Agent 和 AGI 的区别主要体现在以下几个方面:
Agent(智能体):
AGI(人工通用智能):
总的来说,Agent 更侧重于特定任务的执行和特定功能的实现,而 AGI 则是一个更宏观和全面的概念,旨在实现广泛的通用智能。
理解工具:AI Agent有效使用工具的前提是全面了解工具的应用场景和调用方法。没有这种理解,Agent使用工具的过程将变得不可信,也无法真正提高AI Agent的能力。利用LLM强大的zero-shot learning和few-shot learning能力,AI Agent可以通过描述工具功能和参数的zero-shot demonstartion或提供特定工具使用场景和相应方法演示的少量提示来获取工具知识。这些学习方法与人类通过查阅工具手册或观察他人使用工具进行学习的方法类似。在面对复杂任务时,单一工具往往是不够的。因此,AI Agent应首先以适当的方式将复杂任务分解为子任务,然后有效地组织和协调这些子任务,这有赖于LLM的推理和规划能力,当然也包括对工具的理解。使用工具:AI Agent学习使用工具的方法主要包括从demonstartion中学习和从reward中学习(清华有一篇从训练数据中学习的文章)。这包括模仿人类专家的行为,以及了解其行为的后果,并根据从环境和人类获得的反馈做出调整。环境反馈包括行动是否成功完成任务的结果反馈和捕捉行动引起的环境状态变化的中间反馈;人类反馈包括显性评价和隐性行为,如点击链接。具身智能在追求人工通用智能(AGI)的征途中,具身Agent(Embodied Agent)正成为核心的研究范式,它强调将智能系统与物理世界的紧密结合。具身Agent的设计灵感源自人类智能的发展,认为智能不仅仅是对预设数据的处理,更多地来自于与周遭环境的持续互动和反馈。与传统的深度学习模型相比,LLM-based Agent不再局限于处理纯文本信息或调用特定工具执行任务,而是能够主动地感知和理解其所在的物理环境,进而与其互动。这些Agent利用其内部丰富的知识库,进行决策并产生具体行动,以此改变环境,这一系列的行为被称为“具身行动”。
核心思想:心灵社会理论认为,智能是由许多简单的Agent(分等级、分功能的计算单元)共同工作和相互作用的结果。这些Agent在不同层次上执行不同的功能,通过协作实现复杂的智能行为。多重层次:心灵社会将智能划分为多个层次,从低层次的感知和反应到高层次的规划和决策,每个层次由多个Agent负责。功能模块:每个Agent类似于功能模块,专门处理特定类型的信息或执行特定任务,如视觉处理、语言理解、运动控制等。分布式智能:智能不是集中在单一的核心处理单元,而是通过多个相互关联的Agent共同实现。这种分布式智能能够提高系统的灵活性和鲁棒性,应对复杂和多变的环境。同时,在《心灵社会》中,明斯基还详细描述了不同类型的Agent及其功能:专家Agent:拥有特定领域知识和技能的Agent,负责处理复杂的任务和解决特定问题。管理Agent:协调和控制其他Agent的活动,确保整体系统协调一致地运行。学习Agent:通过经验和交互,不断调整和优化自身行为,提高系统在不断变化环境中的适应能力。从达特茅斯会议开始讨论人工智能(Artificial Intelligence),到马文·明斯基引入“Agent”概念,到这里,“AI”和“Agent”就彻底聚齐了。往后,我们都将其称之为AI Agent。
Agent是执行特定任务的AI实体。Agent(智能体)=一个设置了一些目标或任务,可以迭代运行的大型语言模型。这与大型语言模型(LLM)在像ChatGPT这样的工具中“通常”的使用方式不同。在ChatGPT中,你提出一个问题并获得一个答案作为回应。而Agent拥有复杂的工作流程,模型本质上可以自我对话,而无需人类驱动每一部分的交互。参考文章:https://logankilpatrick.medium.com/what-are-gpt-agents-a-deep-dive-into-the-ai-interface-of-the-future-3c376dcb0824能干什么最有名的案例:斯坦福25人小镇https://waytoagi.feishu.cn/record/1sfvuej0sATQfbO6zbeEAWk02Lilian Weng(OpenAI应用人工智能研究负责人)的这篇Blog可以说是目前AI Agent领域优质论文的系统综述,她将Agents定义为LLM、记忆(Memory)、任务规划(Planning Skills)以及工具使用(Tool Use)的集合,其中LLM是核心大脑,Memory、Planning Skills以及Tool Use等则是Agents系统实现的三个关键组件,在文章中,她还对每个模块下实现路径进行了细致的梳理和说明。到今天,构建AI Agent的工具箱已经相对完善,但仍需要面对一些限制,例如上下文长度、长期规划和任务分解,以及LLM能力的稳定性等。https://lilianweng.github.io/posts/2023-06-23-agent/与普通模式有什么不同