Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

生成式AI有哪些类型和工具

Answer

生成式 AI 主要有以下类型和相关工具:

  • 类型:生成的内容可以是多模式的,包括文本、图像、音频和视频。能够帮助完成各种任务,例如文档摘要、信息提取、代码生成、营销活动创建、虚拟协助和呼叫中心机器人等。
  • 工具:
    • Google Cloud 提供了多种易于使用的工具,如 Vertex AI,它是端到端机器学习开发平台,可帮助构建、部署和管理机器学习模型。
    • 图中描绘的趋势显示,相关工具和基础设施逐渐模块化和专业化,公司被分组到以下四个主要类别:
      • Orchestration(编排):涉及 DUST、FIAVIE、LangChain 等公司提供的工具,帮助管理和协调各个部分和任务。
      • Deployment,Scalability,&Pre-Training(部署,可扩展性和预训练):如 UWA mosaicm、NMAREL、anyscale 等公司提供工具,用于部署模型、保证可扩展性和进行预训练。
      • Context&Embeddings(上下文和嵌入):如 TRUDO,Llamalndex,BerriAI 等公司提供工具,处理和理解语言上下文以及进行嵌入。
      • QA&Observability(质量保证和可观察性):如 Pinecone,drant,Vald 等公司提供工具,确保模型表现和监控性能状态。

目前典型的生成式 AI 包括 OpenAI 推出的语言模型 ChatGPT、GPT-4、图像模型 DALL-E 以及百度推出的文心一言、阿里云推出的通义千问等。国内主要在《网络安全法》《数据安全法》《个人信息保护法》的框架下,由《互联网信息服务算法推荐管理规定》《互联网信息服务深度合成管理规定》《生成式人工智能服务管理暂行办法》《科技伦理审查办法(试行)》共同监管 AIGC 行业。

Content generated by AI large model, please carefully verify (powered by aily)

References

9. 生成式 AI Studio 简介

00:00欢迎来到Generative AI Studio课程简介。在本视频中,您将了解什么是Generative AI Studio并描述其使用选项。您还可以自己演示Generative AI Studio的语言工具。00:14什么是生成式人工智能?它是一种为您生成内容的人工智能。什么样的内容?那么,生成的内容可以是多模式的,包括文本、图像、音频和视频。00:28当给出提示或请求时,Generative AI可以帮助您完成各种任务,例如文档摘要、信息提取、代码生成、营销活动创建、虚拟协助和呼叫中心机器人。00:42这些只是几个例子!人工智能如何产生新内容?它从大量现有内容中学习。这包括文本、音频和视频。从现有内容中学习的过程称为训练,其结果是创造00:57的“基础模型”。为Bard等聊天机器人提供支持的LLM或大型语言模型是基础模型的典型示例。[动画-向左滑动图形以过渡到下一张幻灯片]基础模型01:07然后可用于生成内容并解决一般问题,例如内容提取和文档摘要。它还可以使用您所在领域的新数据集进一步训练以解决特定问题,01:19例如财务模型生成和医疗保健咨询。这导致创建了一个新模型,该模型是根据您的特定需求量身定制的。您如何使用基础模型为您的应用程序提供动力,以及您如何进一步01:32训练或调整基础模型来解决您特定领域的问题?Google Cloud提供了多种易于使用的工具,可帮助您在具有或不具有AI和机器学习背景的项目中使用生成式AI。01:45一种这样的工具是Vertex AI。Vertex AI是Google Cloud上的端到端机器学习开发平台,可帮助您构建、部署和管理机器学习模型。使用Vertex AI,如果您是应用程序开发人员或数据科学家并且想要构建应用程序,

Generative AI的开发工具和基础设施的趋势

这张图描绘了Generative AI的开发工具和基础设施的趋势。它代表了在AI开发领域中,为满足不同需求,工具和基础设施正在逐渐模块化和专业化的趋势。图中的公司被分组到以下四个主要类别:1.Orchestration(编排):涉及到的公司(如DUST、FIAVIE、LangChain等)提供的工具帮助开发人员管理和协调各个部分和任务,以确保系统的流畅运行。2.Deployment,Scalability,&Pre-Training(部署,可扩展性和预训练):这个类别的公司(如UWA mosaicm、NMAREL、anyscale等)提供工具,帮助开发人员部署模型,保证模型的可扩展性,以及在模型使用前进行预训练。3.Context&Embeddings(上下文和嵌入):这个类别的公司(如TRUDO,Llamalndex,BerriAI等)提供工具,帮助模型处理和理解语言上下文,以及将词语和句子转化为计算机可以理解的形式。4.QA&Observability(质量保证和可观察性):这个类别的公司(如Pinecone,drant,Vald等)提供工具,以确保模型的表现,并能够监控模型的性能和状态。这些类别和公司的出现代表了人工智能技术的复杂化和专业化。随着技术的发展,更多专门针对不同AI开发阶段的工具和服务正在被开发和使用,这有助于提高开发效率和模型质量。

2024AIGC法律风险研究报告(更新版).pdf

在引入AIGC的概念之前,本报告将先解释另一相关的热门词条“GenAI”,全称Generative AI,即生成式AI。GenAI是一种基于深度学习技术(deep learning algorithm),利用机器学习(machine learning)算法从已有数据中学习并生成新的数据或内容的AI应用。其工作原理是通过大规模的数据集训练深度神经网络模型,学习各种数据的规律和特征,实现对输入数据的分析、理解和生成。GenAI为游戏、娱乐和产品设计等应用提供了新颖且有创意的解决方案,如自动写作、虚拟现实、音乐创作等,甚至协助科学研究开辟了新的可能性。目前典型的GenAI包括OpenAI推出的语言模型ChatGPT、GPT-4、图像模型DALL-E以及百度推出的文心一言、阿里云推出的通义千问等。虽然生成式AI是一种非常强大的技术,能够应用于诸多专业领域;但其在数据处理过程中存在多重潜在合规风险,如未经授权收集信息、提供虚假信息、侵害个人隐私等。AIGC(全称AI-Generated Content)指利用GenAI创建的内容,如图像、视频、音频、文本和三维模型。具体来讲,AIGC工具使用机器学习算法,通常以自然语言处理为基础,分析大型文本数据集,并学习如何生成风格和语气相似的新内容。国内目前主要是在《网络安全法》《数据安全法》以及《个人信息保护法》的框架下,由《互联网信息服务算法推荐管理规定》、《互联网信息服务深度合成管理规定》、《生成式人工智能服务管理暂行办法》、《科技伦理审查办法(试行)》共同监管AIGC行业。

Others are asking
生成式 AI 搜索
生成式 AI 搜索具有以下特点和应用: 有可能彻底改变互联网的核心功能之一——搜索。传统搜索中,用户在 Google 输入问题后常被大量链接及不准确信息淹没,而由大型语言模型驱动的搜索引擎可提供自然语言写成的简洁答案,并能在用户感兴趣时提供更多链接阅读。 一些公司为一般搜索查询提供服务,如 You 和 Neeva。还有公司采取更垂直化的方法,如 Consensus 跨越研究论文进行搜索,Perplexity 的 Bird SQL 产品针对 Twitter 进行搜索。 对于产品推荐尤为有价值,能根据特定需求提供策划过的选项列表。 在企业内部搜索应用中具有巨大潜力,如 Glean 允许团队跨应用搜索,Vowel 允许用户查询视频会议记录。 以下是一些推荐的 AI 搜索引擎: 秘塔 AI 搜索:由秘塔科技开发,提供多模式搜索、无广告干扰、结构化展示和信息聚合等功能,旨在提升用户的搜索效率和体验。 Perplexity:聊天机器人式的搜索引擎,允许用户用自然语言提问,使用生成式 AI 技术从各种来源收集信息并给出答案。 360AI 搜索:360 公司推出,通过 AI 分析问题,生成清晰、有理的答案,并支持增强模式和智能排序。 天工 AI 搜索:昆仑万维推出,采用生成式搜索技术,支持自然语言交互和深度追问,未来还将支持图像、语音等多模态搜索。 Flowith:创新的 AI 交互式搜索和对话工具,基于节点式交互方式,支持多种 AI 模型和图像生成技术,提供插件系统和社区功能。 Devv:面向程序员的 AI 搜索引擎,专注于提供编程、软件开发和人工智能等领域的专业建议和指导。 Phind:专为开发者设计的 AI 搜索引擎,利用大型语言模型提供相关的搜索结果和动态答案,特别擅长处理编程和技术问题。 在生成式人工智能方面,近年来大型语言模型的飞速进步为信息检索领域带来新机遇和挑战。2022 年 OpenAI 发布 ChatGPT 引发轰动,其在对话中展现出理解复杂问题和生成连贯文本的能力,被视为对传统搜索引擎的颠覆性竞争。ChatGPT 的成功引发搜索引擎巨头的紧迫感,谷歌推出 Bard 并逐步向 180 多个国家开放服务,百度推出文心一言等生成式 AI 搜索功能,微软将 GPT4 集成到必应搜索中推出新版本的 Bing Chat。早期观察指出,聊天机器人式的搜索在提供直接答案的同时,存在回答不准确甚至“幻觉”信息的问题,现阶段许多用户对 AI 答案的准确性和可靠性仍存疑虑。
2025-02-28
生成式AI相关知识
生成式 AI 相关知识如下: GenAI 是生成式 AI 的一种,全称 Generative AI,是基于深度学习技术和机器学习算法,从已有数据中学习并生成新数据或内容的 AI 应用。其通过大规模数据集训练深度神经网络模型,能为游戏、娱乐和产品设计等提供解决方案,典型的 GenAI 包括 OpenAI 推出的 ChatGPT、GPT4、DALLE 以及百度的文心一言、阿里云的通义千问等。但在数据处理中存在未经授权收集信息、提供虚假信息、侵害个人隐私等潜在合规风险。 AIGC 指利用 GenAI 创建的内容,包括图像、视频、音频、文本和三维模型等。其工具使用机器学习算法,通常基于自然语言处理,分析大型文本数据集并学习生成新内容。国内主要在《网络安全法》《数据安全法》《个人信息保护法》框架下,由《互联网信息服务算法推荐管理规定》《互联网信息服务深度合成管理规定》《生成式人工智能服务管理暂行办法》《科技伦理审查办法(试行)》共同监管。 AIGC 主要分为语言文本生成、图像生成和音视频生成,分别利用不同的模型和技术,应用于多个领域,但也可能引发内生风险、数据隐私问题和知识产权风险,相关法律和规定对其有一定要求,但部分问题仍需更多法律明确,且需加强监管和伦理约束。 此外,台湾大学李宏毅教授的生成式 AI 课程介绍了其基本概念、发展历程、技术架构和应用场景等内容,共 12 讲,每讲约 2 小时。通过学习该课程,可掌握生成式 AI 的基本概念和常见技术,能够使用相关框架搭建简单的生成式模型,了解其发展现状和未来趋势。课程包括生成式 AI 的定义和分类、生成式模型、生成式对话、预训练语言模型、生成式 AI 的挑战与展望等内容,并提供了教材、参考书籍、在线课程、开源项目等学习资源和学习方法。
2025-02-24
大模型和小模型区别是什么?是否大模型都属于生成式AI,小模型属于判别式AI,为什么大模型有幻觉小模型没有?
大模型和小模型的区别主要体现在以下几个方面: 1. 规模和参数数量:大模型通常具有更多的参数和更复杂的架构,能够处理更大量和更复杂的数据。 2. 能力和性能:大模型在语言理解、生成等任务上往往表现更出色,能够生成更准确、丰富和连贯的内容。 3. 应用场景:大模型适用于广泛的通用任务,而小模型可能更专注于特定的、较狭窄的领域。 并非大模型都属于生成式 AI,小模型都属于判别式 AI。生成式 AI 能够生成新的内容,如文本、图片等;判别式 AI 则主要用于对输入进行分类或判断。模型的分类与其大小并无直接的必然联系。 大模型出现幻觉的原因主要是其通过训练数据猜测下一个输出结果,可能会因错误或不准确的数据导致给出错误的答案。而小模型相对来说数据量和复杂度较低,出现幻觉的情况相对较少,但这并非绝对,还取决于模型的训练质量、数据的准确性等多种因素。优质的数据集对于大模型减少幻觉现象非常重要。
2025-02-21
人工智能(AI)、机器学习(ML)、深度学习(DL)、生成式AI(AIGC)的区别与联系
AI(人工智能)是一个广泛的概念,旨在让机器模拟人类智能。 机器学习(ML)是AI的一个分支,指计算机通过数据找规律进行学习,包括监督学习(使用有标签的训练数据,学习输入和输出之间的映射关系,如分类和回归)、无监督学习(处理无标签数据,让算法自主发现规律,如聚类)和强化学习(从反馈中学习,以最大化奖励或最小化损失,类似训练小狗)。 深度学习(DL)是一种机器学习方法,参照人脑构建神经网络和神经元,由于网络层数较多被称为“深度”。神经网络可用于监督学习、无监督学习和强化学习。 生成式 AI(AIGC)能够生成文本、图片、音频、视频等内容形式。 它们之间的联系在于:深度学习是机器学习的一种重要方法,机器学习又是实现人工智能的重要途径,而生成式 AI 是人工智能的一个应用领域。例如,生成式 AI 中的一些技术可能基于深度学习和机器学习的算法。2017 年 6 月,谷歌团队发表的论文《Attention is All You Need》首次提出了 Transformer 模型,它基于自注意力机制处理序列数据,不依赖于循环神经网络或卷积神经网络,对相关技术的发展具有重要意义。大语言模型(LLM)如谷歌的 BERT 模型,可用于语义理解(如上下文理解、情感分析、文本分类),但不擅长文本生成,对于生成式 AI,生成图像的扩散模型不属于大语言模型。
2025-02-19
生成式AI教育场景应用 项目式学习 中小学案例
以下是一些中小学在生成式 AI 教育场景应用中采用项目式学习的案例: 北京市新英才学校: 开设“AI 创作家”小学课后服务特色课程,12 个五、六年级的学生在老师的引导和帮助下,主导设计一款实用的桌游。 学生们提出解决学校面积大导致新生和访客迷路的问题,决定制作一款学校地图桌游。 课程中,学生有时听老师讲解人工智能知识和工具使用方法,有时自己写 prompt 与大语言模型对话,还使用文生图 AI 工具生成桌游卡牌背后的图案,手绘第一版学校地图,选择游戏机制并梳理游戏流程。 在教育领域,生成式 AI 带来了诸多改变: 解决了教育科技长期以来在有效性和规模之间的权衡问题,可大规模部署个性化学习计划,为每个用户提供“口袋里的老师”,如实时交流并给予发音或措辞反馈的语言老师。 出现了众多辅助学习的产品,如教授新概念、帮助学习者解决各学科问题、指导数学作业、提升写作水平、协助创建演示文稿等。
2025-02-18
生成式AI教育场景应用 中小学案例
以下是北京市新英才学校在中小学教育场景中生成式 AI 的应用案例: 特色课程方面:学校开设了“AI 创作家”小学课后服务特色课程,12 个五、六年级的学生在老师的引导下,用 AIGC 工具设计一款实用的桌游。学生主导从收集需求、定义问题到设计背景、机制、内容、视觉,再到测试、迭代的全过程。例如,为解决学校面积大导致新生和访客迷路的问题,学生决定做一款学校地图桌游。课程中,学生学习人工智能知识、使用工具写 prompt 与大语言模型对话,还使用 OpenInnoLab平台生成桌游卡牌图案、手绘地图、选择游戏机制、梳理游戏流程。此外,还邀请中国传媒大学的吴卓浩教授合作,采用“大学生,小学生同上一节课”的方式,大学生为小学生讲解 AI 工具、试玩桌游。本学期,学生们测试并迭代桌游,使用 3D 打印机打印配件,用 ChatGPT 和 Midjourney 增强视觉设计,用 Kimi 辅助编写说明书,还计划让学生尝试用文生音乐工具 Suno 制作歌曲加入桌游 2.0 版本。 英语主课方面:初中部的英语课也融入了 AIGC 工具。魏一然协助初中部的英文老师杨佳欣和刘奕玚进行探索。在课程初期,更多是老师带着学生使用 AIGC 工具,prompt 由学生提出,老师引导。例如,在研究学校食堂食物浪费问题时,老师带着学生与 ChatGPT 对话,了解处理方法,让 ChatGPT 为学生生成生词解释和例句,形成生词库,并灵活加工生词生成题目、游戏或文章帮助学生复习单词。在关于社交媒体的英语辩论课上,尝试让学生自主使用 AIGC 工具做辩论准备。
2025-02-18
如何使用ai做短视频
使用 AI 做短视频可以参考以下方法和工具: 1. 工具组合使用: Runway:在真实影像方面质感较好,处理战争片全景镜头出色,但存在爱变色、光影不稳定的问题。 Pixverse:擅长物体滑行运动。 Pika:生成人物表情自然的画面。 根据不同工具对画面的处理能力进行组合,如将 Pixverse 生成的视频在 Pika 中局部重绘。 2. 根据视频脚本生成短视频的工具: ChatGPT + 剪映:ChatGPT 生成视频小说脚本,剪映根据脚本自动分析并生成素材和文本框架。 PixVerse AI:在线 AI 视频生成工具,支持多模态输入转化为视频。 Pictory:允许用户通过文本描述轻松创建和编辑高质量视频。 VEED.IO:提供 AI 图像和脚本生成器,帮助规划视频内容。 Runway:将文本转化为风格化视频内容。 艺映 AI:提供文生视频、图生视频、视频转漫等服务。 3. 相关软件教程: 视频模型:Sora(https://waytoagi.feishu.cn/wiki/S5zGwt5JHiezbgk5YGic0408nBc) 工具教程:Hedra(https://waytoagi.feishu.cn/wiki/PvBwwvN36iFob7kqZktcCzZFnxd) 应用教程:视频转绘(https://waytoagi.feishu.cn/wiki/ZjKpwSd5hiy6ZhkiBVHcOBb6n9r)、视频拆解(https://waytoagi.feishu.cn/wiki/WeKMwHRTmiVpYjkVdYpcFjqun6b)、图片精修(https://waytoagi.feishu.cn/wiki/CfJLwknV1i8nyRkPaArcslWrnle) 4. 其他视频 AIGC 工具: Opusclip:利用长视频剪成短视频。 Raskai:短视频素材直接翻译至多语种。 InvideoAI:输入想法生成脚本和分镜描述,生成视频后人工二编合成长视频。 Descript:屏幕/播客录制后以 PPT 方式做视频。 Veed.io:自动翻译自动字幕。 Clipchamp:微软的 AI 版剪映。 Typeframes:类似 InvideoAI,内容呈现文本主体比重更多。 Google vids
2025-03-10
我们的商业计划书大部分是AI生成的我需要降低aicg率,给我一些建议和工具
目前没有相关的内容为您提供建议和工具来降低商业计划书的 AIGC 率。但一般来说,您可以通过以下方式来降低: 1. 增加原创内容:深入研究和理解您的商业主题,以独特的视角和见解来阐述关键观点和策略。 2. 人工审核与修改:仔细检查 AI 生成的部分,对表述不准确、逻辑不清晰或不符合实际情况的内容进行修改和完善。 3. 引入真实案例和数据:通过收集和引用实际的行业案例、市场数据等,增强计划书的可信度和独特性。 关于工具方面,暂时没有确切的推荐,但您可以关注一些专业的文本编辑和校对软件。
2025-03-10
星流一站式 AI 设计工具的打开方式
星流一站式 AI 设计工具的打开方式如下: 无限画布: 图像分享与信息查看: 图像信息查看:滑动鼠标到图像上,点击信息查看按钮后弹出生成信息。 图像分享:点击图像右上角的分享标志可生成分享链接与发送到 LiblibAI。发布到 Liblib 时,需输入与内容匹配的图片标题,选择现有活动标签或自定义个性化标签,提供对图片的详细解释或创作理念。 右键功能: 画布空白区域右键: 放大:点击一次,视图放大较小的比例。 缩小:点击一次,视图缩小较小的比例。 显示画布所有图像:扩大视图直到包含全部图片。 图像上右键: 移动至顶层/移动至底层:调整当前图像层级别,层级高的会覆盖层级低的图像。 复制:复制当前图像。按住键盘快捷键 ctrl/command+V 可以在无限画布中直接粘贴一张图像,也可以粘贴到星流网站外的其他界面中。 复制链接:复制图像的链接,点击链接可查看与调取图像信息。 框选多张图像后右键: 创建组(成功创建后左上角有 Group 字样):创建组后,拖动任意图像位置,整个组的图像都会移动;点击组内图像后,可拖动单一图片。 选中组后右键: 合并为图片(左上角为 Merged Image 标志):将组内所有图片(包括空白区域)合并为一张图片。 下方 prompt 输入框: 图生图: 作用:允许用户上传一张图像,并基于该图像生成新的视觉内容。 使用方法: 应用图生图:在 prompt 输入框下,点击“图生图”上传本地文件;在无限画布中下,图片功能区进行选择。 调整“图生图”功能区参数:参考程度分为更像原图(小幅度修改基底图像,有限的增加元素)、更创意(大幅度修改基底图像,可搭配增强模型加入更多的元素)、自定义(可自定义修改重绘幅度);增加参考纬度(点击添加按钮,会自动的应用并打开“生成器”的图片参考功能);替换图像(鼠标滑动到图像,点击“选择参考图”即可重新选择图片);转换提示词(反推参考图信息填入进提示词框中);同步生图尺寸(同步参考图尺寸到“生成器”的生图尺寸中)。 顶部图像编辑工具: 基础工具: 选择(V):可以选中画布上的图片并移动图片。 平移画布:可以移动画布,但是无法选中图片。 上传图片:上传图片到画布。上传大于 20482048 的图片到画布,将会自动压缩到 20482048 以内。也可以直接拖动图像到画布进行上传图片操作。图像选中:左键点击图像进行选中,才能使用图像智能工具。 帮助专区: 教程板块:跳转到星流的详细的图文教程板块。 快速导览:对各个区域逐步进行高亮并进行解释。
2025-03-10
AI对于3d的建模
在 3D 建模方面,AI 主要有以下应用和相关工具: 应用: 在 3D 模型生成中,AI 能够完成 3D 模型生成流程的“一步到位”。工作流中的每个环节通常需要 3D 美术工程师完成,而使用 3D 生成模型可直接生成一个可调整的 3D 粗模,显著提升效率。 在游戏测试与优化环节,AI 承担改善角色动画、编程与加速、自动化游戏测试等功能,能通过生成文字、图片、视频、音乐来缩减时间和资源消耗,快速识别游戏开发中的基本问题并提出改善方法。 在游戏设计中,AI 依托自然语言生成用法,在角色与故事生成、游戏机制创新等方面发挥作用,通过针对性训练数据集强化 NPC 模型的基础能力。 大淘宝设计部的实践中,22 年中绘制头像还用 3D 建模,年末已用 AI 直接生成。23 年 AI 工具覆盖所有营销场景业务,带来降本增效,拓展设计师思维边界,改变工作流程,降低技能门槛,对设计师内在素养提出更高要求。 工具: provisual.app:这是一个 3D 模型在线可视化平台,具有易于使用、无需特殊技能或软件、可节省时间和成本等优点。其功能包括在线协作、实时渲染、无限视角、材质和纹理编辑、高质量输出等,适用于产品设计、营销、教育等领域,目标客户为营销机构、创意机构、包装公司、在线商店、设计院的设计师、美术师等。 tripo3d.ai:这是一个人工智能驱动的 3D 建模平台,可以使用文本或图像在几秒钟内生成高质量且可直接使用的 3D 模型。 meshy:相关案例可参考 https://www.meshy.ai/ 。
2025-03-10
ai如何提升产品经理的工作效率
AI 可以通过以下方式提升产品经理的工作效率: 1. 辅助精读论文:能帮助翻译、拆解公式,分析代码等。工具如 https://scispace.com 。 2. 编写小脚本:如写 SQL 查询、Python 脚本、正则表达式、图片批量处理等。 3. 撰写产品宣传文案:根据产品宣传渠道写营销文案、营销邮件、产品上架文案等。 4. 设计和整理调研问卷:生成调研框架,回收非结构化问卷,按指定框架生成指定表头表格。 5. 进行竞品分析:用 BingChat 或 ChatGPT Browsering 插件,按指定框架对比各项数据,如 DAU、用户结构、市场占比等。 6. 解释专业名词:很多垂直领域都有不少缩写或行业黑话,可以用 ChatGPT 解释举例、给场景说明。 7. 优化产品逻辑和代码:写完 PRD 后,让 GPT 从产品和研发两个视角写逻辑代码,既能发现产品逻辑表达问题,也方便 QA 同学测试。 此外,还有以下相关内容: 1. 银海分享了用 10 个 Prompt 提示词做产品经理 AI 助手,效果平替 PMAI。PMAI 是一款面向产品经理的生产力工具,具有一键生成 PRD、输出解决方案、生成 SQL 等实用功能。产品体验地址:https://www.pmai.cn/?utm_source=qoZaR5O 。 2. 有案例表明,产品经理使用 ChatGPT 优化代码可以显著提升效率。如将一段近 1900 行的 SQL 查询代码的执行时间从 4200 秒缩短到 8 秒,效率提升 520 倍,复杂度降低 6 倍,同时还能保存所有历史数据,报表实现秒开。而且 GPT 还能根据真实业务需求提出与原代码不同的解决思路。
2025-03-10
目前AI在HR领域的应用真实案例
以下是 AI 在 HR 领域的一些应用真实案例: 1. 在招聘初期,AI 可用于职位描述生成、简历分析、面试题设计。 2. 在员工绩效评估方面,AI 能够分析员工工作表现,识别绩效趋势和提升点,为管理层提供数据支持的绩效反馈。 3. 对于员工培训与发展,AI 也能发挥作用。 例如,在智能人力资源方面,目前主要利用模型进行简历初筛、JD 自动生成、数据分析等工作。还有像 Deepseek“4+1”黄金提问法中的人力资源场景,如作为 IT 企业 HR,目标是 6 个月内培养 10 名全栈工程师,能独立负责项目。需要设计阶段性培训方案,并提出了具体的要求,用培训体系文档格式输出,包含能力评估标准。
2025-03-10
有哪些可以文本转语音的工具?
以下是一些可以文本转语音的工具: 1. Eleven Labs:https://elevenlabs.io/ 这是一款功能强大且多功能的 AI 语音软件,能生成逼真、高品质的音频,可高保真地呈现人类语调和语调变化,并能根据上下文调整表达方式。 2. Speechify:https://speechify.com/ 这是一款人工智能驱动的文本转语音工具,可作为 Chrome 扩展、Mac 应用程序、iOS 和 Android 应用程序使用,能将文本转换为音频文件,用于收听网页、文档、PDF 和有声读物。 3. Azure AI Speech Studio:https://speech.microsoft.com/portal 这是 Microsoft Azure 的服务,提供了支持 100 多种语言和方言的语音转文本和文本转语音功能,还提供了自定义的语音模型,能适应特定领域的术语、背景噪声以及不同的口音。 4. Voicemaker:https://voicemaker.in/ 这是一款 AI 工具,可将文本转换为各种区域语言的语音,并允许创建自定义语音模型,易于使用,适合为视频制作画外音或帮助视障人士。 此外,还有开源的 StyleTTS 2:一个开源的媲美 Elevenlabs 的文本转语音工具,结合文本角色内容+场景音=快速生成有声小说。其工作原理是利用风格扩散和与大型语音语言模型(SLM)的对抗性训练来实现接近人类水平的 TTS 合成。
2025-03-10
有没有能够把纸质歌谱扫描转变成电子版的工具
目前市面上有一些能够将纸质歌谱扫描转化为电子版的工具,例如: 1. Adobe Acrobat DC:功能强大,不仅可以扫描文档,还能进行编辑和转换。 2. CamScanner:一款移动端的扫描应用,方便快捷。 3. Microsoft Office Lens:能将扫描的内容转换为可编辑的文档。 您可以根据自己的需求和使用场景选择适合的工具。
2025-03-10
生成自媒体视频和文案用什么工具
以下是一些可用于生成自媒体视频和文案的工具: 1. 基于其它博主开源的视频生成工作流优化而成的工具,通过表单输入主题观点,可自动创建文案短视频,并将创建完成的视频链接推送至飞书消息。涉及工具包括 Coze 平台(工作流、DeepSeek R1、文生图、画板、文生音频、图+音频合成视频、多视频合成)、飞书(消息)、飞书多维表格(字段捷径、自动化流程)。大体路径为:通过 coze 创建智能体和工作流,使用 DeepSeek R1 根据用户观点创建文案和视频,发布 coze 智能体到飞书多维表格,在多维表格中使用字段捷径引用智能体,创建自动化流程推送消息给指定飞书用户。 2. 元子工具: 对于写爆款文案烦恼的问题,可使用罗文:短视频爆款文案自动二创,链接:https://www.coze.cn/store/agent/7370339796927103027?from=home_feed&bid=6em8c8r6o600r 对于配图难和版权问题,可使用以下工具: Stuart:平面设计·创意辅助,链接:https://www.coze.cn/template/agent/7438974448772087808?from=store_search_suggestion Stuart:图片复印机,链接:https://www.coze.cn/store/agent/7439014112421773363?bot_id=true&bid=6em8eg76k3g18 图仔:改图神器,链接:https://www.coze.cn/store/agent/7439647586153201699?from=bots_card&bid=6em8fpd8o8014 小鱿鱼:建筑景观人工助手,链接:https://www.coze.cn/store/project/7446243710884986895?bid=6eob6b8b89015&entity_id=1 3. Get 笔记:这是一款语音写作神器,可一键总结视频笔记,支持抖音、小红书、B 站短视频和直播回放链接。但使用时需注意 AI 可能存在幻觉,仍需人类核对检查生成的内容,且若直播未准时开始则不会生成直播笔记。
2025-03-10
有哪些AI工具,可以让静态的家电摄影图, 变成立体的视角
目前在 AI 领域,暂时没有直接能将静态的家电摄影图变成立体视角的通用工具。但一些 3D 建模软件,如 Blender、3ds Max 等,结合一定的图像处理技术和 AI 辅助功能,可能在一定程度上帮助您实现类似的效果。不过这需要一定的专业知识和操作技巧。
2025-03-10
在飞书的多维表格字段类型选择”ai音频摘要&文案提取“时,要求关联账号,提示需要通过API KEY关联,如何获取api key?
获取 API key 的方法如下: 火山引擎 API 申请:在火山引擎申请 API,注册链接有送代金券,可用于 token 消耗。 通义千问大模型:先去,点击创建 API key,复制保存即可。 腾讯云(新用户): 1. 点击去注册腾讯云:。 2. 进入腾讯云,微信扫码注册。 3. 首次注册选择推荐页面的第一个或第二个。 4. 点击立即试用,选择地域和镜像(下拉框最上边的宝塔 8.1.0),然后点击“立即试用”。 5. 进入腾讯云服务台,点击“登录”。 6. 登录后,在当前页面复制 sudo /etc/init.d/bt default,粘贴进入图示位置,然后点击回车,保存此处输出的内容。 7. 返回服务器控制台,点击空白区域,选择“防火墙”菜单栏,点击【添加规则】按钮,新增规则,手动输入相关内容,除图中的内容外,需要再添加一个 3000 备注 FastGPT。
2025-03-07
神经网络从架构上有哪几种类型,当前流行的大语言模型用哪种类型神经网络,为什么这种神经网络架构更为流行
神经网络从架构上主要有以下几种类型: 1. 马尔科夫链:用于文本生成。 2. 循环神经网络(RNN):可应用于文本生成。 3. 长短时记忆网络(LSTMs):在文本生成等领域发挥作用。 4. Transformer:当今最流行的模型大多基于此架构,包括流行的大型语言模型,如 GPT3、GPTJ 或 BERT 等。 5. Encoderonly:适用于自然语言理解任务,如分类和情感分析,代表模型是 BERT。 6. Encoderdecoder:同时结合 Transformer 架构的 encoder 和 decoder 来理解和生成内容,用例包括翻译和摘要,代表是 Google 的 T5。 7. Decoderonly:更擅长自然语言生成任务,众多 AI 助手采用此结构。 当前流行的大语言模型,如 GPT3、ChatGPT 等,多采用 Decoderonly 架构的神经网络。这种架构更为流行的原因在于:它更擅长自然语言生成任务,能够根据用户输入生成相应的内容。同时,Transformer 架构具有延长的注意力广度,能够更好地处理长序列数据,提高模型的性能和表现。
2025-02-25
豆包,chatgpt算哪种类型的ai
ChatGPT 是由致力于 AGI(通用人工智能)的公司 OpenAI 研发的一款 AI 技术驱动的 NLP(自然语言处理)聊天工具。它于 2022 年 11 月 30 日发布,目前使用的是 GPT4 的 LLM(大型语言模型)。 ChatGPT 是 AIGC(人工智能生成内容)技术的一个应用实例,形象比喻为通过投喂大量资料预训练后,会通过聊天玩“文字接龙游戏”。其英文解释为:Chat 聊天,G:Generative 生成,P:Pretrained 预训练,T:Transformer 类神经网络模型。它是美国 OpenAI 公司开发的一款基于大型语言模型的对话机器人,能够根据用户的输入生成连贯且相关的文本回复。
2025-02-23
当前哪些类型AI智能体做的好
当前在 AI 智能体领域,以下类型表现较好: 1. 在企业搜索、法律研究副驾驶、内容生成等类别中,Menlo Ventures 投资组合公司如是早期突破性的代表。 2. 领先的应用程序构建商如正在建立解决方案,处理之前只能由大量人力来解决的工作流程。 3. 从智能体类型来看: “决策智能体”设计使用语言模型遍历预定义的决策树。 “轨道智能体”为智能体配备更高层次的目标,限制解决空间,要求遵循标准作业程序并使用预先设定的“工具”库。 “通用人工智能体”完全依赖语言模型的推理能力进行所有的计划、反思和纠正。 此外,AGI 分为五个等级: 1. 聊天机器人:具备基本对话能力,依赖预设脚本和关键词匹配,用于客户服务和简单查询响应。 2. 推理者:具备人类推理水平,能解决复杂问题,如 ChatGPT。 3. 智能体:不仅具备推理能力,还能执行全自动化业务,但目前许多产品仍需人类参与。 4. 创新者:能够协助人类完成新发明,如谷歌 DeepMind 的 AlphaFold 模型。 5. 组织:最高级别,能够自动执行组织的全部业务流程。
2025-02-07
提供所有类型的国内可用的免费AI工具
以下是国内可用的免费 AI 工具: 视频类: Hidreamai:有免费额度,支持文生视频、图生视频,提示词使用中文、英文都可以,文生视频支持多种控制,可生成不同时长和尺寸的视频,网址:https://hidreamai.com//AiVideo 。 ETNA:由七火山科技开发的文生视频 AI 模型,可根据文本描述生成相应视频内容,画质可达 4K,最高 38402160,帧率 60fps,支持中文,时空理解,网址:https://etna.7volcanoes.com/ 。 图像类: 可灵:由快手团队开发,用于生成高质量的图像和视频,图像质量高,但价格相对较高,有不同的收费选项,最初采用内测邀请制,现向所有用户开放。 通义万相:在中文理解和处理方面表现出色,可选择多种艺术和图像风格,操作界面简洁直观,用户友好度高,重点是现在免费,每天签到获取灵感值即可,但存在一些局限性,如某些类型图像无法生成等。 编程类: 通义灵码:阿里巴巴团队推出,提供多种编程辅助能力。 CodeGeeX:智谱 AI 推出的开源免费 AI 编程助手,基于 130 亿参数的预训练大模型,可快速生成代码。 CodeFuse:蚂蚁集团支付宝团队为国内开发者提供智能研发服务的免费 AI 代码助手。 更多辅助编程 AI 产品,还可以查看这里:https://www.waytoagi.com/category/65 。每个工具的功能和适用场景可能不同,您可以根据自身需求选择最适合的工具。
2025-01-10
用于训练销售助手类型业务的私有模型
以下是关于训练销售助手类型业务私有模型的相关信息: 1. 提示词方面:设计了一套模拟江南皮革厂销售的拟人化提示词模板,并将其应用于国内的豆包角色扮演模型,生成吸引人的广告词。若与语音技术结合用于宣传,能创造出有趣且有效的销售助手,吸引顾客注意。拟人化提示词母体可通过关注作者微信领取。 2. 增加私有知识方面:通过前面步骤拥有可与客户对话的 AI 助手后,若想让其像公司员工一样精准专业回答商品相关问题,需为大模型应用配置知识库。例如在售卖智能手机的公司,网站上有很多相关信息,不同机型的详细配置清单可参考相关文档。
2025-01-07