Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

通俗解释AGI

Answer

AGI 即人工通用智能,指的是能够胜任几乎所有人类智力活动的人工智能,其能力不局限于特定领域。例如,它能够完成推理、规划、解决问题、抽象思维、理解复杂思想、快速学习和从经验中学习等各种智力任务。在 2000 年代初,“通用人工智能”(AGI)这一名词开始流行,强调从“狭义 AI”向更广泛的智能概念的追求,符合心理学家、哲学家和计算机科学家对智能的广泛定义。但目前并没有一个被广泛接受的 AGI 定义。像 GPT-3 及其后续版本在某种程度上是朝着 AGI 迈出的巨大一步,而早期的模型则不具备这样的能力。当 AGI 真正实现并可能迅速发展为超人工智能(ASI)时,人类社会将在随后的二十年里经历深刻变革。

Content generated by AI large model, please carefully verify (powered by aily)

References

[趋势研究] Deep Research - AGI 实现后未来 20 年人类社会的变革

人工通用智能(AGI)的出现被视为人类历史上具有转折意义的事件。AGI指的是能够胜任几乎所有人类智力活动的人工智能,其能力不局限于特定领域。当AGI真正实现并可能迅速发展为超人工智能(ASI)时,人类社会将在随后的二十年里经历深刻变革。这份报告将以通俗易懂的方式,从社会结构、价值观、权力格局、人类角色等多个方面探讨AGI时代可能出现的变化,并展望人类与AGI是冲突走向还是共生合作。报告引用了多方英文资料进行交叉验证,力求信息准确可靠。最后附上简明摘要,帮助读者快速把握要点。

OpenAI 通用人工智能(AGI)的计划被揭露

Q*的下一阶段,最初被称为GPT-6,但后来重新命名为GPT-7(原计划在2026年发布),由于埃隆·马斯克最近的诉讼而被暂停。计划在2027年发布的Q*2025(GPT-8)将实现完全的AGI......Q*2023=48智商Q*2024=96智商(推迟)Q*2025=145智商(推迟)埃隆·马斯克因为他的诉讼导致了推迟。这就是我现在揭示这些信息的原因,因为不会再造成进一步的伤害。我已经看过很多关于人工通用智能(AGI)的定义,但我将简单地将AGI定义为一种能够完成任何聪明人类所能完成的智力任务的人工智能。这是现在大多数人对这个词的定义。2020年是我第一次对一个AI系统感到震惊——那就是GPT-3。GPT-3.5是GPT-3的升级版本,也是ChatGPT背后的模型。当ChatGPT发布时,我感觉更广泛的世界终于赶上了我两年前就开始互动的东西。我在2020年广泛使用GPT-3,并对它的推理能力感到震惊。GPT-3及其半步后继者GPT-3.5(在2023年3月升级为GPT-4之前,它驱动了现在著名的ChatGPT)在某种程度上是朝着AGI迈出的巨大一步,而早期的模型则不是这样。需要注意的是,像GPT-2这样的早期语言模型(基本上自Eliza以来的所有聊天机器人)实际上没有真正连贯回应的能力。那么为什么GPT-3会有如此巨大的飞跃呢?

报告:GPT-4 通用人工智能的火花

Introduction智能是一个多方面而难以捉摸的概念,长期以来一直挑战着心理学家、哲学家和计算机科学家。1994年,一组52名心理学家签署了一份有关智能科学的广泛定义的社论,试图捕捉其本质。共识小组将智能定义为一种非常普遍的心理能力,其中包括推理、规划、解决问题、抽象思维、理解复杂思想、快速学习和从经验中学习等能力。这个定义意味着智能不仅限于特定领域或任务,而是涵盖了广泛的认知技能和能力——建立一个能够展示1994年共识定义所捕捉到的通用智能的人工系统是人工智能研究的一个长期而宏伟的目标。在早期的著作中,现代人工智能(AI)研究的创始人提出了理解智能的一系列宏伟目标。几十年来,AI研究人员一直在追求智能的原则,包括推理的普适机制(例如[NSS59],[LBFL93])以及构建包含大量常识知识的知识库[Len95]。然而,最近的许多AI研究进展可以描述为「狭义地关注明确定义的任务和挑战」,例如下围棋,这些任务分别于1996年和2016年被AI系统掌握。在1990年代末至2000年代,越来越多的人呼吁开发更普适的AI系统(例如[SBD+96]),并且该领域的学者试图确定可能构成更普遍智能系统的原则(例如[Leg08,GHT15])。名词「通用人工智能」(AGI)在2000年代初流行起来(见[Goe14]),以强调从「狭义AI」到更广泛的智能概念的追求,回应了早期AI研究的长期抱负和梦想。我们使用AGI来指代符合上述1994年定义所捕捉到的智能广泛能力的系统,其中包括了一个附加的要求,即这些能力在或超过人类水平。然而,我们注意到并没有一个被广泛接受的AGI定义,我们在结论部分讨论其他定义。

Others are asking
AGI是什么
AGI 即通用人工智能(Artificial General Intelligence),指的是一种能够完成任何聪明人类所能完成的智力任务的人工智能。 OpenAI 在其内部会议上分享了 AGI 的五个发展等级: 1. 聊天机器人(Chatbots):具备基本对话能力,主要依赖预设脚本和关键词匹配,用于客户服务和简单查询响应。 2. 推理者(Reasoners):具备人类推理水平,能够解决复杂问题,如 ChatGPT,能根据上下文和文件提供详细分析和意见。 3. 智能体(Agents):不仅具备推理能力,还能执行全自动化业务,但目前许多 AI Agent 产品在执行任务后仍需人类参与,尚未达到完全智能体的水平。 4. 创新者(Innovators):能够协助人类完成新发明,如谷歌 DeepMind 的 AlphaFold 模型,可以预测蛋白质结构,加速科学研究和新药发现。 5. 组织(Organizations):最高级别的 AI,能够自动执行组织的全部业务流程,如规划、执行、反馈、迭代、资源分配和管理等。 GPT3 及其半步后继者 GPT3.5(在 2023 年 3 月升级为 GPT4 之前,它驱动了现在著名的 ChatGPT)在某种程度上是朝着 AGI 迈出的巨大一步,而早期的模型则不是这样。像 GPT2 这样的早期语言模型基本上自 Eliza 以来的所有聊天机器人实际上没有真正连贯回应的能力。
2025-03-11
agi是什么意思
AGI 即通用人工智能(Artificial General Intelligence),指的是一种能够完成任何聪明人类所能完成的智力任务的人工智能系统。能够像人类一样思考、学习和执行多种任务,在许多领域内以人类水平应对日益复杂的问题。例如,OpenAI 致力于实现 AGI,其研发的 ChatGPT 被认为是朝着 AGI 迈出的巨大一步。同时,Sam Altman 也指出人工通用智能的系统正浮现,它是人类进步脚手架上的另一个工具,可能标志着一个新的开始,带来经济增长和生活改善,比如治愈所有疾病、有更多时间与家人共享、充分发挥创造潜力等。
2025-03-10
agi是什么
AGI 即通用人工智能(Artificial General Intelligence),指的是一种能够完成任何聪明人类所能完成的智力任务的人工智能。 OpenAI 在其内部会议上分享了 AGI 的五个发展等级: 1. 聊天机器人(Chatbots):具备基本对话能力,主要依赖预设脚本和关键词匹配,用于客户服务和简单查询响应。 2. 推理者(Reasoners):具备人类推理水平,能解决复杂问题,如 ChatGPT,可根据上下文和文件提供详细分析和意见。 3. 智能体(Agents):不仅具备推理能力,还能执行全自动化业务,但目前许多 AI Agent 产品在执行任务后仍需人类参与,尚未达到完全智能体的水平。 4. 创新者(Innovators):能够协助人类完成新发明,如谷歌 DeepMind 的 AlphaFold 模型,可预测蛋白质结构,加速科学研究和新药发现。 5. 组织(Organizations):最高级别的 AI,能够自动执行组织的全部业务流程,如规划、执行、反馈、迭代、资源分配和管理等。 此外,像 GPT3 及其半步后继者 GPT3.5(在 2023 年 3 月升级为 GPT4 之前,它驱动了现在著名的 ChatGPT)在某种程度上是朝着 AGI 迈出的巨大一步。而 ChatGPT 是由致力于 AGI 的公司 OpenAI 研发的一款 AI 技术驱动的 NLP 聊天工具。
2025-03-10
AGI是什么
AGI 即通用人工智能(Artificial General Intelligence),是指能够像人类一样思考、学习和执行多种任务的人工智能系统。 目前对 AGI 的相关研究和讨论包括: OpenAI 通用人工智能的计划曾因埃隆·马斯克的诉讼而受到影响。 GPT3 及其半步后继者 GPT3.5 在某种程度上是朝着 AGI 迈出的巨大一步。 OpenAI 内部会议分享了 AGI 的五个发展等级,分别为: 聊天机器人:具备基本对话能力,依赖预设脚本和关键词匹配,用于客户服务和简单查询响应。 推理者:具备人类推理水平,能解决复杂问题,如 ChatGPT。 智能体:不仅具备推理能力,还能执行全自动化业务,但目前许多产品仍需人类参与。 创新者:能够协助人类完成新发明,如谷歌 DeepMind 的 AlphaFold 模型。 组织:最高级别的 AI,能够自动执行组织的全部业务流程。 ChatGPT 是由致力于 AGI 的公司 OpenAI 研发的一款 AI 技术驱动的 NLP 聊天工具。
2025-03-10
AGI什么意思
AGI 指的是通用人工智能(Artificial General Intelligence),是一种能够像人类一样思考、学习和执行多种任务的人工智能系统,能够胜任几乎所有人类智力活动,其能力不局限于特定领域。例如,OpenAI 致力于 AGI 的研究,ChatGPT 就是由致力于 AGI 的 OpenAI 研发的一款 AI 技术驱动的 NLP 聊天工具。当 AGI 真正实现并可能迅速发展为超人工智能(ASI)时,人类社会将在随后的二十年里经历深刻变革。
2025-03-10
AGI之路
“通往 AGI 之路”是一个由开发者、学者和有志人士等参与的学习社区和开源的 AI 知识库。 它不仅是一个知识库,还是连接学习者、实践者和创新者的社区。旨在为学习者提供系统全面的 AI 学习路径,涵盖从基础概念到实际应用的各个方面,帮助用户有效地获取 AI 知识,提高自身能力。 该平台提供丰富的学习资源,包括文章、教程、工具推荐以及最新的 AI 行业资讯等。此外,社区还定期组织活动,如视频挑战赛、模型创作大赛等,鼓励成员在实践中学习,促进交流与合作。 其品牌 VI(视觉识别)融合了独特的设计元素,以彩虹色彰显多元性和创新,以鹿的形象象征智慧与优雅,通过非衬线字体展现现代感和清晰性,共同构建了一个充满活力和前瞻性的品牌形象。选择彩虹色作为主要的配色方案,代表多样性、包容性和创新。品牌的标志性图案是一只鹿,它在中文中与“路”谐音,象征着通往 AGI 未来的道路。鹿的形象优雅而智慧,寓意在追求 AGI 过程中的品味与睿智。选择的是简洁现代的非衬线字体,这种字体风格简约而现代,易于阅读,强调了信息传达的清晰度和直接性。 如果您对 AI 学习感兴趣,加入“通往 AGI 之路”社区将是一个不错的选择。在这里,您可以获取最新的 AI 知识,参与实践活动,与志同道合的学习者共同成长。
2025-03-09
求AI大模型基础原理课程,讲的简单通俗
以下是关于 AI 大模型基础原理的简单通俗课程: 1. 概念 生成式 AI 生成的内容称为 AIGC。 2. 概念与关系 AI 即人工智能。 机器学习是电脑找规律学习,包括监督学习、无监督学习、强化学习。 监督学习:使用有标签的训练数据,算法目标是学习输入和输出之间的映射关系,包括分类和回归。 无监督学习:学习的数据没有标签,算法自主发现规律,经典任务如聚类,例如让模型将一堆新闻文章根据主题或内容特征分成相似组。 强化学习:从反馈中学习,以最大化奖励或最小化损失,类似训练小狗。 深度学习是一种参照人脑的方法,具有神经网络和神经元(因层数多称为深度),神经网络可用于监督学习、无监督学习、强化学习。 生成式 AI 可以生成文本、图片、音频、视频等内容形式。 LLM 是大语言模型,对于生成式 AI,生成图像的扩散模型不是大语言模型;对于大语言模型,生成只是其中一个处理任务,如谷歌的 BERT 模型可用于语义理解(不擅长文本生成),像上下文理解、情感分析、文本分类。 3. 技术里程碑 2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出 Transformer 模型,它完全基于自注意力机制(SelfAttention)处理序列数据,不依赖循环神经网络(RNN)或卷积神经网络(CNN)。
2025-02-27
深度学习跟机器学习有啥区别呀?能不能举个通俗易懂的例子
深度学习和机器学习的区别主要体现在以下几个方面: 1. 学习方式:机器学习通常需要人工选择和设计特征,而深度学习能够自动从数据中学习特征。 2. 模型结构:机器学习模型相对简单,深度学习则使用多层的神经网络,结构更复杂。 3. 数据处理能力:深度学习能够处理更大量和更复杂的数据模式。 例如,在图像识别任务中,如果使用机器学习,可能需要人工提取图像的颜色、形状等特征,然后基于这些特征进行分类。但在深度学习中,神经网络可以自动从大量的图像数据中学习到有效的特征表示,从而实现更准确的分类。 机器学习是人工智能的一个子领域,让计算机通过数据学习来提高性能,不是直接编程告诉计算机如何完成任务,而是提供数据让机器找出隐藏模式或规律,然后用这些规律预测新的未知数据。 深度学习是机器学习的一个子领域,模拟人脑工作方式,创建人工神经网络处理数据,包含多个处理层,能学习和表示大量复杂模式,在图像识别、语音识别和自然语言处理等任务中非常有效。 大语言模型是深度学习在自然语言处理领域的应用之一,目标是理解和生成人类语言,需要在大量文本数据上训练,如 ChatGPT、文心一言。同时,大语言模型具有生成式 AI 的特点,不仅能理解和分析数据,还能创造新的独特输出。
2025-01-21
你是一名资深程序员和经验丰富的编程教授,能够以通俗保姆式的方法教会小白从0开始编程序。现在要你教我完成如下任务:我需要编写一个程序,能够每天和不同的文生图大语言模型对话,生成不同场景下的机器人设计图片。应该怎么一步步实现?
以下是为您提供的从 0 开始编写一个能够每天和不同的文生图大语言模型对话,并生成不同场景下机器人设计图片的程序的步骤: 首先,对于小白来说,可以参考以下教程进行学习和操作: 1. 张梦飞的【保姆级】一步一图,手把手教你把 AI 接入微信: 重点感谢@熊猫大侠的不厌其烦的答疑解惑,并推荐@熊猫大侠的老王。 作者是看着 WaytoAGI 里大佬的文章学习制作的。有代码基础的同学,可以直接移步到这三篇教程中。 本篇教程适合“小白中的小白”,简单粗暴,不做讲解,复制粘贴即可。一步一图,保姆级指引。 本篇文章中,没有写每一步代码的含义和配置文件的对应含义。如果想要深入研究和调优,请移步上方推荐的三篇文章。 2. 大圣的胎教级教程:万字长文带你理解 RAG 全流程: 这是一篇面向普通人的 RAG 科普,不是面向 RAG 研究者的技术向文章。 文章一共 1.6 万字,旨在让您对 RAG 技术有更全面的认知,在使用 RAG 相关产品时,可以更好地理解其能力边界,从而充分发挥其潜力。 本文适合任何人,包括 AI 爱好者、为企业寻找知识库解决方案的老板、AI 产品经理等。 3. Yeadon 的写给小小白的从游戏入手学习搓图像流 bot: 学会将发布的图像流添加进 bot 中,并测试生成海报,解决无法在聊天界面显示图片的问题,重新调整图像流使其在对话窗口显示图片,最后发布 Bot。 通过这份教程,可以学会如何在 Coze 平台上打造一个有趣的 AI 游戏助手,掌握 AI 人格设定和对话逻辑的设计方法,了解如何配置图像生成功能。 希望以上内容对您有所帮助,祝您编程顺利!
2024-12-29
stable diffusion通俗讲解
Stable Diffusion 是由 Stability AI 和 LAION 等公司共同开发的生成式模型,参数量约 1B,可用于文生图、图生图、图像 inpainting、ControlNet 控制生成、图像超分等任务。 文生图任务是将一段文本输入模型,经过一定迭代次数生成符合描述的图片。例如输入“天堂,巨大的,海滩”,模型生成美丽沙滩图片。 图生图任务在输入文本基础上再输入一张图片,模型根据文本提示重绘输入图片使其更符合描述,如在沙滩图片上添加“海盗船”。 输入的文本信息需通过 CLIP Text Encoder 模型这一“桥梁”转换为机器数学信息,该模型将文本信息编码生成 Text Embeddings 特征矩阵用于控制图像生成。 初始 Latent Feature 经过图像解码器重建是纯噪声图片,而经过 SD 的“图像优化模块”处理后再重建是包含丰富内容的有效图片。UNet 网络+Schedule 算法的迭代去噪过程的每一步结果用图像解码器重建,可直观感受从纯噪声到有效图片的全过程。 以下是 Stable Diffusion 模型工作的完整流程总结及前向推理流程图。 此外,关于 Stable Diffusion 还有系列资源,包括从 0 到 1 读懂其核心基础原理、训练全过程,核心网络结构解析,搭建使用模型进行 AI 绘画的多种方式,经典应用场景,以及上手训练自己的 AI 绘画模型等内容。
2024-12-17
我是一名资讯人员,早会分享脑机接口,时间只有10分钟,希望使用通俗易懂的语言分享,重点说说脑机的应用实例。
以下是为您整理的关于脑机接口的分享内容: 脑机接口的应用实例: 1. 斯坦福大学开发的 NOIR 脑机接口系统,能够通过脑电波操作机器人执行任务,并在 20 项家务活动中成功应用。这一项目意义重大,未来有望帮助残疾人提升生活质量。 脑机接口的工作原理: 1. 分为输入端和输出端。输入端是填充和消费不同模态的内容,如音频、文本、视频,AI 能加速消化过程,提高学习主动性,且双向可提问。 2. 输出端是利用知识解决手头工作或完成目标,极端情况下自己借助知识干活,或者让 AI 助理基于收藏或保存的知识点完成任务,如写文章、输出代码。 关于脑机接口适合的应用场景,目前如对长视频进行快速获取信息的总结等。
2024-11-16
大语言模型领域, 如何理解“退火”概念。 请用通俗易懂的方式举例说明
在大语言模型领域,“退火”是一个相对复杂的概念。通俗地说,您可以把它想象成铁匠打铁时的一个过程。铁匠在打造铁器时,不会一开始就用猛火高温一直烧,而是会逐渐升高温度,然后再慢慢降低温度,让金属的结构更加稳定和优化。 在大语言模型中,“退火”的作用类似于此。它可能是在模型的训练过程中,对某些参数或者条件进行逐步的调整和优化,以达到更好的性能和效果。但目前提供的知识库内容中,没有直接关于大语言模型中“退火”概念的详细且通俗易懂的解释和具体例子。
2024-08-13
最值得了解的AI专业名称,及解释
以下是一些值得了解的 AI 专业名称及解释: 1. 人工智能(Artificial Intelligence,简称 AI):一种目标,让机器展现智慧。 2. 生成式人工智能(Generative AI,简称 GenAI):一种目标,让机器产生复杂有结构的内容。 3. 机器学习:一种手段,让机器自动从资料中找到公式。 4. 深度学习:一种更厉害的手段,类神经网络 非常大量参数的函数。 5. 大语言模型(Large Language Models,简称 LLMs):是一类具有大量参数的“深度学习”模型。 6. ChatGPT:一个应用实例,通过投喂大量资料预训练后,会通过聊天玩“文字接龙游戏”。英文解释:Chat 聊天,G:Generative 生成,P:Pretrained 预训练,T:Transformer 类神经网络模型。 7. AIGC(Artificial Intelligence Generated Content):利用人工智能技术生成内容的新型生产方式,包括文本、图像、音频和视频等内容。 这些概念之间存在一定的关系,AIGC 技术可以用于多种应用,ChatGPT 是 AIGC 技术在文本生成领域的一个应用实例。对于新手学习 AI,建议先了解 AI 基本概念,如阅读相关的入门文章和熟悉术语。可以在特定的学习路径中找到为初学者设计的课程,通过在线教育平台按自己节奏学习。选择感兴趣的模块深入学习,比如掌握提示词技巧。实践和尝试很关键,可使用各种产品做出作品,并体验如 ChatGPT 等 AI 产品。
2025-03-11
可以帮我输出一张图,解释人工智能的工作原理?
以下是关于人工智能工作原理的解释: 在音频生成方面,以谷歌的 V2A 系统为例: 首先,将视频输入编码为压缩表示。 然后,基于扩散模型从随机噪声中迭代改进音频,这一过程由视觉输入和自然语言提示引导,以生成与提示紧密配合的同步逼真音频。 最后,对音频输出进行解码,转化为音频波形,并与视频数据相结合。 在生成式人工智能的整体领域中: 监督学习用于标记事物,一直占据较大比例。 生成式 AI 由监督学习技术搭建,2010 2020 年是大规模监督学习的十年,为现代人工智能奠定了基础。 以生成文本为例,大语言模型通过使用监督学习不断预测下一个词语来生成新的文本内容,这需要千亿甚至万亿级别的单词数据库。 此外,大语言模型在写作、修改文本、翻译等方面有应用,但也存在编造故事产生错误信息的问题,需要鉴别信息准确性。人工智能作为一种通用技术,有大量的运用空间,如基于网络界面应用和基于软件程序应用等。
2025-03-10
请解释一下AGI是什么意思
AGI 指的是通用人工智能(Artificial General Intelligence),它是一种能够像人类一样思考、学习和执行多种任务的人工智能系统。 例如,OpenAI 致力于研发实现 AGI 的技术,像 GPT 系列模型在某种程度上是朝着 AGI 迈出的巨大一步。人类在不断创新,从电力、晶体管、计算机、互联网,到很快可能出现的 AGI,每一代新的工具都推动着世界的进步。在未来,AGI 可能会让人们的生活在各方面获得极大的改善,比如治愈所有疾病、有更多时间陪伴家人以及充分发挥创造潜能等。
2025-03-06
AI提示词解释
以下是关于 AI 提示词的详细解释: 提示词用于描绘您想要生成的画面。在星流一站式 AI 设计工具中,不同的基础模型对输入语言有不同要求。通用大模型与基础模型 F.1、基础模型 XL 使用自然语言(如一个长头发的金发女孩),基础模型 1.5 使用单个词组(如女孩、金发、长头发),且支持中英文输入。 写好提示词要注意以下几点: 1. 内容准确:包含人物主体、风格、场景特点、环境光照、画面构图、画质等,例如一个女孩抱着小猫,背景是一面红墙,插画风格、孤独感,高质量。 2. 调整负面提示词:点击提示框下方的齿轮按钮,弹出负面提示词框,负面提示词可以帮助 AI 理解我们不想生成的内容,比如不好的质量、低像素、模糊、水印。 3. 利用“加权重”功能:可在功能框增加提示词,并进行加权重调节,权重数值越大,越优先。还可以对已有的提示词权重进行编辑。 4. 辅助功能:包括翻译功能,可一键将提示词翻译成英文;删除所有提示词,可清空提示词框;会员加速,能加速图像生图速度,提升效率。 在【SD】文生图中,括号和冒号加数字(如:1.2)都是用来增加权重的,权重越高在画面中体现越充分,提示词的先后顺序也会影响权重。同时,还可以增加反向提示词,告诉 AI 我们不要什么。 在 AI 领域中,Prompt 中文译作提示词,就是我们输入给大模型的文本内容,可以理解为您和大模型说的话、下达的指令。提示词的质量好坏会显著影响大模型回答的质量。Token 是大模型语言体系中的最小单元,不同厂商的大模型对中文的文本切分方法不同,通常 1Token 约等于 1 2 个汉字,大模型的收费计算方法及对输入输出长度的限制通常以 token 为单位计量。上下文(context)指对话聊天内容前、后的内容信息,其长度和窗口都会影响 AI 大模型回答的质量。
2025-03-06
你作为AI开源项目的专家,请解释下如何来做一个AI开源项目
要做一个 AI 开源项目,以下是一些关键步骤和要点: 1. 明确项目目标和范围:确定您的 AI 开源项目要解决的具体问题和应用场景,以及项目的边界和功能。 2. 制定.cursorrules: 说明自己的身份和期望的技能:告诉 AI 您希望它具备的专业水准和技能。 明确项目任务:清晰地告知 AI 项目的具体目标和要求。 设定项目规则:包括代码规范、风格等,以保证代码的一致性和可维护性。 规划文件存放位置:便于代码的组织和查找。 指定使用的工具:如框架和库,确保项目的整洁和统一。 说明测试要求:让 AI 生成的代码具有可测试性,并主动编写测试用例。 提供参考资料:帮助 AI 基于最佳实践进行开发。 如有 UI 需求,明确相关要求。 3. 选择合适的技术和框架:例如 Fooocus 这样的图像生成开源项目,它内置多种风格,适合小白上手,且具有离线、开源、免费等特点,支持在多种操作系统上使用,并借鉴了稳定扩散和 Midjourney 的设计思想。 4. 考虑开源的角色和影响:从长远来看,开源模型的情况会变得复杂。对于具有高度能力的模型,如能够自主创办和建立大型科技公司或进行科学研究的模型,其是否开源会产生难以预测的后果。 总之,创建一个 AI 开源项目需要综合考虑多方面的因素,包括技术选型、规则制定、目标明确等,以确保项目的成功和可持续发展。
2025-03-06
prompt 知识解释
以下是关于 prompt 的知识解释: 什么是 prompt: Prompt 是您提供给模型(如 Claude)的文本,用于引发相关输出。它通常以问题或指示的形式出现,例如“为什么天空是蓝色的?”。模型给出的回答被称为“响应”“输出”或“完成”。在不同领域,Prompt 的定义有所不同。在自然语言处理领域,它通常由一个问题或任务描述组成,如“给我写一篇有关人工智能的文章”“翻译这个英文句子到法语”等。在图像识别领域,Prompt 可以是一个图片描述、标签或分类信息。 支持的语言: 支持英语,不用担心英语不好的问题,。另外,emoji 也可以使用,如🥰、🫡等。 语法规则: 1. 用英文半角符号逗号,来分隔 tag。逗号前后有空格或者换行都不影响效果。 2. 改变 tag 权重: :数值从 0.1 到 100,默认状态是 1,低于 1 就是减弱,大于 1 就是加强。 括号,权重就重 1.1 倍,每加一层括号就反向减弱 1.1 倍。 3. 进行 tag 的步数控制(高级玩法): ,数字大于 1 理解为第 X 步前为 tag1,第 X 步后变成 tag2,数字小于 1 理解为总步数的百分之 X 前为 tag1,之后变成 tag2。 每个单独的提示词叫 tag(关键词)。
2025-03-02