晰的逻辑。 2. 生态没有 webui 多(常用的都有),不过也有一些针对 Comfyui 开发的有趣插件。 您可以从 github 上下载作者部署好环境和依赖的整合包,按照官方文档安装即可,官方链接为:https://github.com/comfyanonymous/ComfyUI 。 ComfyUI 是一个开源的图形用户界面,用于生成 AI 图像,主要基于 Stable Diffusion 等扩散模型。其工作原理包括: 1. Pixel Space(像素空间):图的左边表示输入图像的像素空间,在 ComfyUI 中,对应于可能通过“图像输入”模块或直接从文本提示生成的随机噪声图像。在生成过程结束时,系统会将处理后的潜在表示转换回像素空间,生成最终的图像。 2. Latent Space(潜在空间):ComfyUI 中的许多操作都在潜在空间中进行,如 KSampler 节点就是在这个空间中执行采样过程。图像被映射到潜在空间后,扩散过程在这个空间中进行。在 ComfyUI 中,您可以通过节点调整对潜在空间的操作,如噪声添加、去噪步数等。 3. 扩散过程(Diffusion Process):噪声的生成和逐步还原。扩散过程表示的是从噪声生成图像的过程。在 ComfyUI 中,这通常通过调度器(Schedulers)控制,典型的调度器有 Normal、Karras 等,它们会根据不同的采样策略逐步将噪声还原为图像。您可以通过 ComfyUI 中的“采样器”节点选择不同的调度器,来控制如何在潜在空间中处理噪声,以及如何逐步去噪回归到最终图像。时间步数在生成图像时,扩散模型会进行多个去噪步。 此外,开源项目作者 ailm 在 ComfyUI 上搭建了一个可以接入飞书的 AI 女友麦洛薇(mylover),实现了稳定人设,无限上下文,永久记忆,无缝联动 SD 绘图等功能,适合完全没有代码基础的小伙伴们复现并且按自己的想法修改。
2025-03-12
如何使用comfyUI和cursor做小程序
以下是关于使用 ComfyUI 和 Cursor 做小程序的一些信息: 雪梅 May 在其 AI 学习日记中提到,ComfyUI 的工作流加上 Cursor 的前端网页,可以完整地制作一个个人的 AI 产品。对于个人来说,这是一个可以学习的方向,学会这些,就有可能成为一人产品公司。 关于在 Pycharm 中运行代码的步骤: 新建一个文件夹来保存代码文件,比如在 E 盘新建“python”文件夹。 打开 Pycharm,新建项目,安排好路径。 新建好会自动生成.idea 文件夹和.venv 文件夹。 在路径文件夹里新建一个放代码文件的文件夹,可自行命名方便分类,如“game”。 在新建的文件夹里新建 python 文件或新建文件并加.py 后缀。 双击新建命名好的文件,如“2048game.py”,右侧会打开文本框,将代码复制到这里面。 把从第 3 步得来的代码复制进来,运行即可。 通常来说,只需要简单沟通即可。有问题复制进去继续问即可。 即便使用 Cursor 产出的代码,最好也在 Pycharm 中运行。若直接运行 2048 游戏代码可能会出现红字报错,需要 pip 安装 pygame 库。点击左下角红色方框,将 Deepseek 或 Cursor 提示的安装 Pygame 库的 pip 代码复制过来粘贴在刚点出来的界面,回车安装到虚拟环境里面,再回到运行点击三角形状的“运行”即可。提示词误差得不到好结果的可以复制上述代码试试,再自己尝试找找问题。 您可以参考以上内容来使用 ComfyUI 和 Cursor 做小程序,希望对您有所帮助。
2025-03-12
comfyUi与webui的区别
ComfyUI 与 WebUI 的区别如下: ComfyUI 简介: 是一个基于节点流程式的 stable diffusion AI 绘图工具 WebUI,可想象成集成了 stable diffusion 功能的 substance designer,将流程拆分成节点,实现更精准工作流定制和完善的可复现性。 优势: 对显存要求相对较低,启动和出图速度快。 生成自由度更高。 可以和 WebUI 共享环境和模型。 能搭建自己的工作流程,可导出流程并分享,报错时能清晰发现错误所在。 生成的图片拖进后会还原整个工作流程,模型也会选择好。 劣势: 操作门槛高,需要清晰逻辑。 生态不如 WebUI 丰富,但也有针对其开发的有趣插件。 官方链接:https://github.com/comfyanonymous/ComfyUI 采样器与调度器: 在 ComfyUI 中,采样器与调度器分开,不同于 WebUI 中将两者合并。ComfyUI 通过采样器+调度器组合的方式与 WebUI 中的一致,选择 karras 调度器一般效果较好。 插件: 插件安装管理器:https://github.com/ltdrdata/ComfyUIManager SDXL 风格样式:https://github.com/twri/sdxl_prompt_styler ComfyUI 界面汉化:https://github.com/AIGODLIKE/AIGODLIKECOMFYUITRANSLATION 中文提示词输入:https://github.com/AlekPet/ComfyUI_Custom_Nodes_AlekPet 蟒蛇八卦工具箱:https://github.com/pythongosssss/ComfyUICustomScripts 提示词权重调节器:https://github.com/BlenderNeko/ComfyUI_AD 在 WebUI 中安装插件能直观看到并使用,因其有良好用户界面;而 ComfyUI 安装插件后可能看不到,需通过节点连接感受其功能,安装方法是将解压好的文件夹放入“E:\\ComfyUI_windows_portable\\ComfyUI\\custom_nodes”目录,然后重新启动。
2025-03-06
RuntimeError: Couldn't clone Stable Diffusion. Command: "git" clone --config core.filemode=false "https://github.com/Stability-AI/stablediffusion.git" "/Users/lichenhui/stable-diffusion-webui/repositories/stable-diffusion-stability-ai" Error code: 12
以下是关于您遇到的“RuntimeError: Couldn't clone Stable Diffusion”错误的分析和解决建议: 这个错误通常表示在克隆 Stable Diffusion 时出现问题。可能的原因包括: 1. 库的某些文件或依赖项已更改或已移除,导致无法找到所需的提交。 2. Git 存储库的状态不正确。 3. 网络连接存在问题。 解决方法如下: 1. 尝试清除本地库并重新克隆 Stable Diffusion,然后再次运行代码。 2. 运行以下命令来检查网络连接:ping files.pythonhosted.org
2025-02-12
我有一张图像,我要如何用stable Diffusion给它添加噪音。我是一个小白,请给出详细的步骤,用webui来操作。
以下是使用 WebUI 为图像添加噪音的详细步骤: 1. 首先,了解 Stable Diffusion 的加噪原理。从数据集中选择一张干净样本,然后用 random 函数生成 0 3 共 4 种强度的噪声,在每次迭代中随机选择一种强度的噪声添加到干净图片上,完成图片的加噪流程。 2. 在训练过程中,对干净样本进行加噪处理,采用多次逐步增加噪声的方式,直至干净样本转变成为纯噪声。 3. 加噪过程中,每次增加的噪声量级可以不同,假设存在 5 种噪声量级,每次都可以选取一种量级的噪声,以增加噪声的多样性。 4. 与图片生成图片的过程相比,在预处理阶段,先把噪声添加到隐空间特征中。通过设置去噪强度(Denoising strength)控制加入噪音的量。如果去噪强度为 0 ,则不添加噪音;如果为 1 ,则添加最大数量的噪声,使潜像成为一个完整的随机张量。若将去噪强度设置为 1 ,就完全相当于文本转图像,因为初始潜像完全是随机的噪声。
2024-11-18
stablediffusion在线webui如何开发
开发 Stable Diffusion 在线 Web UI 可以按照以下步骤进行: 1. 安装必要的软件环境: 安装 Git 用于克隆源代码。 安装 Python 3.10.6 版本,确保勾选“Add Python 3.10 to PATH”选项。 安装 Miniconda 或 Anaconda 创建 Python 虚拟环境。 2. 克隆 Stable Diffusion Web UI 源代码: 打开命令行工具,输入命令 git clone https://github.com/AUTOMATIC1111/stablediffusionwebui.git ,将源代码克隆到本地目录。 3. 运行安装脚本: 进入 stablediffusionwebui 目录,运行 webuiuser.bat 或 webui.sh 脚本,它会自动安装依赖项并配置环境。等待安装完成,命令行会显示 Web UI 的访问地址。 4. 访问 Web UI 界面: 复制命令行显示的本地 Web 地址,在浏览器中打开,即可进入 Stable Diffusion Web UI 的图形化界面。 5. 学习 Web UI 的基本操作: 了解 Web UI 的各种设置选项,如模型、采样器、采样步数等。尝试生成图像,观察不同参数对结果的影响。学习使用提示词(prompt)来控制生成效果。 6. 探索 Web UI 的扩展功能: 了解 Web UI 支持的各种插件和扩展,如 Lora、Hypernetwork 等。学习如何导入自定义模型、VAE、embedding 等文件。掌握图像管理、任务管理等技巧,提高工作效率。 在完成了依赖库和 repositories 插件的安装后,还需要进行以下配置: 将 Stable Diffusion 模型放到/stablediffusionwebui/models/Stablediffusion/路径下。然后到/stablediffusionwebui/路径下,运行 launch.py 即可。运行完成后,将命令行中出现的输入到本地网页中,即可打开 Stable Diffusion WebUI 可视化界面。进入界面后,在红色框中选择 SD 模型,在黄色框中输入 Prompt 和负向提示词,在绿色框中设置生成的图像分辨率(推荐设置成 768x768),然后点击 Generate 按钮进行 AI 绘画。生成的图像会展示在界面右下角,并保存到/stablediffusionwebui/outputs/txt2imgimages/路径下。 如果选用 Stable Diffusion 作为 AIGC 后台,需要注意: DallE 缺乏室内设计能力,MidJourney 出图效果好但无法基于现实环境重绘,Stable Diffusion 出图成功率较低,但可调用 controlnet 的 MLSD 插件捕捉现实环境线条特征做二次设计。安装 Stable Diffusion WEB UI 后,修改 webuiuser.bat 文件加上 listen 和 API 参数,让 Stable Diffusion 处于网络服务状态。代码如下: @echo off set PYTHON= set GIT= set VENV_DIR= set COMMANDLINE_ARGS=xformers nohalfvae listen api git pull call webui.bat 让 Stable Diffusion 具有 AI 室内设计能力的步骤: 1. 下载室内设计模型(checkpoint 类型),放到 stable diffusion 目录/models/stablediffusion 下面。 2. 安装 controlnet 插件,使用 MLSD 插件,实现空间学习。 通过 API 方式让前端连接到 Stable Diffusion 后台的具体代码在前端开发详细展开,API 参考文档可选读。
2024-11-01
webui可以用FLUX模型吗
WebUI 可以使用 FLUX 模型。以下是相关的下载和使用信息: ae.safetensors 和 flux1dev.safetensors 下载地址:https://huggingface.co/blackforestlabs/FLUX.1dev/tree/main 。 flux 相关模型(体积较大)的夸克网盘链接:https://pan.quark.cn/s/b5e01255608b 。 flux 相关模型(体积较大)的百度网盘链接:https://pan.baidu.com/s/1mCucHrsfRo5SttW03ei0g?pwd=ub9h 提取码:ub9h 。 如果 GPU 性能不足、显存不够,底模可以使用 fp8 的量化版模型,下载地址:https://huggingface.co/Kijai/fluxfp8/tree/main 。 下载 dev 的工作流: 或者官方原版的图片链接 https://comfyanonymous.github.io/ComfyUI_examples/flux/flux_dev_example.png ,打开 ComfyUI,把工作流或图片拖拽到 ComfyUI 里。 郑敏轩的 Flux 的 controlnet 系列中 TheMisto.ai 的 MistoLine 版: 注意:该 ControlNet 与 Flux1.dev 的 fp16/fp8 以及使用 Flux1.dev 量化的其他模型兼容。 需要节点(可以 git clone 方式下载或通过以下网盘): 夸克网盘:链接:https://pan.quark.cn/s/ad43dd5152a6 。 百度网盘:链接:https://pan.baidu.com/s/1NcOdG4AV68xTup8FvphsYA?pwd=lpvc 提取码:lpvc 。 模型: 夸克网盘:链接:https://pan.quark.cn/s/5551e813db21 。 百度网盘:链接:https://pan.baidu.com/s/1Ntf4MbTCGJ5TYDv6mgvqNQ?pwd=zhfq 提取码:zhfq 。 处理:将模型放到 ComfyUI\\models\\TheMisto_model 文件夹中。 导入官方工作流 。所需要的两个模型:
2024-10-25
webui可以用FLUX模型吗
WebUI 可以使用 FLUX 模型。以下是相关的下载和使用信息: ae.safetensors 和 flux1dev.safetensors 的下载地址:https://huggingface.co/blackforestlabs/FLUX.1dev/tree/main 。 夸克网盘链接:https://pan.quark.cn/s/b5e01255608b 百度网盘链接:https://pan.baidu.com/s/1mCucHrsfRo5SttW03ei0g?pwd=ub9h 提取码:ub9h 如果 GPU 性能不足、显存不够,底模可以使用 fp8 的量化版模型,下载地址:https://huggingface.co/Kijai/fluxfp8/tree/main 。 dev 的工作流: 官方原版的图片链接:https://comfyanonymous.github.io/ComfyUI_examples/flux/flux_dev_example.png ,打开 ComfyUI ,把工作流或图片拖拽到 ComfyUI 里。 郑敏轩的 Flux 的 controlnet 系列: TheMisto.ai 的 MistoLine 版,该 ControlNet 与 Flux1.dev 的 fp16/fp8 以及使用 Flux1.dev 量化的其他模型兼容。 节点: 可以 git clone 方式下载或通过压缩包。 夸克网盘:链接:https://pan.quark.cn/s/ad43dd5152a6 百度网盘:链接:https://pan.baidu.com/s/1NcOdG4AV68xTup8FvphsYA?pwd=lpvc 提取码:lpvc 模型: 夸克网盘:链接:https://pan.quark.cn/s/5551e813db21 百度网盘:链接:https://pan.baidu.com/s/1Ntf4MbTCGJ5TYDv6mgvqNQ?pwd=zhfq 提取码:zhfq 处理:将模型放到 ComfyUI\\models\\TheMisto_model 文件夹中。 导入官方工作流: ,所需要的两个模型。
2024-10-25
agent和agi的区别
Agent 和 AGI 的区别主要体现在以下几个方面: Agent(智能体): 是执行特定任务的 AI 实体。 拥有复杂的工作流程,可以自我对话,无需人类驱动每一部分的交互。 由大型语言模型、记忆、任务规划以及工具使用等部分组成。 例如在斯坦福 25 人小镇案例中有所应用。 AGI(人工通用智能): 强调的是具备像人类一样广泛和通用的智能能力。 追求能够在各种不同的任务和领域中表现出高度智能的水平。 总的来说,Agent 更侧重于特定任务的执行和特定功能的实现,而 AGI 则是一个更宏观和全面的概念,旨在实现广泛的通用智能。
2025-03-12
agent和workflow的区别
智能体(Agent)和工作流(Workflow)的区别主要体现在以下几个方面: 1. 定义和功能: 智能体是由 LLM 动态指导自身流程和工具使用的系统,能够自主控制任务完成方式。 工作流是通过预定义代码路径来编排 LLM 和工具的系统。 2. 运行方式: 智能体可以长期独立运行,是全自动的系统,能使用各种工具完成复杂任务。 工作流中的子任务是人为编排的,属于手动编排。 3. 组成和特点: 工作流中的每个组块可以看成是一个函数,包括传统函数、调用第三方服务的函数和基于 LLM 的函数。由这三类函数组合而成的工作流被称为超函数,它不同于传统函数,形式上是用自然语言编写的程序,功能上可以模拟人的高阶思维。 智能体在架构上与工作流有所区分,其更强调自主性和动态性。 在实际应用中,工作流的灵活性和可控性能够将智能体能力的天花板往上顶一大截,例如可以在流程中加入人类 Knowhow、进行专家测试试跑、引入图的概念灵活组织节点等。评价一个 Agent 平台好不好用,可以从基座模型的 function calling 能力、workflow 的灵活性以及平台创作者的 workflow 编写水平等方面考量。
2025-03-12
编程插件和编程IDE的区别
编程插件和编程 IDE 主要有以下区别: 1. 代码补全方式:编程插件的补全通常局限于向后追加,而像 Trae 这样的 AI 原生 IDE 可以删除代码,进行多行全方位的自动补全。 2. 工作能力:AI 原生 IDE 如 Trae 具备 Agent 的能力,在无须人工干预的情况下,可以完成代码生成、调试、程序运行等一系列工作。而编程插件可能需要更多的人工参与。 3. 用户习惯改变难度:工程师往往有自己习惯使用的 IDE,新的编程 IDE 想迅速改变工程师的习惯较难,而插件的方式可以让工程师先低成本地用起来。 4. 功能集成度:编程 IDE 通常是一个完整的开发环境,提供了更全面的功能和优化,如 IntelliJ 为 Java 程序员做了很多细微的优化。而插件则是在原有 IDE 的基础上增加特定的功能。 例如,在 Coze IDE 中可以借助 AI 轻松创建插件,创建后需发布才能被 Bot 使用。在 Cursor 中,可通过官网下载安装,通过调起 AI 对话输入需求实现功能,在使用过程中不断追问完善需求,遇到问题可随时向其咨询。
2025-03-12
COW微信机器人、FastGpt微信机器人、COZE微信机器人的区别?
以下是 COW 微信机器人、FastGpt 微信机器人、COZE 微信机器人的区别: COW 微信机器人: 基于 Hook 机制,具有相对更高的稳定性和安全性,更简单易上手。 目前插件相对较少,仅支持 Windows 系统。 可以不用服务器,对小白更加友好。 能够结合 FastGPT 进行使用。 具备基于知识库的 AI 回复、支持积分系统、支持自动拉人、检测广告、自动群发等功能,还有安全新闻定时推送、Kfc 文案、星座查询、天气查询等有趣的小功能。 FastGpt 微信机器人:可以与 COW 微信机器人结合使用。 COZE 微信机器人:在 6 月底的微信机器人共建中有所提及,有多种玩法,如对接 llm key 的玩法等。在百炼平台里的“应用”概念类似于 COZE 中的“bot”。
2025-03-11
trae与cursor有什么区别,用它开发微信小程序需要注意些什么?
Trae 与 Cursor 的区别主要体现在以下方面: 1. 在处理自然语言提出的非常具体的需求时,Trae 可能会在查找文件的步骤中出错,而 Cursor 在某些复杂任务中的表现可能更好。 2. Trae 中很多功能是免费的,而 Cursor 可能并非如此。 3. Trae 从底层架构开始就围绕着 AI 能力构建,比传统在 IDE 里集成 AI 的逻辑更具优势,使用起来更流畅、准确和优质。在插件式的使用方式下,用户使用 Cursor 仍需要具备一定的编程知识,而完全零编程知识也可以用 Trae 开发出应用,降低了编程门槛。 用 Trae 开发微信小程序需要注意以下几点: 1. 打开 Trae 并打开创建的文件夹,使用 Chat 模式明确需求,然后切换到 Builder 模式进行开发。 2. Trae 会在本地文件夹内生成代码,微信开发者工具从同一本地文件夹读取代码,且有实时预览功能。 3. 开发过程中若有报错需修改错误,直至在微信开发者工具内调试正常。 4. 上传时需在微信开发者工具右上角点击“上传”,在弹出的弹窗里选择“确定”,接着在弹出的选项里填写版本号和项目备注。 5. 上传完毕后,可在微信小程序后台的版本管理里查看开发版本的信息,可选择点击体验版进行线上体验或提交审核。
2025-03-10
AI和AGI的区别
AI(Artificial Intelligence,人工智能)和 AGI(Artificial General Intelligence,通用人工智能)有以下区别: 1. 能力范围: AI 通常指的是弱人工智能(ANI,Artificial Narrow Intelligence),它只能完成特定的任务,如智能音箱的语音交互、网站搜索、自动驾驶、工厂与农场的应用等。 AGI 则能够做任何人类可以做的事情。 2. 发展程度: ANI 已经取得了巨大的发展。 而 AGI 目前还没有取得巨大的进展。 3. 模型目的和底层数据量: 以往的 AI 被视为“工具”,而 AGI 更像是“大脑”。 OpenAI 主张的 AGI 模型,如 GPT 系列,致力于成为“世界模型”,将世界上所有的知识压缩到模型里,其底层数据量巨大,正在接近全人类所有数据的量级。
2025-03-08