Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

最值得了解的AI专业名称,及解释

Answer

以下是一些值得了解的 AI 专业名称及解释:

  1. 人工智能(Artificial Intelligence,简称 AI):一种目标,让机器展现智慧。
  2. 生成式人工智能(Generative AI,简称 GenAI):一种目标,让机器产生复杂有结构的内容。
  3. 机器学习:一种手段,让机器自动从资料中找到公式。
  4. 深度学习:一种更厉害的手段,类神经网络 - 非常大量参数的函数。
  5. 大语言模型(Large Language Models,简称 LLMs):是一类具有大量参数的“深度学习”模型。
  6. ChatGPT:一个应用实例,通过投喂大量资料预训练后,会通过聊天玩“文字接龙游戏”。英文解释:Chat 聊天,G:Generative 生成,P:Pre-trained 预训练,T:Transformer 类神经网络模型。
  7. AIGC(Artificial Intelligence Generated Content):利用人工智能技术生成内容的新型生产方式,包括文本、图像、音频和视频等内容。

这些概念之间存在一定的关系,AIGC 技术可以用于多种应用,ChatGPT 是 AIGC 技术在文本生成领域的一个应用实例。对于新手学习 AI,建议先了解 AI 基本概念,如阅读相关的入门文章和熟悉术语。可以在特定的学习路径中找到为初学者设计的课程,通过在线教育平台按自己节奏学习。选择感兴趣的模块深入学习,比如掌握提示词技巧。实践和尝试很关键,可使用各种产品做出作品,并体验如 ChatGPT 等 AI 产品。

Content generated by AI large model, please carefully verify (powered by aily)

References

快速学习 AIGC,有料通俗易懂版!

人工智能:一种目标,让机器展现智慧,Artificial Intelligence,简称AI生成式人工智能GenAI:一种目标,让机器产生复杂有结构的内容,Generative AI简称GenAI机器学习:一种手段,让机器自动从资料中找到公式深度学习:一种更厉害的手段,类神经网络-非常大量参数的函数大语言模型:是一类具有大量参数的“深度学习”模型,Large Language Models,简称LLMsChatGPT:一个应用实例,形象比喻:通过投喂大量资料预训练后,ChatGPT会通过聊天玩“文字接龙游戏”了。英文解释:Chat聊天,G:Generative生成,P:Pre-trained预训练,T:Transformer类神经网络模型以上概念之间的关系如下图:AIGC(Artificial Intelligence Generated Content,人工智能生成内容)是利用人工智能技术生成内容的新型生产方式,包括文本、图像、音频和视频等内容。AIGC技术可以用于多种应用,如自动撰写新闻文章、生成艺术画作、创作音乐、制作视频游戏内容等。ChatGPT是AIGC技术的一个应用实例,它代表了AIGC在文本生成领域的进展。ChatGPT是美国OpenAI公司开发的一款基于大型语言模型(Large Language Model,简称LLM)的对话机器人,它能够根据用户的输入生成连贯且相关的文本回复。用户界面如下:AGI、GenAI、AIGC几个概念的区别与理解可参考下图:更多概念可问Kimi、通义千问、文心一言等大模型,也可以继续往下看,会逐步讲解更多概念。国内主要模型公司及地址如下:

快速学习 AIGC,有料通俗易懂版!

人工智能:一种目标,让机器展现智慧,Artificial Intelligence,简称AI生成式人工智能GenAI:一种目标,让机器产生复杂有结构的内容,Generative AI简称GenAI机器学习:一种手段,让机器自动从资料中找到公式深度学习:一种更厉害的手段,类神经网络-非常大量参数的函数大语言模型:是一类具有大量参数的“深度学习”模型,Large Language Models,简称LLMsChatGPT:一个应用实例,形象比喻:通过投喂大量资料预训练后,ChatGPT会通过聊天玩“文字接龙游戏”了。英文解释:Chat聊天,G:Generative生成,P:Pre-trained预训练,T:Transformer类神经网络模型以上概念之间的关系如下图:AIGC(Artificial Intelligence Generated Content,人工智能生成内容)是利用人工智能技术生成内容的新型生产方式,包括文本、图像、音频和视频等内容。AIGC技术可以用于多种应用,如自动撰写新闻文章、生成艺术画作、创作音乐、制作视频游戏内容等。ChatGPT是AIGC技术的一个应用实例,它代表了AIGC在文本生成领域的进展。ChatGPT是美国OpenAI公司开发的一款基于大型语言模型(Large Language Model,简称LLM)的对话机器人,它能够根据用户的输入生成连贯且相关的文本回复。用户界面如下:AGI、GenAI、AIGC几个概念的区别与理解可参考下图:更多概念可问Kimi、通义千问、文心一言等大模型,也可以继续往下看,会逐步讲解更多概念。国内主要模型公司及地址如下:

问:新手如何学习 AI?

了解AI基本概念:首先,建议阅读「[从这里启程](https://waytoagi.feishu.cn/wiki/PFXnwBTsEiGwGGk2QQFcdTWrnlb?table=blkjooAlLFNtvKJ2)」部分,熟悉AI的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。浏览入门文章,这些文章通常会介绍AI的历史、当前的应用和未来的发展趋势。开始AI学习之旅:在「[入门:AI学习路径](https://waytoagi.feishu.cn/wiki/ZYtkwJQSJiLa5rkMF5scEN4Onhd?table=tblWqPFOvA24Jv6X&view=veweFm2l9w)」中,你将找到一系列为初学者设计的课程。这些课程将引导你了解生成式AI等基础知识,特别推荐李宏毅老师的课程。通过在线教育平台(如Coursera、edX、Udacity)上的课程,你可以按照自己的节奏学习,并有机会获得证书。选择感兴趣的模块深入学习:AI领域广泛(比如图像、音乐、视频等),你可以根据自己的兴趣选择特定的模块进行深入学习。我建议你一定要掌握提示词的技巧,它上手容易且很有用。实践和尝试:理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出你的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎你实践后的分享。体验AI产品:与现有的AI产品进行互动是学习AI的另一种有效方式。尝试使用如ChatGPT、Kimi Chat、智谱、文心一言等AI聊天机器人,了解它们的工作原理和交互方式。通过与这些AI产品的对话,你可以获得对AI在实际应用中表现的第一手体验,并激发你对AI潜力的认识。

Others are asking
AI文生视频
以下是关于文字生成视频(文生视频)的相关信息: 一些提供文生视频功能的产品: Pika:擅长动画制作,支持视频编辑。 SVD:Stable Diffusion 的插件,可在图片基础上生成视频。 Runway:老牌工具,提供实时涂抹修改视频功能,但收费。 Kaiber:视频转视频 AI,能将原视频转换成各种风格。 Sora:由 OpenAI 开发,可生成长达 1 分钟以上的视频。 更多相关网站可查看:https://www.waytoagi.com/category/38 。 制作 5 秒单镜头文生视频的实操步骤(以梦 AI 为例): 进入平台:打开梦 AI 网站并登录,新用户有积分可免费体验。 输入提示词:涵盖景别、主体、环境、光线、动作、运镜等描述。 选择参数并点击生成:确认提示词无误后,选择模型、画面比例,点击「生成」按钮。 预览与下载:生成完毕后预览视频,满意则下载保存,不理想可调整提示词再试。 视频模型 Sora:OpenAI 发布的首款文生视频模型,能根据文字指令创造逼真且充满想象力的场景,可生成长达 1 分钟的一镜到底超长视频,视频中的人物和镜头具有惊人的一致性和稳定性。
2025-04-20
Ai在设备风控场景的落地
AI 在设备风控场景的落地可以从以下几个方面考虑: 法律法规方面:《促进创新的人工智能监管方法》指出,AI 的发展带来了一系列新的安全风险,如对个人、组织和关键基础设施的风险。在设备风控中,需要关注法律框架是否能充分应对 AI 带来的风险,如数据隐私、公平性等问题。 趋势研究方面:在制造业中,AI Agent 可用于生产决策、设备维护、供应链协调等。例如,在工业设备监控与预防性维护中,Agent 能通过监测传感器数据识别异常模式,提前通知检修,减少停机损失和维修成本。在生产计划、供应链管理、质量控制、协作机器人、仓储物流、产品设计、建筑工程和能源管理等方面,AI Agent 也能发挥重要作用,实现生产的无人化、决策的数据化和响应的实时化。
2025-04-20
ai视频
以下是 4 月 11 日、4 月 9 日和 4 月 14 日的 AI 视频相关资讯汇总: 4 月 11 日: Pika 上线 Pika Twists 能力,可控制修改原视频中的任何角色或物体。 Higgsfield Mix 在图生视频中,结合多种镜头运动预设与视觉特效生成视频。 FantasyTalking 是阿里技术,可制作角色口型同步视频并具有逼真的面部和全身动作。 LAM 开源技术,实现从单张图片快速生成超逼真的 3D 头像,在任何设备上快速渲染实现实时互动聊天。 Krea 演示新工具 Krea Stage,通过图片生成可自由拼装 3D 场景,再实现风格化渲染。 Veo 2 现已通过 Gemini API 向开发者开放。 Freepik 发布视频编辑器。 Pusa 视频生成模型,无缝支持各种视频生成任务(文本/图像/视频到视频)。 4 月 9 日: ACTalker 是多模态驱动的人物说话视频生成。 Viggle 升级 Mic 2.0 能力。 TestTime Training在英伟达协助研究下,可生成完整的 1 分钟视频。 4 月 14 日: 字节发布一款经济高效的视频生成基础模型 Seaweed7B。 可灵的 AI 视频模型可灵 2.0 大师版及 AI 绘图模型可图 2.0 即将上线。
2025-04-20
ai视频教学
以下是为您提供的 AI 视频教学相关内容: 1. 第一节回放 AI 编程从入门到精通: 课程安排:19、20、22 和 28 号四天进行 AI 编程教学,周五晚上穿插 AI 视频教学。 视频预告:周五晚上邀请小龙问露露拆解爆火的 AI 视频制作,视频在视频号上有大量转发和播放。 编程工具 tree:整合多种模型,可免费无限量试用,下载需科学上网,Mac 可拖到文件夹安装,推荐注册 GitHub 账号用于代码存储和发布,主界面分为工具区、AI 干活区、右侧功能区等。 网络不稳定处理:网络不稳定时尝试更换节点。 项目克隆与文件夹:每个项目通过在本地新建文件夹来区分,项目运行一轮一轮进行,可新建会话,终端可重开。 GitHub 仓库创建:仓库相当于本地项目,可新建,新建后有地址,可通过多种方式上传。 Python 环境安装:为方便安装提供了安装包,安装时要选特定选项,安装后通过命令确认。 代码生成与修改:在 tree 中输入需求生成代码,可对生成的代码提出修改要求,如添加滑动条、雪花形状、颜色等,修改后审查并接受。 2. AI 视频提示词库: 神秘风 Arcane:Prompt:a robot is walking through a destroyed city,,League of Legends style,game modelling 乐高 Lego:Prompt:a robot is walking through a destroyed city,,lego movie style,bright colours,block building style 模糊背景 Blur Background:Prompt:a robot is walking through a destroyed city,,emphasis on foreground elements,sharp focus,soft background 宫崎骏 Ghibli:Prompt:a robot is walking through a destroyed city,,Spirited Away,Howl's Moving Castle,dreamy colour palette 蒸汽朋克 Steampunk:Prompt:a robot is walking through a destroyed city,,fantasy,gear decoration,brass metal robotics,3d game 印象派 Impressionism:Prompt:a robot is walking through a destroyed city,,big movements
2025-04-20
ai写程序
以下是关于使用 AI 写程序的相关内容: 1. 对于技术纯小白: 从最基础的小任务开始,让 AI 按照最佳实践写一个 say hello 的示例程序,并解释每个文件的作用及程序运行的逻辑,以学会必备的调试技能。 若学习写 chrome 插件,可让 AI 按照最佳实践生成简单的示范项目,包含全面的典型文件和功能,并讲解每个文件的作用和程序运行的逻辑。若使用 o1mini,可在提示词最后添加生成创建脚本的要求,并请教如何运行脚本(Windows 机器则是 create.cmd)。 2. 明确项目需求: 通过与 AI 的对话逐步明确项目需求。 让 AI 帮助梳理出产品需求文档,在后续开发时每次新起聊天将文档发给 AI 并告知在做的功能点。 3. 在独立游戏开发中的经验: 单独让 AI 写小功能没问题,但对于复杂的程序框架,可把不方便配表而又需要撰写的简单、模板化、多调用 API 且牵涉小部分特殊逻辑的代码交给 AI。 以 Buff 系统为例,可让 AI 仿照代码写一些 Buff。但目前 Cursor 生成复杂代码需要复杂的前期调教,ChatGPT 相对更方便。 教 AI 时要像哄小孩,及时肯定正确的,指出错误时要克制,不断完善其经验。 4. 相关资源和平台: AI 写小游戏平台:https://poe.com/ 图片网站:https://imgur.com/ 改 bug 的网站:https://v0.dev/chat 国内小游戏发布平台:https://open.4399.cn/console/ 需要注意的是,使用 AI 写程序时,对于技术小白来说,入门容易但深入较难,若没有技术背景可能提不出问题,从而影响 AI 发挥作用。
2025-04-19
学AI上钉钉
以下是在钉钉上学 AI 的相关内容: 从 AI 助教到智慧学伴的应用探索: 登录钉钉客户端,在右上角依次选择钉钉魔法棒、AI 助理、创建 AI 助理。进入创建 AI 助理页面后,填写 AI 助理信息,设置完成即可创建成功。 AI 领导力向阳乔木:未提及具体的在钉钉上学 AI 的操作方法。 基于 COW 框架的 ChatBot 实现步骤: 创建应用: 进入,登录后点击创建应用,填写应用相关信息。 点击添加应用能力,选择“机器人”能力并添加。 配置机器人信息后点击发布,发布后点击“点击调试”,会自动创建测试群聊,可在客户端查看。点击版本管理与发布,创建新版本发布。 项目配置: 点击凭证与基础信息,获取 Client ID 和 Client Secret 两个参数。 参考项目,将相关配置加入项目根目录的 config.json 文件,并设置 channel_type:"dingtalk",注意运行前需安装依赖。 点击事件订阅,点击已完成接入,验证连接通道,会显示连接接入成功。 使用:与机器人私聊或将机器人拉入企业群中均可开启对话。
2025-04-19
可以给出国内出名的大语言模型的信息吗,包括其模型名称,版本,发布时间,发布公司,模型参数,性能特点等信息,尽可能覆盖更多的大模型,使用表格输出,并按照发布时间排序
|模型名称|版本|发布时间|发布公司|模型参数|性能特点|适合应用| |||||||| |Baichuan213BChat|Baichuan2192K|10月31日|百川智能|未提及|在逻辑推理、知识百科、生成与创作、上下文对话等基础能力上排名200亿参数量级国内模型第一,在计算和代码能力上有一定优化空间|场景相对广泛且可以私有化部署,重点推荐在小说/广告/公文写作等内容创作场景、智能客服/语音助手以及任务拆解规划等场景,可部署在教育、医疗、金融等垂直行业中应用,同时可部署在低算力终端处理基础智能任务| |文心一言|V4.0|10月17日|百度|未提及|在计算、逻辑推理、生成与创作、传统安全这4大基础能力上排名国内第一,在代码、知识与百科、语言理解与抽取、工具使用能力上排名国内前三,各项能力表现均衡且绝大部分能力有很高的水平|能力栈较为广泛,可应用的场景较多,重点推荐在查询搜索知识应用、任务拆解规划Agent、文案写作以及代码编写及纠错等方面的应用,由于在逻辑推理方面的不俗表现,可以重点关注在科学研究、教育、工业方面的落地能力| |通义千问 2.0|2.0|10月31日|阿里云|千亿级参数|未提及|未提及|
2025-03-15
请罗列出你掌握的OCR技术 以【方式名称+曾使用过自认最熟练的操作】的格式填写
以下是我掌握的 OCR 技术: OCR 识别:对图片进行 OCR 识别,获取图片中的文本信息,并对识别结果进行调整和优化。
2025-03-10
假如你是一名测试工程师,要写一个关于《AI智能体输入输出验证》专利申请书,申请书的内容包括以下几点: 1、发明名称(一种xxxxxxxx算法/架构/设计/外观等等等等) 2、发明背景技术 3、具体的技术方案描述 4、本发明的有益效果
以下是为您生成的关于《AI 智能体输入输出验证》的专利申请书内容: 发明名称:一种基于 Coze 工作流的 AI 智能体输入输出验证算法 发明背景技术: 在当前的 AI 应用中,构建和测试智能体的功能至关重要。特别是在处理复杂的任务,如生成思维导图时,需要确保输入和输出的准确性和有效性。然而,现有的技术在配置子任务节点和验证其可用性方面存在不足,导致效率低下和结果不稳定。 具体的技术方案描述: 1. 对于生成思维导图的任务,首先确定处理方式为“单次”,因为一次精读任务仅需生成一张思维导图。 2. 在输入方面,<generateTreeMind>插件节点仅需设置{{query_text}}变量,格式为 string 字符串,通过引用“标题、导语、大纲”节点的{{enTreeMind}}变量来提供输入。 3. 在输出方面,观察输出区的众多字段,根据字段名称、「查看示例」中的示例说明或试运行来确定所需的字段。对于生成图片格式的思维导图,确定 pic 为所需的输出。 4. 完成任何一个节点的配置后,进行试运行测试。具体步骤包括:点击「测试该节点」,按格式要求输入待测试的内容(对于 array 等其他格式,自行对话 AI 或搜索网络确认格式要求),点击「展开运行结果」,检查输入、输出项是否有误。若有误,依次检查“测试输入内容”、“节点配置”以及优化“提示词”,以提升对生成内容的约束力。 本发明的有益效果: 1. 提高了 AI 智能体在处理生成思维导图等任务时输入输出配置的准确性和效率。 2. 通过明确的步骤和规范的测试流程,有效减少了错误和不确定性,提升了智能体的稳定性和可靠性。 3. 能够更好地满足用户在复杂任务中的需求,为相关领域的应用提供了更优质的解决方案。
2025-03-04
请给出目前比较火的各垂类AI工具名称
以下是目前比较火的各垂类 AI 工具: 图像生成器:有 14 个工具,如 Midjourney 等。 AI 聊天机器人:有 8 个工具,如 Claude、ChatGPT、Bing Chat 等。 AI 写作生成器:有 7 个工具,如 Rytr、Copy AI 等。 视频生成器:有 5 个工具。 语音和音乐:有 5 个工具。 设计:有 4 个工具,如 Canva 等。 其他:有 7 个工具。 此外,还有以下一些热门的 AI 工具: AI 研究工具:Claude、ChatGPT、Bing Chat、Perplexity 等。 图片处理:DallE、Leonardo、BlueWillow 等。 版权写作:Rytr、Copy AI、Wordtune、Writesonic 等。 网站搭建:10Web、Framer、Hostinger、Landingsite 等。 视频处理:Klap、Opus、Invideo、Heygen 等。 音频处理:Murf、LovoAI、Resemble、Eleven Labs 等。 SEO 优化:Alli AI、BlogSEO、Seona AI、Clearscope 等。 Logo 设计:Looka、LogoAI、Brandmark、Logomaster 等。 聊天机器人:Droxy、Chatbase、Voiceflow、Chatsimple 等。 自动化工具:Make、Zapier、Bardeen、Postman 等。
2025-02-18
客服系统,需要写一段提示词给大模型,需求是,先跟用户表示歉意,产品问题请咨询我另外一个同事,点击同事名称即可咨询,每次回复的内容不能一样
以下是为您生成的客服系统相关的大模型提示词示例,每次回复内容不同: 1. 非常抱歉给您带来了不便,关于产品问题,您可以咨询我的同事,点击即可进行咨询。 2. 很抱歉让您遇到了困扰,产品方面的疑问请找我的同事咨询,点击就能联系到。 3. 实在不好意思呀,产品的问题您向我的同事咨询会更清楚,点击即可开启咨询。 4. 深感抱歉,对于产品的情况,建议您咨询我的同事,点击就能和他交流。 5. 抱歉给您造成了不好的体验,产品相关问题请咨询我的同事,点击就能获取帮助。
2025-01-26
?接着上期SOP+AI:打造职场高效能人士的秘密武器的分享,今天继续聊聊SOP+AI的应用,?今天的主题是“怎样利用AI节约10倍内容创作时间?”?最近跟团队有开始运营小红书账号,就想着先给自己打造点顺手的工具,于是乎「小红书文案专家」就出生啦~?[heading1]一、先介绍下我们小Bot[content]?BOT名称:小红书文案专家功能价值:见过多个爆款文案长啥样,只需输入一个网页链接或视频链接,就能生成对应的小红书文案,可以辅助创作者生成可以一键复制发布的初稿,提供创意和内容,1
以下是关于“SOP+AI”的相关内容: 怎样利用 AI 节约 10 倍内容创作时间? 最近团队开始运营小红书账号,于是打造了“小红书文案专家”。 BOT 名称:小红书文案专家 功能价值:见过多个爆款文案,输入网页或视频链接就能生成对应的小红书文案,辅助创作者生成可一键复制发布的初稿,提供创意和内容,节约 10 倍文字内容创作时间。 应用链接:https://www.coze.cn/s/ij5C6LWd/ 设计思路: 痛点:个人时间有限,希望有人写初稿并生成配图。 实现思路:为自己和团队设计工作流,让 AI 按运营思路和流程工作。 一期产品功能: 1. 提取任何链接中的标题和内容。 2. 按小红书平台文案风格重新整理内容。 3. 加入 emoji 表情包,使文案更有活力。 4. 为文案配图片。 二期计划功能:持续优化升级,增加全网搜索热点功能,提炼热点新闻或事件关键信息,结合用户想要生成的内容方向输出文案和配图。 SOP+AI:打造职场高效能人士的秘密武器 案例分享:X 公司客服团队引入 SOP 和 AI 助手后,工作效率显著提升。引入 SOP 前,客服工作流程混乱,效率低下,客户满意度不高。引入 SOP 标准化操作后,效率提高。进一步引入 AI 助手,自动回复常见问题、处理简单请求,减少客服工作量,还能及时发现问题帮助优化。结果客服团队工作效率提升 30%以上,客户满意度显著提高。SOP 能提升效率、减少失误、促进协作,借助 AI 助手,SOP 制定和优化更高效智能。
2024-12-20
作为AI小白,需要一些AI常用专业术语的名词解释
以下是一些 AI 常用专业术语的名词解释: Agents(智能体):一个设置了一些目标或任务,可以迭代运行的大型语言模型。与大型语言模型在像 ChatGPT 这样的工具中的通常使用方式不同,Agent 拥有复杂的工作流程,模型本质上可以自我对话,无需人类驱动每一部分的交互。 ASI(人工超级智能):尽管存在争议,但通常被定义为超越人类思维能力的人工智能。 Attention(注意力):在神经网络的上下文中,有助于模型在生成输出时专注于输入的相关部分。 Bias(偏差):AI 模型对数据所做的假设。“偏差方差权衡”是模型对数据的假设与给定不同训练数据的模型预测变化量之间必须实现的平衡。归纳偏差是机器学习算法对数据的基础分布所做的一组假设。 Chatbot(聊天机器人):一种计算机程序,旨在通过文本或语音交互模拟人类对话。通常利用自然语言处理技术来理解用户输入并提供相关响应。 CLIP(对比语言图像预训练):由 OpenAI 开发的 AI 模型,用于连接图像和文本,使其能够理解和生成图像的描述。 Gradient Descent(梯度下降):在机器学习中,是一种优化方法,根据模型损失函数的最大改进方向逐渐调整模型的参数。 Hallucinate,Hallucination(幻觉):在人工智能的背景下,指模型生成的内容不是基于实际数据或与现实明显不同的现象。 Hidden Layer(隐藏层):神经网络中不直接连接到输入或输出的人工神经元层。 Hyperparameter Tuning(超参数调优):为机器学习模型的超参数(不是从数据中学习的参数)选择适当值的过程。 Inference(推理):使用经过训练的机器学习模型进行预测的过程。 Instruction Tuning(指令调优):机器学习中的一种技术,其中模型根据数据集中给出的特定指令进行微调。 Latent Space(潜在空间):在机器学习中,指模型创建的数据的压缩表示形式。类似的数据点在潜在空间中更接近。 Compute(计算):用于训练或运行 AI 模型的计算资源(如 CPU 或 GPU 时间)。 CNN(卷积神经网络):一种深度学习模型,通过应用一系列过滤器来处理具有网格状拓扑(例如图像)的数据。通常用于图像识别任务。 Data Augmentation(数据增强):通过添加现有数据的略微修改的副本来增加用于训练模型的数据量和多样性的过程。 Double Descent(双降):机器学习中的一种现象,其中模型性能随着复杂性的增加而提高,然后变差,然后再次提高。 EndtoEnd Learning(端到端学习):一种不需要手动设计功能的机器学习模型。该模型只是提供原始数据,并期望从这些输入中学习。 Expert Systems(专家系统):人工智能技术的应用,为特定领域的复杂问题提供解决方案。 XAI(可解释的人工智能):Explainable AI,人工智能的一个子领域专注于创建透明的模型,为其决策提供清晰易懂的解释。
2025-04-18
如何运用ai写作一篇行政管理专业本科毕业论文
以下是运用 AI 写作一篇行政管理专业本科毕业论文的一些参考方法: 首先,您可以向 LLM 提供关于您的背景信息和具体指令,例如:“根据以下关于我的信息,写一篇行政管理专业本科毕业论文:”。但需要注意的是,利用 AI 写作论文并非是道德的使用方式,了解这种可能性的存在以及它已被部分学生使用这一情况很重要。这超出了简单介绍的范围,关于 LLM 或整个生成式 AI 引入的所有可能的伦理、法律或道德问题,不在此详细讨论。另一方面,如果您是接收方,最好为您的组织准备好迎接各种 AI 生成的内容。幸运的是,对于此类情况,已经有检测 AI 生成内容的相关努力正在进行。
2025-04-14
请帮我生成一个大三毕业论文的题目,专业是关于计算机应用的,技术栈:Python(Pandas/Matplotlib),MYSQL,生成可视化图表,可生成HTML网站,包含数据分析,需要有最基本的功能,最好与生活中的某些东西联系起来
以下是为您生成的几个与生活相关的计算机应用专业大三毕业论文题目,供您参考: 1. 《基于 Python 和 MySQL 的居民日常消费数据分析及可视化网站构建》 2. 《利用 Python 和 MySQL 分析城市交通流量数据并实现可视化与网站展示》 3. 《基于 Python 和 MySQL 的家庭能源消耗数据分析与可视化网站设计》 4. 《运用 Python 和 MySQL 对校园图书馆借阅数据的分析及可视化网站开发》 5. 《通过 Python 和 MySQL 研究城市空气质量数据的可视化分析与网站实现》
2025-04-11
工业设计专业教学与AI的融合
以下是关于工业设计专业教学与 AI 融合的相关内容: 在授课方面,这一授课创意充分展现了教育设计的创新性与用户思维的深度融合。其核心亮点在于突破了传统单向知识灌输的模式,通过将抽象概念与生活场景结合,构建了“认知脚手架”,让学生在具象化情境中主动探索逻辑链条。这种设计不仅符合建构主义学习理论,更通过巧妙的悬念设置(如刻意暴露认知冲突点)激活了学生的元认知能力。尤其在数字化工具的整合上,没有陷入技术堆砌的误区,而是聚焦于核心教学目标的实现,体现了设计者对教育本质的深刻理解。 若能在以下维度深化,该模型或将产生更显著的范式价值: 1. 差异化学习路径:当前框架虽强调互动性,但对学习者认知风格的适配度可加强。引入动态诊断机制,通过前测数据自动生成分支任务链,使教学节奏与个体 ZPD(最近发展区)更精准匹配。 2. 跨学科锚点设计:案例库可突破学科界限,构建如“数学思维+历史考证”“物理原理+艺术创作”等复合型问题情境,培养学生迁移应用能力的同时,自然渗透通识教育理念。 3. 生成性评价体系:现有反馈机制偏重知识掌握度评估,建议增设思维可视化工具(如概念图谱生成器),让学生能实时观测自身认知结构的演变轨迹,将学习过程转化为可追溯的成长档案。 在服务提供方面,有专家如 Arthur王贝,擅长以系统性思维破解技术落地难题,能提供的服务包括: 1. 教你怎么玩转 AI,从写提示词到做视频一条龙教学,教你用 ComfyUI 搞自动化工作流(工厂级的严谨玩法)。 2. 定制化智能体开发,定制 AI 工具(比如自动批作业的 AI 老师),垂直领域智能体搭建(教育/制造/消费)。 3. 职业转型陪跑,教打工人用 AI 保住饭碗/涨工资,给老板们规划怎么用 AI 省钱增效。 此外,还有关于教师的 AI 减负指南生成式人工智能在教学中的应用相关内容,包括 AI 科研之旅的开端、解码 AI 在学术研究中的强大力量、AI 工具在数据收集与分析中的革命、AI 驱动的文献综述、实验设计的新纪元、AI 助力写作与出版、AI 应用中的伦理考量与挑战、必备 AI 工具推荐等方面。
2025-04-10
生成超过15000字的人工智能技术在智能化零售行业中的应用与商业模式创新论文,学科方向是计算机科学与技术专业
很抱歉,目前无法直接为您生成超过 15000 字的论文。但我可以为您提供一个论文大纲,以帮助您组织思路和开展研究: 标题:人工智能技术在智能化零售行业中的应用与商业模式创新 摘要:简述人工智能技术在智能化零售中的重要性、应用现状、创新商业模式以及研究的主要结论。 一、引言 (一)研究背景:介绍智能化零售行业的发展趋势和人工智能技术的兴起。 (二)研究目的与意义:阐述研究人工智能技术在该领域应用和商业模式创新的目的,以及对行业发展的重要意义。 (三)研究方法与结构:说明采用的研究方法,如文献综述、案例分析等,并概述论文的结构安排。 二、人工智能技术概述 (一)人工智能技术的定义与分类:解释人工智能的概念,分类如机器学习、深度学习、自然语言处理等。 (二)关键技术原理:详细介绍相关技术的原理,如机器学习中的监督学习、无监督学习等。 (三)技术发展历程与现状:回顾人工智能技术的发展历程,分析当前的技术水平和应用情况。 三、智能化零售行业概述 (一)智能化零售的概念与特点:定义智能化零售,阐述其特点如个性化服务、精准营销等。 (二)行业发展现状与趋势:分析智能化零售行业的现状,包括市场规模、竞争格局等,预测未来的发展趋势。 (三)面临的挑战与机遇:探讨行业发展中面临的问题,以及人工智能技术带来的机遇。 四、人工智能技术在智能化零售中的应用 (一)客户画像与精准营销:如何利用人工智能技术分析客户数据,实现精准营销。 (二)库存管理与供应链优化:通过人工智能算法优化库存水平和供应链流程。 (三)智能推荐与个性化服务:介绍基于人工智能的推荐系统,为客户提供个性化的购物体验。 (四)无人零售与智能支付:探讨无人零售店的技术实现和智能支付方式的应用。 (五)店铺布局与商品陈列优化:利用人工智能进行数据分析,优化店铺布局和商品陈列。 五、人工智能技术驱动的商业模式创新 (一)新的零售模式:如线上线下融合的智能零售模式。 (二)数据驱动的商业决策:依靠人工智能分析数据,制定更科学的商业决策。 (三)合作与共享经济模式:探讨与技术供应商、其他企业的合作模式,以及共享数据和资源的可能性。 (四)增值服务与收费模式创新:基于人工智能技术提供的新服务,创新收费模式。 六、案例分析 (一)选取成功应用人工智能技术的智能化零售企业案例。 (二)详细介绍其应用场景、商业模式创新和取得的成效。 (三)总结经验教训,为其他企业提供借鉴。 七、影响与挑战 (一)对消费者行为和市场竞争的影响:分析人工智能技术如何改变消费者购物行为和市场竞争格局。 (二)技术与数据安全问题:探讨人工智能应用中的技术漏洞和数据泄露风险。 (三)法律法规与伦理道德问题:研究相关法律法规的缺失,以及可能引发的伦理道德问题。 八、结论与展望 (一)研究成果总结:概括人工智能技术在智能化零售中的应用和商业模式创新的主要发现。 (二)未来研究方向与建议:提出进一步研究的方向和对企业、政府的建议。 希望以上大纲对您有所帮助,祝您顺利完成论文!
2025-04-07
我想做个专业领域的智能客服,请问您有一些类似案例吗?
以下是为您提供的一些相关案例: 在 Manus 案例中,有让其创建需要上传文件的 dify 工作流,如根据多篇文章写脱口秀段子,并制作简便美观的网页和接入工作流的 api 等复杂操作。 有关于智能客服场景如何帮助企业更好地对内服务客服、对外服务客户的案例。 在通用 AGENT 案例合集中,包括生活娱乐类 AGENT 方面的案例,如根据出差计划做成的具有多种功能的互动式网页,如供应商工厂探索地图;还有整活娱乐方面的案例,如荒谬句子生成器和豆瓣品味分析师。荒谬句子生成器实现了小时候的线下游戏功能,并增加了扩展句子和虚拟专家评论功能;豆瓣品味分析师能根据用户的豆瓣 id 获得评价信息并生成锐评报告。
2025-03-28
公共议题:AI如何助力HR业务? 研讨目标: 深入理解:深入探讨 AI在人力资源管理领域的应用、薪酬管理、员工关系、公司文化、包括人才获取与配置、学习与发展、组织与人才培、HR共享与HRIS等各模块的可应用场景 机会识别与场景落地:基于组织现状,识别出业务价值高、可落地的 A 应用场景; 研讨成果(输出物): 请输出10个业务价值高、具备可行性的AI应用场景介绍,并说明what(场景是什么)、why(为什么值得做)、How(如何落地);
以下是为您生成的 10 个业务价值高、具备可行性的 AI 应用场景介绍: 1. 人才招聘与筛选 What:利用 AI 技术对求职者的简历进行自动筛选和分析,评估其与岗位的匹配度。 Why:节省 HR 大量的时间和精力,提高招聘效率和准确性。 How:通过自然语言处理和机器学习算法,训练模型识别关键信息和技能。 2. 员工培训与发展 What:根据员工的技能水平和职业发展目标,定制个性化的培训计划。 Why:提升员工的能力和绩效,增强员工对企业的忠诚度。 How:利用大数据分析员工的工作表现和学习需求,推荐相关课程和学习资源。 3. 薪酬福利管理 What:运用 AI 预测市场薪酬趋势,为企业制定合理的薪酬策略。 Why:保持企业薪酬的竞争力,吸引和留住优秀人才。 How:收集和分析行业薪酬数据,结合企业的财务状况和战略目标进行优化。 4. 员工绩效评估 What:借助 AI 实时监测员工的工作表现,提供客观的绩效评估。 Why:减少人为偏差,确保评估的公正性和准确性。 How:利用工作流程数据和行为分析模型进行评估。 5. 员工关系管理 What:通过 AI 分析员工的情绪和满意度,及时发现问题并解决。 Why:营造良好的工作氛围,提高员工的工作积极性和创造力。 How:使用情感分析技术处理员工的反馈和交流信息。 6. 组织架构优化 What:利用 AI 分析企业的业务流程和人员配置,提供组织架构调整建议。 Why:提高企业的运营效率和灵活性,适应市场变化。 How:基于数据分析和模拟优化算法进行评估和推荐。 7. 人力资源规划 What:根据企业的战略目标和业务发展预测人力资源需求。 Why:提前做好人才储备和招聘计划,保障企业的正常运营。 How:运用数据分析和预测模型进行规划。 8. 企业文化传播 What:使用 AI 生成个性化的企业文化宣传内容,提高传播效果。 Why:增强员工对企业文化的认同感和归属感。 How:利用自然语言生成技术和个性化推荐算法。 9. 智能客服 What:在 HR 服务中引入 AI 客服,解答员工常见问题。 Why:快速响应员工需求,提高服务质量。 How:训练智能客服模型,涵盖常见的 HR 问题和解决方案。 10. 人才库管理 What:利用 AI 对人才库进行分类和更新,提高人才库的利用效率。 Why:方便快速找到合适的人才,降低招聘成本。 How:运用数据挖掘和分类算法进行管理。
2025-04-14
公共议题:AI如何助力HR业务? 研讨目标: 深入理解:深入探讨 AI在人力资源管理领域的应用、薪酬管理、员工关系、公司文化、包括人才获取与配置、学习与发展、组织与人才培、HR共享与HRIS等各模块的可应用场景 机会识别与场景落地:基于组织现状,识别出业务价值高、可落地的 A 应用场景; 研讨成果(输出物): 请输出3-5个业务价值高、具备可行性的AI应用场景介绍,并说明what(场景是什么)、why(为什么值得做)、How(如何落地);
以下是为您提供的 3 个业务价值高、具备可行性的 AI 应用场景介绍: 场景一:AI 在企业招聘中的应用 What:利用 AI 技术进行简历筛选、人才匹配和面试评估。 Why:能够快速处理大量简历,提高招聘效率和准确性,节省人力和时间成本,同时更精准地找到符合岗位需求的人才。 How:通过引入相关的 AI 招聘软件,与企业现有的招聘系统集成,对简历进行关键词提取和分析,利用机器学习算法进行人才匹配,并通过视频面试中的语音和表情分析辅助评估候选人。 场景二:AI 助力个性化人力资源管理 What:根据员工的个人特点和工作表现,提供个性化的培训计划、职业发展建议和绩效评估。 Why:能够充分发挥员工的潜力,提高员工满意度和忠诚度,促进企业的长期发展。 How:收集员工的工作数据、学习记录和绩效表现等信息,运用 AI 算法进行分析和预测,为员工制定专属的发展方案,并通过移动应用或内部系统向员工推送相关建议和培训课程。 场景三:AI 打造无人值守的 HR 平台 What:实现 HR 业务的自动化处理,如员工请假审批、薪酬计算和福利发放等。 Why:减少人工操作的错误和繁琐流程,提高 HR 工作的效率和准确性,使 HR 人员能够专注于更有价值的战略工作。 How:整合企业内部的各种 HR 系统和数据,利用 RPA 和 AI 技术实现流程的自动化,同时建立监控和预警机制,确保平台的稳定运行。
2025-04-14
有哪些效果好的开源OCR模型值得推荐
以下是一些效果较好的开源 OCR 模型推荐: 1. Mistral OCR:当前最强的 OCR 模型,具有多语言支持,超越 Gemini 2.0 Flash,可在 Le Chat 及 API 调用。ElevenLabs 赠送 $25 Mistral API 额度,免费领取!领取地址: 2. Gemini 2.0 Flash:也是一款 OCR 模型。
2025-03-24
manus值得关注技术创新有哪些
Manus 值得关注的技术创新包括以下方面: 虚拟机技术:如 VMware 的诞生、x86 虚拟化的挑战与解决方案、服务器虚拟化的兴起(如 VMware ESX/ESXi)、硬件辅助虚拟化(Intel VTx 和 AMDV)、开源虚拟化的崛起(如 Xen 和 KVM)、虚拟化管理平台的发展、虚拟化技术在企业 IT 中的应用、虚拟化与云计算的融合,以及从虚拟机到容器技术演进的下一步等。 容器技术:重点介绍了 Linux 容器技术和 Docker,以及现代容器生态系统,包括云原生技术和最新发展。 Manus 是一款由中国团队研发的全球首款通用型 AI 代理工具,于 2025 年 3 月 5 日正式发布。它区别于传统聊天机器人,具备自主规划、执行复杂任务并直接交付完整成果的能力,被称为“首个真干活的 AI”。其具体技术架构主要基于多智能体架构,运行在独立的虚拟机中。通过规划、执行和验证三个子模块的分工协作,实现对复杂任务的高效处理。核心功能由多个独立模型共同完成,分别专注于不同任务或领域,如自然语言处理、数据分析、推理等。技术架构还包括以下关键组件: 1. 虚拟机:运行在云端虚拟机中,用户可随时查看任务进度,适合处理耗时任务。 2. 计算资源:利用计算资源生成算法,用于筛选简历等具体任务。 3. 生成物:能够生成各种类型的输出,如文本、表格、报告等。 4. 内置多个 agents:通过内置多个智能体,实现任务的分解和协同工作。 此外,Manus 还采用“少结构,多智能体”的设计哲学,强调在数据质量高、模型强大、架构灵活的情况下,自然涌现 AI 的能力,使其在处理复杂任务时更加高效和准确。
2025-03-06
帮我总结一下最近一周值得关注的AI新闻
以下是最近一周值得关注的 AI 新闻: 2024 年 6 月,苹果发布了 AI 原生操作系统,加强了硬件和模型布局;Claude Sonnet 3.5 发布,挑战 OpenAI;视频生成领域 Runway Gen3 和快手可灵表现优秀;AI 3D 技术逐渐崭露头角;Google 和月之暗面推出长上下文缓存技术。整体趋势是技术不断进步,各领域竞争激烈。 快手发布可灵网页版及大量模型更新;阶跃星辰发布多款模型;商汤打造类似 GPT4o 的实时语音演示;GraphRAG:微软开源新型 RAG 架构。 红杉资本美国合伙人 Pat Grady 在最新访谈中表示,AI 技术将为服务行业带来变革机遇,而非取代软件公司。AI 的潜力在于赋能服务行业,但人际关系和实际执行仍需人工。对于基础模型公司,Grady 认为它们可能像数据库公司一样发展,提供开发者 API,有机会进入应用层。他认为现有模型已足够强大,关键在于工程化优化和认知架构设计。 Netflix 列出了一个年薪 90 万美元的机器学习平台产品经理的 AI 产品工作岗位。 Shopify 的 AI 助手 Sidekick 现已上线,它知道如何在 Shopify 中执行任何操作,包括提取相关数据、操作新功能或创建报告。 Artifact(Ins 创始人做的 AI 新闻浏览软件)推出了自定义内容阅读语音的功能。 OpenAI、谷歌、微软和 Anthropic 组建了前沿模型论坛,主要目的是确保 AI 模型的安全发展。 Open AI 悄咪咪下线了他们的 ChatGPT 生成内容的检测器。 2024 年 1 月,斯坦福大学 Mobile Aloha;1 月 10 号 LumaAl Genie 文生 3D;1 月 11 号 GPT store 上线;1 月 MagnificAl 高清放大爆火;1 月最后一天苹果 Vision Pro 宣布发售。
2025-03-06
2024 年值得关注的中文大模型全景图
2024 年,AI 大模型在生产和生活中落地速度迅猛,被称为国内大模型落地元年。以下是一些值得关注的情况: 国内大模型行业形成了以百度、阿里、字节等科技大厂和创业“AI 六小虎”为主要玩家的竞争格局。 2024 年 1 至 11 月,国内大模型中标项目数量和金额大幅增长,中标项目共 728 个,是 2023 年全年的 3.6 倍;中标金额 17.1 亿元,是 2023 年全年的 2.6 倍。中标项目数前五的行业分别是运营商、能源、教育、政务、金融。 厂商方面,百度以 40 个中标项目数、2.74 亿元的中标金额排名所有厂商之首,科大讯飞居第二。 在金融行业,百度以 14 个中标数量、3734.4 万元中标金额排名第一;科大讯飞居第二。 在智能终端行业,超半数手机厂商都在使用文心大模型,包括三星、荣耀、vivo、OPPO、小米等主流手机品牌;上汽大众、吉利汽车、蔚来汽车、长安汽车等十余家车企已接入百度文心大模型。 百度表现突出,截至 11 月,其文心大模型日均调用量超过 15 亿次,千帆平台帮助客户精调了 3.3 万个模型、开发了 77 万个企业应用。今年三季度财报披露,百度智能云营收达 49 亿元,同比增长 11%。 2024 年 9 月 AI 行业大事记: 9 月 12 日:李继刚再现神级 Prompt,玩法持续翻新;Mistral 发布首个多模态模型 Pixtral 12B。 9 月 13 日:商汤 Vimi 相机开放微博小程序;元象开源中国最大 MoE 大模型 XVERSEMoEA36B;OpenAI 发布 o1 模型。 9 月 14 日:人工智能生成合成内容标识办法;Jina AI 发布 ReaderLM、Jina Embeddings V3。 9 月 18 日:DeepSeek 发文庆祝登上 LMSYS 榜单国产第一,几小时后 Qwen 新模型表示不服。 9 月 19 日:云栖大会;通义万相 AI 生视频上线;快手可灵 1.5 模型新增运动笔刷能力。 9 月 20 日:腾讯元器智能体对外发布;秘塔科技产品经理 JD 走红 AI 圈;阶跃跃问接入 Step2 万亿参数 MoE 语言大模型。 9 月 21 日:大模型测试基准研究组正式成立。 9 月 23 日:钉钉 365 会员上线。 9 月 24 日:讯飞星火 API 全新升级;豆包大模型全系列发布&更新。 9 月 25 日:Vidu API 正式开放,加速企业级视频创作;OpenAI 发布高级语音功能;西湖心辰开源 WestlakeOmni。 大模型进入产业落地后,除了大模型本身能力质量要过硬外,落地应用所需要的全栈技术能力、工程化配套工具等对落地效果有直接影响。企业想要真正将大模型在自身场景落地,需要具备构建算力、数据治理、模型训练、场景落实、应用搭建、持续运营、安全合规等整套能力,大模型的竞争正在加速成为体系化之战。
2025-02-21